These are the equations of the line. Since two quantities equal to a third are equal to each other, they are equivalent to two independent equations.

If the cosines are proportional to A, B, C, equations (73a) are equivalent to

$$
\begin{equation*}
\frac{x-x_{1}}{A}=\frac{y-y_{1}}{B}=\frac{z-z_{1}}{C} . \tag{73b}
\end{equation*}
$$

These are the equations of a line through $\left(x_{1}, y_{1}, z_{1}\right)$ with direction cosines proportional to A, B, C.

Fig. 73a.

Fig. $73 b$.

Ex.2. Find the equations of the line through $(1,0,1)$ and $(-2,1,0)$.
The direction cosines of the line are proportional to $3,-1,1$. Since the line passes through $(1,0,1)$ its equations are then

$$
\frac{x-1}{3}=\frac{y-0}{-1}=\frac{z-1}{1}
$$

These are equivalent to the two equations

$$
\frac{x-1}{3}=\frac{y-0}{-1}, \quad \frac{y-0}{-1}=\frac{z-1}{1}
$$

and consequently to $x+3 y=1, \quad y+z=1$.

Exercises

Construct the lines represented by the following equations and find their direction cosines:

$$
\begin{array}{ll}
\text { 1. } x+y=1, \quad y=2 z & \text { 3. } x+y+z=1, \quad 2 x-3 y+4 z=5 . \\
\text { 2. } x-y=z, x+y=0 . & \text { 4. } x=2, \quad y=3 .
\end{array}
$$

5. Find the equations of the line through the points $(2,3,-1)$ and (3, 4, 2).
6. Find the equations of the line through $(0,1,2)$ parallel to the vector $[3,1,5]$.
7. Find the equation of the line through $(1,1,1)$ perpendicular to the plane $x+2 y-z=3$.
8. Find the angle between the lines $x+y-z=0, x+z=0$ and $x-y=1, x-3 y+z=0$.
9. Find the angle between the line $x-y+z=1, x=2$ and the plane $z=x-3 y$.
10. Show that the lines $x+y+z=1,2 x-y+3 z=2$ and $3 y-z=2,3 x+4 z=1$ are parallel.
11. Show that the lines $x+2 y=1,2 y-z=1$ and $x-y=1$ $x-2 z=3$ meet in a point and are perpendicular.

Art. 74. Curves

A curve is the intersection of two surfaces. It is then represented by two simultaneous equations. Since an indefinite num-

Fig. $74 a$. ber of surfaces can be passed through a curve, it can be represented in an indefinite number of ways by a pair of equations.
Example 1. Show that the equations

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=1 \\
x+y+z=1
\end{gathered}
$$

represent a circle.

The first equation represents a sphere, the second a plane. The two equations represent the circle in which the sphere and plane intersect.
Ex. 2. Determine the locus represented by the equations

$$
x^{2}+y^{2}=a^{2}, \quad y^{2}+z^{2}=a^{2} .
$$

These equations represent circular cylinders of radius a (Fig. 74a). The locus required is the intersection of the cylinders. Subtraction of the equations gives $x^{2}-z^{2}=0$. Therefore $x= \pm z$. All points
of the intersection thus lie in the two planes $x=z$ and $x=-z$. The locus is two ellipses in which the planes cut the cylinders.
Projecting Cylinders. - If a reetangular coördinate is eliminated from the equations of a curve, the resulting equation usually represents the cylindrical surface with the curve as directrix and generators parallel to the axis of the eliminated coördinate. The intersection of this cylinder with the plane of the other two coördinates is then the projection of the curve on that coördinate plane. These statements are illustrated in the examples solved below.
Ex. 3. Find the cylinders with generators parallel to the coordinate axes and cutting the curve

$$
z=x^{2}+y^{2}, \quad z=x \text {. }
$$

Eliminating z we get $x^{2}+y^{2}=x$. Since this equation contains only x and y, it represents a cylinder with generators parallel to the z-axis. Since the equation of the cylinder is a consequence of the equations of the curve, all points on the curve lie on the cylinder. Furthermore, if x and y satisfy the equation of the cylinder, a value of z can be found such that x, y, z satisfy the equations of the curve. That is, each generator of the cylinder cuts the curve. Therefore $x^{2}+y^{2}=x$ is the equation of the cylinder generated by lines parallel to the z-axis and cutting the curve. In the same way the equation of

Fig. 74b. the cylinder parallel to the x-axis is found to be $y^{2}+z^{2}=z$. Lines parallel to the y-axis and cutting the curve lie in the plane $z=x$. They however generate only the strip of this plane in which the curve lies. This shows that the elimination of a coör-
dinate may give more than the surface generated by lines cutting the curve and parallel to the axis of that coördinate.
Ex.4. Find the equations of the projections of the line

$$
2 x+y-z=0, \quad x-y+2 z=3
$$

on the coördinate planes.
Eliminating z, we get

$$
5 x+y=3
$$

This is the equation of a plane through the line parallel to the z-axis. The equation of the projection on the $x y$-plane is then

$$
\varepsilon=0, \quad 5 x+y=3 .
$$

In the same way the projections on the $x z$ - and $y z$-planes are found to be $y=0,3 x+z=3$ and $x=0,3 y-5 z+6=0$.

Exercises

Draw the following curves and find their projections on the coördinate planes:

1. $x+y+z=1, \quad x^{2}+y^{2}+z^{2}=1 . \quad$ 5. $z=x^{2}+y^{2}, \quad z=y^{2}+z^{2}$.
2. $x^{2}+y^{2}=a^{2}, \quad x^{2}+y^{2}=z^{2} . \quad$ 6. $x^{2}+y^{2}+z^{2}=a^{2}, \quad x^{2}+z^{2}=a x$.
3. $z^{2}=x^{2}+y^{2}, x+y=1 . \quad$ 7. $r \neq a, \quad \theta=z$.
4. $z=x y, z=2 x . \quad$ 8. $\phi=\frac{1}{3} \pi, \quad \rho=\theta$.
5. Show that the equations $x^{2}+y^{2}-z^{2}=1, y-z=1-x$ repreent a pair of lines.
6. Show that the circle $x^{2}+y^{2}+z^{2}=6, y+2 x=1$ and the line $y+z=1, x+y+z=2$ intersect.
7. Find the intersection of the circle $x^{2}+y^{2}+z^{2}+6 x=0$, $x+y=0$ and the plane $x+z=1$.

Art. 75. Parametric Equations

The locus of a point whose coördinates are given functions of a parameter is usually a curve. For, if one of the equations is solved for the parameter and the value substituted in the other two, two equations between the coördinates are obtained. Thus

$$
x=t, \quad y=t^{2}, \quad z=t^{3}
$$

are parametric equations of a curve. To plot the curve, we can assign values to the parameter, calculate the corresponding values of the coördinates and plot the resulting points. By eliminating
the parameter the equation of a surface through the curve is obtained. If the parameter is eliminated between two of the parametric equations, the resulting equation considered as an equation in a coördinate plane represents the projection of the curve on that plane. For example the projections of the curve given above have the equations

$$
y=x^{2}, \quad z=x^{3}, \quad z^{2}=y^{3} .
$$

Example. - The helix is a curve traced on the surface of a right circular cylinder by a point that advances in the direction of the axis of the cylinder while it rotates around the axis of the cylinder, the amount of advance being proportional to the angle of rotation.

Fig. 75.

To find the equations of the helix, let the axis of z be the axis of the cylinder, a the radius of the cylinder, and let the x-axis pass through a point of the helix. If θ is the angle of rotation,

$$
x=a \cos \theta, \quad y=a \sin \theta, \quad z=k \theta,
$$

k being the ratio of the advance in the direction of the axis to the angle of rotation.

Exercises

Construct the following curves and find their projections on the coördinate planes:

1. $x=1+t, y=2-t, z=3 t . \quad$ 3. $x=t \sin t, y=t \cos t, z=t$.
2. $x=\cos \theta, y=\sin \theta, z=2 \theta$. \quad 4. $x=\sin t, y=\cos t, z=\tan t$.
3. A conical helix is described by a point moving on the surface of a right circular cone, the distance of the point from the vertex of the cone being proportional to the angle of rotation about the axis. Find parametric equations for the curve.
4. Find the equation of the twisted surface generated by perpendiculars from points of a helix to the axis of the cylinder on which it lies.
5. Neglecting friction the position of a bullet starting from the origin with velocity $[a, b, c]$ after t seconds is given by the equations

$$
x=a t, \quad y=b t, \quad z=c t-16.1 t^{2}
$$

Construct the curve and find its projections on the coördinate planes if it starts with a velocity of 1000 ft . per second in the direction $\alpha=60^{\circ}$, $\beta=45^{\circ}, \gamma=60^{\circ}$.
8. The wheel of a gyroscope rotates with constant speed around its axis while the axis turns with constant speed about a fixed point of itself. Find equations of the curve deseribed by a fixed point on the periphery of the wheel.

Natural Values of Trigonometric Functions

