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These conclusions apply closely to the vanes of a water wheel
which are so shaped that the water enters upon them tangentially
in the direction of the motion. If the vanes are plane radial
surfaces, as in simple paddle wheels, the water passes away nor-
mally to the circumference, and the highest obtainable efficiency
is about 30 percent. If the vanes are curved backward, the effi-
ciency becomes greater, and, neglecting losses in impact and fric-
tion, it might be made nearly unity, and the entire energy of the
stream be realized, if the water could both enter and leave the
vanes in a direction tangential to the circumference. The in-
vestigation shows that this is due to the fact that the water leaves
the vanes without velocity; for, as the advantageous velocity
of the vane is }u, the water upon its surface has the relative
velocity v — 3o = Ju; then, if 8 = ¢°, its absolute velocity as
it leaves the vane is 3o — o = 0. If the velocity of the vanes
is less or greater than half the velocity of the jet, the efficiency
is lessened, although slight variations from the advantageous
velocity do not practically influence the value of .
Prob 159. A nozzle o.125 feet in diameter, whose coefficient of dis-
charge is 0.95, delivers water under a head of 82 feet against a series of small

vanes op a circumference whose diameter is 18.5 feet. Find the most ad-
vantageous velocity of revolution of the circumference.

Art. 160. REvVOLVING VANES

‘When vanes are attached to an axis around which they move,
as is the case in water wheels, the dynamic pressure which is
effective in causing the motion is that tangential to the circum-
ferences of revolution ; or at any given point this effective pres-
sure is normal to a radius drawn from the point to the axis. In
Fig. 160 are shown two cases of a rotating vane; in the first the
Wwater passes outward or away from the axis, and in the second it
passes inward or toward the axis. The reasoning, however, is
general and will apply to both cases. At 4, where the jet enters
upon the vane, let 2 be its absolute velocity, V its velocity rela-
tive to the vane, and « the velocity of the point 4 ; Yraw % normal
to the radius » and construct the parallelogram of velocities as
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« being the angle between the directions of z:; anﬂ :'i. :::

and V. At B, where the water lea? es the va °
i normal to the radius r;, and Vi
then constructing

shown,
¢ that betw -
let %, be the velocity of that p(?lnt i
the velocity of the water relative to the vane,

Fig. 160.

the resultant of #; and Vy is v, the abso]utye
Let B be the angle between V3
e the angle between the

the parallelogram, the
velocity of the departing water. =
and the reverse direction of #, and

directions of v; and #. : -

The total dynamic pressure exerted in the dlr?cttﬁot rﬁi é};;

motion will depend upon the values of :Lhe impulse of the e
:o streams. The absolute impulse of th-e wz.lttr, efo

and d'epa'ml?l/g- o/¢. and that of the water after leaving is ¥ “u/8

Et: r':krllf ::Sompoﬁeits of these in the directions of the motion of

the vane at -entrance and departure be designated by P and Py

then P=W 9 COSw

o G
.

ive t dy-
These, however, cannot be subtracted to give the resultant dy
¥

s was done in the case of motion in a straight

e and the velocities

line, because their directions are not parallel, e
of their points of application are flot equal.f D
namic pressure is not important i cases O _ ]1. im,.éstigating
above values ®ll prove useful in the next articie in

the work that can be delivered by the vane.
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If # be the number of revolutions around the axis in one sec-
ond, the velocities # and #; are

U=2mrn = 2mrm
and accordingly the relation obtains
h/u=n/r or wr = ur,

which shows that the velocities of the points of entrance and exit
are directly proportional to their distances from the axis. If r
and r, are infinity, » equals # and the case is that of motion in
a straight line as discussed in Art. 158.

The relative velocities V; and V are connected with the veloc-
ities of rotation u, and u by a simple relation. To deduce it,
imagine an observer standing on the outward-flow vane and
moving with it; he sees a particle of weight w at 4 which to him
appears to have the velocity V, while the same particle at B
appears to have the velocity Vi; the difference of their kinetic
energies, or w(V,? — V?)/2g, is the apparent gain of the wheel-
energy. Again, consider an observer standing on the earth and
looking down upon the vane; from his point of view the energy
gained is w(m® — u2)/2g. Now these two expressions for the
gain of the wheel in energy must be equal, or

V= V2= —y2 (160)
and this is the formula by which V; is to be computed when V
and the velocities of rotation are known. The same reasoning

applies to the inward-flow vane by using the word “loss " instead
of “ gain,” and the same formula results.

The given data for a revolving vane are the angles ¢ and B,
the radii  and r,, the velocity o, the number of revolutions per
second, and the weight of water delivered to the vane per second.
The value of v cose, and hence that of Py, is immediately known.
From the speed of revolution the velocities % and #, are found.
The relative velocity V is, from the triangle between # and o,

V =9sina/sing
L]
and by (160) the relative velocity V; is then found from
Vi=ul?—u2+ 2
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Lastly, the value of o cosd, from the triangle between 2 and e
1t1€es o o .
ies of the entering and departing water; the theoretic energy

of this water is W - 2*/2¢, and when it leaves the wheel it still

and accordingly the values of the dynamic pressures P and P, are has the energy W - 9%/2g.  Neglecting | :
fully determined. Numerical values of these, however, are never S Friction the work that can Be dLri% CZS?BS o elilergy In 1mpact
™ erived from the wheel is

needed, but the work due to them is of much importance, as will L
b=y =

Vi, 1s oy cosf =u — Vi cosB

(161),

be explained in the next article.

Prob. 160. Given r = 2 feet , 11 = 3 feet, & = 43°, ¥ = go°, ¥ = 100
feet per second, and n = 6 revolutions per second. Compute the velocities

u, 4y, V, and V1.

Arr. 161. WORK DERIVED FROM REVOLVING VANES

The investigation in Art. 159 on the work and efficiency of
a revolving vane supposes that all its points move with the same
velocity, and that the water enters upon it in the same direction
as that of its motion, or that « = o. This cannot in general be
the case in water motors, as then the jet would be tangential to
the circumference and no water could enter. To consider the
subject further the reasoning of the last article will be continued,
and, using the same notation, it will be plain that the work of a
series of vanes arranged around a wheel may be regarded as that
due to the impulse of the entering stream in the direction of the
motion around the axis minus that due to the impulse of the de-
parting stream in the same direction, or
k=Lu— Pun

Here P and P; are the pressures due to the impulse at 4 and

B (Fig. 160), and inserting their values as found,

w4y CoSe — Hx®y cost (161);
g

This is a general formula applicable to the work of all wheels of

outward or inward flow, and it is seen that the useful work &
consists of two parts, one due to the entering and the other to

k=W

the departing stream.
Another general expression for the work of a series of vanes
may be established as follows: Let v and 7, be the absolute veloc-

28

This 1s a formula of equal generality with the preceding, and like

% sonli
btyls 1pphca};le to all cases of the conversion of energy into work
means of impulse or reaction. I
. In both formulas, h
the plane of the vane is e
s supposed to be horizontal, so t
; : . nat
occurs between the points of entrance and exit J s

Fo.rmula (160) may be demonstrated in another way b
equating the values of % in the preceding formulas; thus i
uy cose — 0y cosf= 3 (v* —0,%)

Now from the triangle at 4 between % and »
2?=V?—u+2 uv cose
and from the triangle at B between #; and o
. 9= V2 —u®+ 2 w0, cosd
Inserting these values of 2* and v,® the equation reduces to
. Vi—=Vi=u’—u?
This shows that if #; be greater than u, as in the outward-flow

3 : s
ang. then V, is greater than V'; if %, is less than %, as in an in
ward-flow vane, then V; is less than V. ; ’

Fig. 161a. Fig. 1615

The above principles wi i
ples will now be applied to the simpl
of an outward-flow wheel driven by a fixed nozzle, as in Fiz elgijze
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The wheel is so built that 7 = 2 feet, 7' = 3 feet, & = 4500 =00,
and B = 30°. The velocity of the water issuing from the nozzle
is o = 100 feet per second, and the discharge per second is 2.2
cubic feet, It is required to find the work of the wheel and the

efficiency when its speed is 337.5 revolutions per minute.
The theoretic work of the stream per second is the weight
delivered per second multiplied by its velocity-head, or
k=62.5X 2.2 X0.01555 X 100 = 21 380 foot-pounds

which gives 38.9 theoretic horse-powers. The actual work of the
wheel, neglecting losses in foam and friction, can be computed
either from (161); or (161);. 1In order to use the first of these,
however, the velocities w, #, 71, and the angle 6 must be found,
and to use the second, v; must be found; in each case V and ¥

must be determined.
The velocities # and u are found from the given speed of
£.625 revolutions per second, thus:
w =2 X3.1416X2X5.625= 70.71 feet per second;
=11 X j0.71 = 106.06 feet per second.
The relative velocity V at the point of entrance is found from
the triangle between V and 2, which in this case is right-angled ;
¥V =2 cos (¢ — &) = vcos 45° = 70.71 feet per second.

The relative velocity Vy at the point of exit is found from the
relation (160), which gives Vi = = 106.06 feet per second.
And since u; and V; are equal, 7 bisects the angle between Vi

and #;, and accordingly
- 0 =1 (180"~ B) =15 degrees.
The value of the absolute velocity # then is
2, = 2 11 cosf = 54.90 feet per second,
and 2./ 2g is the velocity-head lost in the escaping water.

The work of the wheel per second, computed either from (161)y
or (161),, is now found to be k = 14934 foot-pounds or 27.2
horse-powers, and hence the efficiency, or the ratio of this work
to the theoretic work, is ¢ = 0.699. Thus 30.1 percent of the
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energy of the water is lost, owing to the fact that the water leaves
the wheel with such a large absolute velocity.

. In this examp.le tbe speed given, 337.5 revolutions per minute,
is such that the direction of the relative velocity V is tangent to the

_ vane at the point of entrance. For any other speed this will not be

the case, and thus work will be lost in shock and foam. It is observed
al:%o thzft the approach angle « is one-half of the entrance angle ¢;
with this arrangement the velocities # and V are equal, as also u; anci

V;. Had the angle 8 been made smaller the effici
cle f th
would have been higher. : ncy of the wheel

5 Prob. 161. COI:]I‘)!RE the power and efficiency for the above example
if the angle 8 be 15° instead of 30°. Explain why f cannot be made very

, small.

Arrt. 162. REevorvine TusBrs

The water which glides over a vane can never be under static
pressure, but when two vanes are placed near together and con-
nected so as to form a closed tube, there may exist in it static
pressure if the tube is filled. This is the condition in turbine
wheels, where a number of such tubes, or buckets, are placed
around an axis and water is forced through
them by the static pressure of a head. The
work in this case is done by the dynamic
pressure exactly as in vanes, but the existence
of the static pressure renders the investiga-
tion more difficult.

The simplest instance of a revolving tube
is that of an arm attached to a vessel rotat-
ing about a vertical axis, as in Fig. 162. It
was shown in Art. 29 that the water surface in
this case assumes the form of a paraboloid
and if no discharge occurs, it is clear that thé
static pressures at any two points B and 4
are measured by the pressure-heads H; and H reckoned upwards

to the parabolic curve, and, if iti i
, and, if the velocities of those point
#; and #, that g

Fig. 162,

Hl_%lf:}_g_”_g:k
2§ 28
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Now suppose an orifice to be opened in the end of .the 'tube zu.ui the
flow to occur, while at the same time the revolution is continued.
The velocities V; and V diminish the pressure-heads so that the
piezometric line is no longer the parabolz‘l, but so’me curve repre-
sented by the lower broken line in the figure. Then, a":cordmg
to the theorem of Art. 31, that pressure-head plus velocity-head
remains constant during steady flow, if no loss of energy occurs,
i el o B e (162)
28 2% 28 28
in which H; and H are the heads due to the actual static pressures.
This is the theorem which gives the relation b.etween pressure-
head, velocity-head, and rotation-head at any point of a revolving
tube or bucket. If the tube is only partly full, so that the flow
occurs along one side, like that of a stream upon a vane, then there
is no static pressure, and the formula becomes the same as (160).

An apparatus like Fig. 162, but having a num‘ber of arms fror.n
which the flow issues, is called a reaction wheel, since the dynal}'nc
pressure which causes the revolution is wholly due to the reaction
of the issuing water. To investigate it, the general formula (16;)1
may be used. Making # = o, the work done upon the wheel by

the water 1s
E=W

— w0y cosf _ WuiVi cos B —u*
8
But since there is no static pressure at the point B, the value
of V, is, from (162), or also from Art. 29,
Vi=Vogh+u
The work that can be derived from the wheel now is
uy co BV 2gh+ul—u®
8

This becomes nothing when #, = o, or wher.l ;fﬁ = 2gh COt-B;;
and by equating the first derivative to zero it is found that
becomes a maximum when the velocity is given by

k=W
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Inserting this advantageous velocity, the maximum work is
¢ k=Wh(1—sinB)
and therefore the efficiency of the reaction wheel is
e=1—-sinf

When 8 = 90°, both %, and e become o, for then the direction of
the stream is normal to the circumference and no reaction can
occur in the direction of revolution. When 8 = o, the efficiency
becomes unity, but the velocity #; becomes infinity. In the
reaction wheel, therefore, high efficiency can only be secured by
making the direction of the issuing water directly opposite to that
of the revolution, and by having the speed very great. If 8 =
19°.5 or sin B = §, the advantageous velocity u; becomes V2gk
and e becomes 0.67. The effect of friction of the water on the

sides of the revolving tube is not here considered, but this will
be done in Art.172.

Prob. 162a. Compute the theoretic efficiency of the reaction wheel *
when 6 = 180°, B = o°, and u; = V2gh.

Prob. 162b. A reaction wheel has 8 = 30° r; = 0.302 meters, and k =
4.5 meters. Compute the most advantageous number of revolutions per
minute. If the quantity of water delivered to the wheel is 1600 liters per
minute, compute the power of the wheel in metric horse-powers and in kilo-
watts.

Prob. 162c. When 7 is in meters, » in meters per second, and p, py,

and p, are in kilograms per square centimeter, the formulas (157), for water
hammer become

p=ocow4(l/t)o+p—py p=1450+p—p,
the first of which is to be used when / is greater than o.0o1404/ and the second
when £ is equal to or less than it, / being in meters.




