ANALYTIC GEOMETRY

CHAPTER 1
ALGEBRAIC PRINCIPLES

Art. 1. Constants and Variables

In analytic geometry much use is made of algebra. Hence a
brief review is here given of some algebraic principles and processes
used in this book.

In a given investigation a quantity is constant if its value is the
same throughout that work, and variable if it may have different
values. It should be noted that a quantity that is constant in one

problem may be variable in another. Thus, in discussing a particu-
lar circle the radius would be constant, but in a problem about a
cireular disk expanding under heat the radius would be variable.

A quantity whose value is to be determined is often called an
unknown. Such a quantity may be either constant or variable.
In some cases it is not even known in advance whether if is con-
stant or variable.

Real Numbers, — The simplest constants are numbers. The proe-
ess of counting gives whole numbers. Division and subtraction give
fractions and negative numbers. Whole numbers and fraetions,
whether positive or negative, are called rafional numbers. A
number, like v/ 2, that can be expressed to any required degree of
aceuracy, but not exactly, by a fraction, is called irrational. Ra-
tional and irrational numbers, whether positive or negative, are
called real.

The absolute value of a real number is the number without its
algebraic sign. The absolute value of z is sometimes written | |.
Thus, | -2| =| +2| = 2.
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Graphical Representation. — Real numbers can be represented
graphically by the points of a straight line. Upon any point 0 of a
line mark the number 0. Choose a unif of length. On one side of
O mark positive numbers, on the other negative numbers, making
the number at each point equal in absolute value to the distance
from O to the point. The result is a scale on the line. When the
line is horizontal, as in Fig. 1, it is usual, but not necessary, to lay
off the positive numbers on the right of 0, the negative numbers on
the left.

% 0

=1=6~504 -3-2-1 0 1

Fia. 1.

The point A representing the number a divides the seale into two
parts, On one side of A, called the positive, lie all numbers greater
than a; on the other side, called the negative, lie all numbers less
than a. At a point B on the positive side of A is located a number
b greater than a, at a point C on the negative side of A is a number ¢
less than a.

The distance between two points of the scale is equal to the
difference of the numbers at those points. This is obvious if the
numbers are both positive. Thus

AB=0B—-04 =p —gq,

It is still true if one or both are negative. Thus, since ¢ is negative,
CO =—c¢ and

CB=(C0+ 0B = —¢+b=0b—c.

Imaginary Quantities. — The extraction of roots sometimes leads to
expressions like vV —1 or g + b \'—-—1, where @ and b are real num-
bers. These expressions are called imaginary. This means merely
that such expressions are not real numbers. It should not be in-
ferred that imaginaries cannot be used or that they have no meaning,
A quantity may have a meaning in one problem and not in another.
For example, in determining the number of workmen needed in a
certain undertaking the answer 3% would be absurd since 3% work-
men cannot exist. In determining the ares of a field the answer

Art. 2 Equarions 3

—10 acres would be meaningless since there is no negative area.
In determining the ratio of two lengths the answer V' —2 is imagi-
nary since the result must be a real number. But in still other
])I‘Oi'llC‘II]S, notably in work with alternating eurrents, an interpreta-
tion can be given to the process of extracting the square root of a

negative number and then such results are entirely real,

Art. 2. Equations

An equation is the expression of equality between two quantities.
An identical equation is one in which the equality is true for all
values of the variables. Thus, in

(—y)l+4ry = (x+y)?

the two sides are equal whatever values be assigned to z and y.

In many equations, however, the equality is true only for certain
values of the variables; thus z® + z = 2 is an equation not true for
all values of z, but only when z = +1 or —2.

Two or more equations are called simultaneous if all are satisfied
at the same fime. Equations often occur that are not simultaneous.
Thus if 2* = 1, thenz = 1, orz = —1, but not both simultaneously.

A solution of an equation is a set of values of the variables satis-
fying the equation. Thus z =3, y = 4 is one solution of the
equation z* + y* = 25. A solution of a set of simultaneous equa-
tions 18 a set. of values of the variables satisfying all of the equations.

Equivalent Equations. — Sets of equations are called equivalent if
they have the same solutions. Thus the pair of simultaneous
equations

22+ zy + i =4, —xy+yf=2

18 equivalent to

4yt =3, zy =1

(obtained by adding and subtracting the original equations) in
the sense that any values of z and y, satisfying both equations
of one pair, satisfy both equations of the other pair. Similarly,
@+ ) (z — 2y) = 0 is equivalent to the two equations

t+y=0, t2y=0
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in the sense that if » and y satisfy the equation (z +y) (z — 2y) = 0,
then eitherz +y =0orz — 2y = 0; and, conversely, if z and y
satisfy either of the latter equations, they satisfy the former.

The main problem in handling equations is to replace an equation
or set of equations by a simpler or more convenient equivalent set.
To solve an equation or set of equations is merely to find a particu-
lar equivalent set of equations.

Degree of Equation. — The equations of algebra usually have the
form of polynomials equated to zero. By a polynomial is meant
an expression, such as #* + 22 — 2 or 2% + 3 Ty — y°, containing
only positive integral powers and produets of the variables.

The degree of a term like z® or 3 ay is the sum of the exponents of
the variables in that term. Thus the degree of 2° is three, that
of 3 zy is two. The degree of a polynomial is that of the highest
term in if. Thus, the polynomials given above are both of the third
degree.

If a polynomial is equated to zero, or if two polynomials are
equated to each other, the degree of the resulting equation is that
of the highest term in it. For example, 2>+ 12 —z = 0 and
Ty = 1 are both equations of the second degree,

Exercises

L. Determine which of the following equations are identities:

R LT 1,1 _z+4y
(@) a™z® = z™n, () s T3=2 © ke

2. Expand (z 4 y)® by the binomial theorem. Is the resulting
equation an identity?

3. Show that z = v/2 is a solution of the equation
B4+202 -3 —~8z+4+2=0.

4. Show that z = —1, y = 2 is a solution of the simultaneous
equations
P tbay+yt=5 224yt =35
5. Show that the pair of simultaneous equations

BtyP=2 zty=1

Equations v ONE VARIABLE

is equivalent to the pair
2—2y+yt=2 a+y=1
6. Find a set of three equations equivalent to
(@ —=1)(=*+2) =0
Explain in what sense the three are equivalent to thp one.
7. Is 22 — 42y + 39* = 0 equivalent to the pair of simultaneous
equationsz = gy, @ = 3y?
8. The symbol V2 is generally used to represent the positive square
root of 2. Isz = V2 equivalent to z* = 27
9. Show that vz o 1 4 vz — 2 = 3 is equivalent to z = 3.
10. The solution of the simultaneous equations
r+y=3, =1
can be written
t=3@B%VE), y=31@BFVE).
What do these mean? How many solutions are there?
11. What is the degree of the equation (z + y)t = 3 2y?
12. If z and y are the variables, what is the degree of az® = bay?
Art, 3. Equations in One Variable
Quadratic Equations. — The quadratic equation
a* +br+e=0
can be solved by completing the square. Transposing ¢, dividing
by a and adding b2/4 a* to both sides, the equation becomes

AN b £
4a> 4a

z:"'—}—-b~x+
(4]

Ixtracting the square root and solving for z,
—b+ VP —4dac
= BR YO
2a

If the expression under the radical is positive, the square root can
be extracted and real values are obtained for z. 1If it is negative,
no real square root exists and the values of = are imaginary.
Solution by Factoring. — Another method for solving quadratie
equations ig factoring. Thus
2+br—6=0
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is equivalent to :

@=1)@x+6)=0.
Sinee a product can only be zero when one of its

. factors i
above equation is ks

satisfied only when # = 1 or 7 = —§
If the quadratic cannot be factored by ;

: inspeetion, it ¢ i
factored by completing the square. Thus gk

3¢ = 22+1=3( — 32+ 1) = 3[(w— 141

=3k -3-3vV-2)@-1+1vD)
The solutions of the equation 3 22 — 2 2 + 1 = 0 are then

r=3(1+Vv-2).

In Fhi AV anv 1
% this way any equation can be solved if the expression equated
zero can be factored. For example, to solve the equation

N P42 —-2=0
write it in the form
B —14a2—1=0,

Since 22 — 1 and 2 — 1 both have ¢ — 1 as

4 s g a factor, the equation

-1 (@422 +2) = 0.
The solutions are consequently

t=landz=—14+vV_1

Exercises
Solve the following equations:
1. 2224832 — 2 = 0.
2. 2 +4x—-5=0.
§. 38+ 5241 =0 0
4. 224z 4+1=0.

5. (@ —1) (@ —2) =0,

=1 0

=g =
7. =

Solve by factoring

8 2 —38z—1=0. 11

9. 222 +2~-2=0, 12“'

10, # —24+1=0. 13:

14. Solve the equation z* = ino i
i e +1 =0 by reducing it to the form

Facrors aND Roors

.
15. Solve the equation z* 2% +4=10 by the method of the last

example.
16. Factor 4z° +4zy — y* by completing the square of the first two

terms.

Art, 4. Factors and Roots

Tt has been shown above that the roots of an equation can be
found if the factors of the polynomial equated to zero are known.
Clonversely, if the roots are known the factors can be found. This
is done by the use of the following theorem: If r s a root of a poly-
nomial equation in one variable , then z — 7 is @ factor of the poly-
nomial. To prove this, let

P=gzr4+ b4+ +prt¢
be a polynomial of the nth degree in which a, b, . . . , P, g are con-
stants. If r is a root of the equation given by equating this poly-
nomial to zero,

ar* + b4 - Fpr+g=0.

Since subtracting zero from a quantity does not change its value,

P=az"+ba 4 - - - prtg— (@b - o +pr+9)
—a@—rm)+b@t—rN)4 - +ple— r).

Fach term on the right side of this equation is divisible by z — 1.
Hence the polynomial, P, has z — r as a factor, which was to be
proved.

Number of Roots. — It can be shown that any polynomial equation
in one unknown has a root, real or imaginary. Assuming this, it
follows that any polynomial of the nth degree in one variable is the
product of n first degree factors. In fact, if is a root of P = 0,
then

P=@-n)g,

Q being the quotient obtained by dividing P by 2 — 1. Similarly,
if 3 is a root of @ = 0,
Q= (x—mE.
Hence
P=(x—r)(x—r)R.
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In the same way R can be factored, ete. Now each time a factor

z — r is divided out the degree of the quotient is one less. After
taking out n factors, what is left will be of zero degree, that is, &
constant. If a is the constant &

P=az—n)(z—r) ... (&—r).

Hence P is the produet of n first degree factors, a (z — n), (z — r9),
ete.

Since a product can only be zero when one of its factors is zero,
it follows that the roots of P = 0 are 1y, rq, . . . , 7. It is thus
shown that an equation of the nth degree has n roots. Some of these
’s may be equal and so the equation may have less than n distinet
roots.

Rational Roots. — Though every polynomial equation in one un-
known has a root, no very definite method can be given for finding
it. If nothing in the particular equation suggests a better method,
it is customary to try first to find a whole number or fraction that is
a root of the equation. Such roots are found by trial. Some
methods that may be useful are shown in the following examples.

Ezample 1. Solve the equation42®* + 422 —2 —1 = 0.

Since z is a factor of all the terms in this equation except the last,
—1, it follows that any integral value of z must be a divisor of —1.
The only integral roots possible are then +1. By trial it is found
that z = —1 satisfies the equation. Hence z + 1 is a factor of the
polynomial. Factoring, the equation becomes (z+41) (4 2*—1)=0.
The roots are consequently —1, and 3.

Ex. 2. Solve the equation 27 2* 4+ 92? — 122 — 4 = 0,

Proceeding as in the last example it is found that the equation
has no integral root. Suppose a fraction p/g (reduced to its lowest
terms) satisfies the equation. Substituting and multiplying by ¢,

21p'+ 99 — 12pg® — 4¢ = 0.

Since all the terms but the last are divisible by p, and p and ¢ have

no common factor, —4 must be divisible by p. For the same reason

27 must be divisible by ¢. Any fractional root must then be equal
to a divisor of 4 divided by a divisor of 27. It is found by trial that

- . 9
g QU N§ L
Art. B APPROXIMATE SOLUTION OF EQUATIONS

2 is a fae ividing and factoring the
2isaroot. Hencez — 31848 factor. Dividing

quotient, the equation is found to be
2 I\ ik TN =
2 (x— %) @3 W& + %) =0
R
The roots are consequently =3 and —3.

Exercises
Solve the following equations: g
P#—-22—-x+2=0. 7. 4zt +822 43 I'—Q.F‘—I‘: .
Bxi:"x'-'ﬁ‘{x—L‘.Zl):(], 8. li.r‘—ll.r‘—371"—‘-%35.1’1—3'1
S A ar 1 R o = ']
409 =~8at— 35z + 170 = {). o ul B,
Bt — 2822 +30z—9=0. 9. 3¢—1722+4122—53z+30
3 24+ 5= = .
P® -4 —224+5=0. Ao 4
#4442 +4x+3=0 10. '3.:7'—'.).!1'—0:--5-01.1:—?1]
V = 0.

o g 1O

Art. 5. Approximate Solution of Equations

If the equation has no whole numbers or fractions as roots, any
real roots can still be found approximately. The method Lit’plt,'llli:i
on the following theorem: Belween two values of .r._fr'n'- u"fm.'h a
polynomial has opposite signs must be a value ju'r u:im‘la r.( .N zero.
To show this suppose when = a the polynomial is positive and
when z = b it is negative. Let 2, beginning with the value a,
gradually change. The value of the polynomial changes gradually.
When .r.v reaches b the polynomial is negative. There must have
been an instant when it ceased to be positive and began to i,je'ncg:!.-
tive. Now a number can only change gradually from positive to
negative by going through zero. There is consequently a value of
z between a and b for which the polynomial is zero.

The theorem can be illustrated by a figure. Let 2 be the number
at the point M in a seale OX (Fig.
5), and let the perpendicular MP
have a measure equal to the value
of the polynomial for that value of
2, it being drawn above OX when
the value is positive, below when F1a. 5.

negative, As M moves along 0X ‘
from A to B, the point P deseribes a curve. BSince the curve 18
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above at 4 and below at B, it must cross the axis at some inter-
mediate point ', At that point the value of the polynomial is
zZero.
Ezample 1. Find the roots of z* T+ 32" — 1 = 0 accurate to one
decimal place.
By substitution the following pairs of values are found:
T = — 2, -1, 0, -1,
P43 -1 = : S P [

The polynomial changes sign between z = —3 and z = —2, be-

tweenz = —1 and 2 = 0 and between z = 0 andz = 1. There is

consequently a root of the equation in each of these intervals, To

find the root between 0 and 1, make an enlarged table for this region,
0.5, 0.6, 1,

— . 125, 4 .206, 3.

It is thus seen that the root is between 0.5and 0.6. Whenz = 0.55
the polynomial is positive. Hence the root lies between 0.5 and
0.55. The value 0.5 is therefore correct to one decimal, In the
same way the value —2.9 is found for the root between —2 and —3,
and —0.7 for the one between — | and 0. Since the equation can
have only three roots this completes the list,

Ez. 2. Solve the equation 23 + 7 — 3 = 0,

Since 2* + » increases with z it can equal 3 for only one real
value of 2. To two decimals this root is found to be 1.21. The
polynomial then has z — 1.21 as an approximate factor, Dividing
by this the quotient is

2+ 121z +2.46.
The solutions obtained by equating this to zero are

T=—06414vV_],

Exercises
Find to one decimal the roots of the following equations:

P —32+1=0, . 2t =38 48 =0,
. P43z -7=0, S. 2 4+z—-1=0
B2+ 4r-1=0, 6. 2 ~3F2 —1=0.

INEQUALITIES

Art. 6. Inequalities

An inequality expresses that one quantity is greater than (>) or

less than (<) another. Thus,

4+1>22 and (z-1) z+2) <0

are inequalities. The first of these is an identical inequality (true
for all values of ), the second is not. As in equations, terms can be
shifted (with change of sign) from one side of an inequality to the
other and inequalities having the same sign (> or <) can be added
but not subtracted. Both sides of an inequality can be multiplied
or divided by a positive quantity, but the sign must be changed
(>to < and < to >) when an inequality is multiplied or divided
by a negative quantity,

The main problem in inequalities is to determine for what values
of the variable an inequality holds. How this is done is best shown
by an example,

Ezxample, Find the values of z for which

S —x—3
* 2 (2 ':!‘)_ 3 b
This is equivalent to

=1 >0

@+1)(@—1)(@+3)

?*(2—2)

The problem is to determine the values of z for which the expression
on the left is positive. Sinee 42 is always positive, the sign of the
expression is determined by the signs of the other four factors, The
values of z making one of these factors zero are —3, —1,1,2. Mark

3 =1

Fia. 6.

these values on a seale (Fig.6). Ifz < —3 the three factors in the
fumerator are all negative, and (2 — ) is positive. The whole
expression, having an odd number of negative factors, is negative,
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If 2 is between —3 and —1, there are two negative factors, z + 1
andz — 1, and the whole expression is positive, If 2 i between —1
and 41, the only negative factor is ( — 1) and the expression is
negative. If 2 is between 1 and 2, all the factors are positive and
the whole expression is bositive. If > 2 there is one negative
factor, (2 — z), and the expression is negative,

The expression is positive when z is hetween —3 and —1, or be-
tween 1 and 2. These conditions are expressed by the inequalities

—3<2<~1 and l1<z<2
The original inequality is equivalent to these two, in the sense that

it holds when one of these does and conversely,

Exercises

Find the values of z satisfying the following inequalities:

- £2—2>0

% S 5 Bl 1

B =22 422 —1 <. "z R SR N

. Show that 22 — 3 ¢ + 3 > 0 is true for all values of z.

- Find for what values of z, the value of ¥ is real in the equation
P tay gt =1,

8. Find the values of 3 satisfying both the inequalities
2> P>

Art. 7. Simultaneous Equations

Simultaneous equations in more than one unknown are solved by
a process called elimination. This is a name applied to any proe-
ess by which equations are found equivalent to the given equations
but some of which contain fewer unknowns, By a continuation of
this process equations may eventually be obtained each containing
a single unknown and these ¢an be solved by the methods already
given. In other cases it may not be possible to solve the equations
completely but they may be reduced to 5 simpler form. If nothing
in the equationg indieates a simpler way, there are three general
methods that may be useful:

(1) Multiply the equations by constants op variables and add or
subtract to get rid of an unknown or to ohtain a simpler equation,

Art. T SIMULTANEOUS EQUATIONS

(2) Solve one of the equations for one of the unknowns and sub-
i i i : ] - equations.
gtitute this value in each of the other equa s
(3) Between one of the equations and each of thel othe.rb eliminate
the same unknown. Proceed with the new equatlfms in the ;gﬁm
way until finally (if possible) one of the unknf)wns 1-s found. . t;n
determine the other unknowns by substituting this value in the
previous equations. - bt
However the solutions be found they should be checked by sub
stitution in each of the original equations.
Ezample 1. Solve the simultaneous equations
z+ y+ z2=2
2z— gy+32=9,
3z+4+2y— &= -1.

Adding the second to the first and twice the second to the third,
=]

3-1:"‘42: 111
Tz+ 52 =1T7.

Subtracting 5 times the first from 4 times the secoilq of these-elqus—
tions, there is found 13 z = 13, whenece 2 = 1. This value 5&1 iS l_.
tuted in either of the preceding equations gives 2 = 2. _The va ucI!s
of z and 2 substituted in either of the original equations give y =_— ;
The solution is # = 1, y = —1, 2 = 2. These values check when
substituted in the original equations.

Ez. 2. Solve the equations

=244y =21,
2494+ a— y=12
Subtraction gives 5y — 3z =9, Hence y = (z+3). This

value substituted in the second equation gives

1722 +322 — 132 =

The roots of this are 2 and —§$. The corregponding values orf ‘y

: : ions are £ =2, y =3 and 2= —&§,
are 3 and —+%. The solutions are z = 2, ‘ _ g
Y =—1%. These values check when substituted in the original
equations,
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Exercises
Solve the following simultaneous equations:
1. 4z -5y + 6 =0, v6. Pt oz
T2—8y 411 =0, =
y=3z44.
2. 2?1—25—3-‘-2:0, o o h2+k"’—81z+4k+20:?3
m_{_-)_j :ng, 11-2+k2+6k+2!c-|—10=r'-’,’
2 =0 B+8h 416 =12
T+2y+z=0, 8 Z4dppop ‘
= W=y :
224 y—2z2=0.
.?:-i:2y+3;»:=3,
T—2y+3z=1,
T+4y 49z =6,
el
2wt

+ 9, 10, 24+pp4 2= 6,
z 4y + 2 =2
W i 22 —y +3z =09,

Art. 8. Special Cages

Inconsi i S i i
sistent Equations. — Sometimes equations are inconsistent
sistent,

:{mt is, h‘ave 10 simultaneous solution. This is usually shown hy
1e equs S S ' ; k

equations requiring the same expression to have different valyes
For example, take the equations :

T+ y+ z=1,
2x+3y+4z=5,
24+2y+38z=3,

Elimination of # between '

e the first and second and first and third
: Y+22=8 y+2:=09

Any solution of the original equ

the expression y

tion.

ations must satisfy these. Since
+ 2 2 cannot equal both 2 and 3, there is no solu-

Dep.endent eq_xatiohs.-—Sometimes the solutions of part of the
equatic_ms all sa:usfy the remaining equations, These last give ng
added information. Such equations are called dependent

At. 8 : w SeEciaL CAsEs
For example, take the equations’
sty=1"B—g*+z+3y=2

Substituting 1 — « for y in the second equation, it becomes 2 =
All the solutions of the first equation satisfy the second. The two
equations are equivalent to one equation ¢ + y = 1. They have
an infinite number of simultancous solutions.

Number of Solutions. — In general, definite solutions are expected
if the number of equations is equal to the number of unknowns.
Thus, two equations usually determine two unknowns, three equa-
tions determine three unknowns, ete. This is, however, not always
the case. The equations may be inconsistent and have no golution
or may be dependent and have an infinite number of solutions. If
the equations determine definite solutions, the number of solutions
is expected to equal the product of the degrees of the equations,
Special circumstances may, however, change this number. It can
be shown that unless the number of solutions is infinite it cannot
exceed the product of the degrees of the equations.

If there are fewer equations than unknowns, the unkpowns will
not be determined. In this case, if the equations are consistent,
there will be an infinite number of solutions.

If there are more equations than unknowns, usually there will
be no solution. In particular cases, however, there may be solu-
tions. To determine whether there is a solution, solve part of the
equations and substitute the values found in the remaining equa-~
tions. If any of them satisfy all of the equations, there is a solu-
tion, otherwise there is none.

Homogeneous Equations. — If all the terms of an equation have
the same degree the equation is called homogeneous. A set of homo-
geneous equations can often be solved for the ratios of the variables
when there are not enough equations to determine the exaet values,

For example, take the homogeneous equations

g—y—t=0e30—y—22=0.
Solving for z and y
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Any value. can be assigned to z and the values of z and i ean then
be determined from these equations. Let 7 — 2k

is then The solution

z=Fk y=-f 2=2F

Sinee k is arbitrary, g, Y 2 have any valyes proportional to 1, —1
2. This result can be written z:y: 2 = 1. —1:2 TR

Exercises
Determine whethe
definite solutions, or

il

r the following equati

‘the ons have no solution
an infinife number of solu i

1tions:
6. - y49,
3z 4 Y= .2
32+2y—3;

I
eoal

Ii

: (m—y)2+{y—z)2+(z—x)9=l,

L A =2,

@+ 2+ @Gt L Tz} =3.
10. w4+ 24 Yk e =1,

-1.u—§—2.1;—-3y-42=2,

W~ $—2y9-_3%, 3,

11:—-5:1:—5—2;;4—33:3‘

ariables in the following equations are

z =4,

$+2y+3z:2,
5.1:-{-83/—!—73:14.

4+ y— 5 =0,
33:+2y~—12=0,

2z4 y— 6=0.

Find values to which the v
proportional:

1411 Tty—2z=0, B.z 4y~ 2 =p
8 —y —4z=0, 3,:5+y2-52?=0}
122z +2y+ z =10, 4, 22 442 = o :
4y +32 =0, y”::vz.’

Art, 9. Undetermined Coefficients

It is. often necessary to reduce a given expression or equation ¢
8 l'eqmre.d form. This form is indicated by an expression or e uao
tion having letters for coefficients and the reduetion is madqb ;
caleulating the valyes of these coefficients. ke

In this work frequent use is -
two polynomials in one variable a

made of the following theorem: If
re equal for all values of the variable,

Art. 9. UxpeETERMINED COEFFICIENTS
the coefficients of the same power of the variable in the two polynomials
are equal. To show this, suppose, for all values of z,
Gt wrtartt - - faxt=byt+bhx+bat+ - - + bt
Then for all values of z
(@a—bo) + (@ —b)z+ -+ + + (@n— b)) z* = 0.

If the coefficients in this equation are not zero, by Art. 4, it cannot
have more than n distinct roots. Hence the coefficients must all
be zero and ap = by, @ = by, ete., which was to be proved.

To reduce an expression to a given form, equate the expression to
the given form, clear of fractions or radicals, and determine the un-
known coefficients by the above theorem.

Ezample 1. To find the coefficients ¢ and b such that

T a b
G-D&t3) z-1 243
clear of fractions, getting,
z=a@+3)+biz—1)=(@+b2z+3a—0>
If this equation holds for all values of z,
a+b=1 Sa=b=0

Hencea = 1,0 = 3. Conversely, if a and b have these values, the
above equations are identically satisfied. Therefore
=¥ PR A
@=1)(z+3) 4@-1) " 4(z+3)

In many cases the expression can be more easily changed to the
required form by simple algebraic processes. This is particularly
the case with second degree expressions where completing the
square may give the required result.

Ezample 2. To reduce the expression

144z —222
to the form a — b (z — ¢)?, it can be written
1—2@—22)=3-2(@— 1),

which is the result required.
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In reducing equations to
multiplying an equation by
’J':’hus, T+y=1and 2¢
tions are then equivalent
portional,

Ezample 3. To find such
.—"3+k($+3,?/'"1)
in the form

a required form it should be'noted that
& number gives an equivalent equation,
+2y =2 are equivalent. Two equa-
whex} corresponding coefficients are pro-

thatx—{-Sy—-l:Oand 3z —y
=0 are equivalent, write the last equation

(3+k)x-£—(3k—-1)y—-(.’c-|—3) =0,
This is equivalent to 2 +8y—1=

0i . ;
o rieeen 3 if corresponding coefficients

+

These equations are satisfied by k = —5

Exercises

Reduce the following expressions to

1. 22 + 32 44 = (az 4+ b2 + ¢,
2. 3+2x—x5=b~(1:—rz)“.

3. 2+ ay i =a(z 4 my)* 4 by — ma)?

ORI Y ) TSy b e,

e —2) " 7

the forms indieated:

g9
1
B o IBAE R S g c
@+&ut+n‘ﬂ+T+5¥E
Reduce the following equ

ations to the forms indi :
6'32:-_4‘11:5, ndicated;

¥ =mzx -+ b,
7.20+4+3y=4 Z¥_
Y ) G+E—I'

8.3:62-}—23;3-—63-{—4‘1;:1’ (‘1er+
a2

9. zﬁ-—~1y?—-4x+8y=4,
10, 3:1:-—y+5=0,

& ~ i

RN -

®+y~D+kw—y+m=0

Art, 10, Functions
It is often desirah

le to state that o T 2
another. For this ¢ quantity is determined by

purpose the word function is used. A quantity

Chap. 1

Funcrions

y is called a function of z if values of = determine values of y. Thus,
ify = 1 — 2% then y is a function of z, for a value of & determines a
value of y. Similarly, the area of a circle is a function of its radius;
for, the length of radius being given, the area of the circle is deter-
mined.

It is not necessary that a value of the variable determine a single
value of the function. It may be that a limited dumber of values
are determined. Thus, ¥ is a function of z in the equation

=2zt e=1.

To each value of  correspond two definite values of y obtained by
solving a quadratic equation.

If a single value of the function corresponds to each value of the
variable, the function is ealled single valued. If several values of
the function correspond to the same value of the variable the
function is called many valued.

Kinds of Functions. — Any expression containing a variable is a
function of that variable, for, a value of the variable being given, a
value of the expression is determined. Such a function is called
explicit. Thus V2 + 1is an explicit function of z. Similarly, if
Y = \/m, then y is an explicit function of z.

If z and y are connected by an equation not solved for y, then y
is called an implicit function of z. For example, ¥ is an implicit
function of  in the equation

P4yt 224+y=1

Also # is an implicit function of ¥.

Explicit and implicit do not denote properties of the function
but merely of the way it is expressed. An implicit function is
rendered explicit by solving. For example, the above equation is
equivalent to

y=§(=1 & 5=B2— 1,

A rational function is one representable by an algebraic expression
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containing no fractiona] powers of variable quantitjes, For example,

2 V543
242
is a rational function of z,

An irrational function 18 one represented by an algebraic expres-
sion which cannot be reduced to a rational form.
Vz 4+ 1is an irrational funetion of 2.

A function is called algebraie if it can be
implicitly by a finite number of algebraic operations (addition,
subtraction, multiplication, division, raising to integral powers, and
extraction of integral roots). All the functions prev
tioned are algebraic,

For example,

expressed explicitly or

iously men-

Functions that are not algebraic are called transcendental, For
example, zV2 ang 2= are transcendental functions of T

The terms rational, irrational, algebraic, and transcendental de-
note properties of the function itself and do not depend on the
way the funetion is expressed.

Notation.— A particular function of z is represented by the nota-
tion f (z), which should be read funetion of %, or f of z, not f times z.
For example, f () = Vaz2- ;T, means that f(z) is the definite
function v2* I 1. Similarly, y = f () means that ¥ 18 a definite
(though perhaps unknown) funetion of =,

The f in the symbol of 5 funetion should be considered as repre-
senting an operation to be performed on the variable, Thus, if

2

f@=va2i41rf represents the operation of squaring the variable,
adding 1, and extracting the square root of the result,
placed by any other quantity, the same operation is to be performed
on that quantity. For example, f(2) is the result of
the operation f on 2. With the above value of &

@ =v21l=

If % is re-

performing

Similarly, e A
T+ =viy+ipri= Vii+2y + 2,
If it-is necessary to consider several funetions in the same dis-
cussion, they are distinguished by subseripts or accents or by the

Funcrions

. o4
use of different letters. Thug, fi (), f2 (z), f5 (:r:), T f(:c)}q fecgi)d,
; z, f~two of @, f-three of a, f~prime of , J-s
" (x) (read f-one of z, f-two of , o i
{)f ac( _)f-third of @), g () represent (presumably) different functions
b
Ome. tions of Several Variables. — A quantity w is called a fufll:]tlon
e r values of those
rari if values of w are determined by vah )
of several variables if values o bl
1 ! car he volume of a cone is a fune
variables. For example, t iy
i ius of its base; for the volume is dete by
ltitude and the radius of its ; for the vo : %
:hel ;]ltitude and radius of base. This is indicated by the notation

v :f(h! T)J

which should be read, » is a funetion of » and r, or ¢ 3 { of fhu ;Lilgoz
Similarly, the volume of a rectangular parallelopipe lla :;en e

of the lengths of its three edges. If a, f.J, and ¢ are the leng

the edges, this is expressed by the equation

v =,lr(“; b; C.):

‘which should be read, » is a function of @, b, and c,_or v'si} lf fm .a;}?; :C

Independent and Dependent Variab-lés. — In most 1;1(:1 ;3( i
ocecur a number of variable quantities connec%d )y‘ ﬂim yiss
Arbitrary values ean be assigned to some of Fhe;se ?u:l ,\,‘ ;ﬂues
the others are then determined. Those t,akli%g :;.u n,]\dl:lncé i
are called independeni variables; those .cletermmed au,dm e
pendentvariables. Which are taken as 1ndependlc‘nt fm Tvi\le .
dependent variables is usually a matter of ‘(‘,—ODVQIIYILII‘IC‘L. e
ber of independent variables is, however, fixed by t-]u., iql Surmc;‘ .

Bzample. The radius r, altitude &, vol.ume v, and total s :
of a eylinder are connected by the equations

= n"'i“gh, S =2 + 2 7rh.

Any two of these four quantities can be taken as indepen;ifeuft vz::—
ables and the other two calculated in terms 0’{' them. , ;Il' .
ample, v and r are taken as the independent variables, h and S hav

the values

v : 20
h,_—_.i S=2TI'7‘2+'__"
ar?! 7
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L Exercises
» Iff(z) = 2* — 32 + 2, show that f (1) =f(2) =0,
 Xf(@) =241 findf :

T+, findf(z+1). Alsofind f (z) + 1.

I f(2) = vV2* =1, find £ (27). Also find 2 fi(z).

copy  T4+2 e
« W f (2) = B B find f (j{;). Also find — .
z* 0

/

d (z
 Hy(2) =28 +222 + 3, show that ¢ (—z) = ¢ (2).

1T L, . -
. ¢(z) =2 +3—:, show that [¢ ()P = ¢ (22) + 2.
- 3 ¢ A=
. IfF ——  show " .
; II F (z) iEs show that F (a) F (—a) = 1.
g. “l:f;{\..rj = 2’,05 ‘(x) =2, find i [fa (y)]. Also find f; [f: @]
IU. : f“J, ¥) =2+ 22y — 5, show that /' (1, 2) = 0.
]I. “f F _u, Y) = g:f + oy + ¥, show that F (2, y) = F (¥, ).
lq. Iff"-;; y) = I; + 3 2% + 1f, show that f (z, vz) = r'} (1, »)
<. 1L a, b, c are the sides of a right triangle how manv s
be taken as independent \'.'l]'i.‘l'ﬁ(‘ﬁ'.’h gias drie
13. Express the radius and area of g sphere

; : in terms of 7
taken as independent variable, ik

14. G ‘1 = z* 4 ;‘", o E
v n 4 T T 1 v I + _.y d@t(‘lll
4 1VE f une x Jlll{ i as [ullctl ns
()f hf.' llld(‘.}’{’ndt’llt varia ](“‘ 4 3.[1({ v v 3

15. If @, y, 2 satisfy the equations

s+y+ 2=
T—y4+25=1
22 +y— =z

show that none of them can be independent variables
16. The equations :
6,

= 13

are d Cpen ent. Sh t] Y = o S
e ae d 0 nat one o he ([

W it an 1 I t uantities z, 1 Z ¢an be jil\l‘[[
as l[i(ll‘})(’[l .l(‘“t vari lll]l‘ "

17. If w, v, z, y are connected by the equations
w 4w —y =0, w-tr—y=0
. ]
show that u and z cannot both be independent Wriables

CHAPTER 2
RECTANGULAR COORDINATES

Art. 11. Definitions

Scale on a Line. — In Art. 1 it has been shown that real numbers
can be attached to the points of a straight line in such a way that
the distance between two points is equal to the difference (larger
minus smaller) of the numbers located at those points.

The line with its associated numbers is called a scale. Proceed-
ing along the scale in one direction (to the right in Fig. 11a) the

5-4-3-2-10 1 28 &8
o

F1a. 11a.

numbers increase algebraically. Proceeding in the other direction
the numbers decrease. The direction in which the numbers in-
crease is called positive, that in which they decrease is called
negative.

Cobrdinates of a Point. —In a plane take two perpendicular
seales X'X, Y'Y with their zero points coincident at O (Fig. 11b).
It is customary to draw X'X, called
the z-azis, horizontal with its positive
end on the right, and Y'Y, called the
y-axis, vertical with its positive end
above. The point O is called the
origin. The axes divide the plane into

four sections called quadranis. These
are numbered I, II, I1I, IV, as shown
in Fig. 11b. Fia. 11b.

From any point P in the plane drop
perpendiculars PM, PN to the axes. Let the number at M in the

geale XX be z and that at N in the scale Y'Y be y. These num-
23




