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which is the equation of the surface curve, C being the constant of 
integration. To use this let the logarithrnic and circular function 
in the second parenthesis of the second member be designated by 

qi(x) or qi(d/D), namely, 

</>(x) = 4>(d/ D) =!.lo x
2 + x + 1 

- -
1
- are cot 

2 
x ~ 1 

6 g. (x - 1)2 _.13 ✓3 

Then the above value of l may be written 

l = ~x - Díl-~)4>(t)+ C 

Now let ¾ be the depth at the dam and let l be measured up-stream 
from that point to a section where the depth is d1• Then, taking the 
integral between these limits the constant C disappears, and 

which is the practica! formula for use. In like manner d2 may repre­
senta depth at any given section and d1 any depth at the distance l 

Fig. 140a. 

up the stream. 

When d = D, the depth of 
the backwater becomes equal to 
that of the previous unif orm 
:flow, x is unity, and hence l is 
infinity. The slope CC of uni­

form :flow is therefore an asymptote to the backwater curve. Accord­
ingly the depth d1 is always greater than D, although practically 
the difference may be very small for a long distance l. 

In the investigation of backwater problems by the above formula 
there are two cases: first, ¾ and d1 may be given and lis to be found; 
and second, l and one of the depths are given and the other depth is 
to be found. To solve these problems the values of the backwater 
function qi(d/D) computed by Bresse are given in Table 140.* The 
argument of the table is D/d, which, being always less than unity, 
is more convenient for tabular purposes than d/ D, since the values of 
the latter range from I to oo. By the help of Table 140 practica! 
problems may be discussed and the following examples will illustrate 
the method of procedure. 

• * Bresse's :Mécanique appliqués (Paris, 1868), vol. 2, p. 556. 
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TABLE 140. VALUES OF THE BACKWATER FUNCTION 

D <t>(~) !!. <t>(t) D <t>(~) !2. <t>(i) 
d d d d 

I. 00 o.954 0.9073 0.845 0.5037 0.61 0.2058 

0.999 2.1834 -952 .8931 .840 .4932 .60 .1980 

.998 1.9523 .950 .8795 .835 .4831 .59 .1905 

.997 1.8172 .948 .8665 .830 .4733 .58 .1832 

.996 1.7213 .946 .8539 .825 .4637 .57 .1761 

.995 r.6469 .944 .8418 .820 .4544 .56 .1692 

.994 r.5861 -942 .8301 .815 .4454 .55 .1625 

.993 r.5348 .940 .8188 .810 .4367 .54 .1560 

-992 l.4902 .938 .8079 .805 .4281 .53 .1497 

-991 r.4510 .936 .7973 .800 .4198 .52 -1435 
.99o I.4159 .934 .7871 .795 .4n7 .51 .1376 

.989 1.3841 -932 -7772 .790 .4039 .50 .1318 

.988 1.3551 .93o .7675 .785 .3962 .49 .1262 

.987 1.3284 .928 .7581 .780 .3886 .48 .1207 

.986 1.3o37 .926 .7490 .775 .3813 .47 .n54 

.985 1.2807 .924 .7401 .770 .3741 .46 .II02 

.984 1.2592 .922 .7315 .765 .3671 .45 .1052 

.983 1.2390 .920 .7231 .76o .3603 .44 .1003 

.982 1.2199 .918 .7I49 .755 .3536 .43 .0995 

.981 1.2019 .916 .7069 .750 •,347° .42 .0909 

.980 I.1848 -914 .6990 .745 .3406 .41 .0865 

.979 I.1686 .912 .6914 .740 .3343 .40 .0821 

.978 1.1531 .910 .6839 .735 .3282 .39 .0779 

.977 I.1383 .908 .6766 .730 .3221 .38 .0738 

.976 1.1241 .906 .6695 -725 .3162 .37 .0699 

.975 1.no5 .904 .6625 .720 .3104 .36 .o66o 

.974 r.0974 .902 .6556 ,715 .3047 .35 .o623 

.973 1.0848 .900 .6489 .710 .2991 .34 .0587 

-972 1.0727 .895 .6327 .705 .2937 .33 .0553 

-971 1.0610 .890 .6173 .70 .2883 .32 .0519 

.97o 1.0497 .885 .6o25 .69 .2778 .30 .0455 

.968 1.0282 .880 .5884 .68 .2677 .28 .0395 

.966 1.0080 .875 .5749 .67 .2580 .25 .0314 

.964 0.9890 .870 .5619 .66 .2486 .20 .0201 

.962 .9709 .865 .5494 .65 .2395 .15 .on3 

.960 .9539 .860 .5374 .64 .2306 .IO .0050 

.958 .9376 .855 .5258 .63 .2221 .05 .0015 

.956 .9221 .850 .5146 .62 ,2138 .00 .0000 



356 Chap. 10. Thc Flow of Rivers 

A stream of 5 feet depth is to be dammed so that the water shall 
be ro feet deep a short distance up-stream from the dam. The uni­
form slope of its bed and surface is 0.000189, or a little· less than one 
foot per mile, and its channel is such that the coefficient e is 65. It 
is required to find at what distance up-stream the depth of water is 
6 feet. Here D = 5, d.i = ro, d1 = 6 feet, 1/ i = 5291, and c2/g = 
131. Now D/ d.i = 0.5, for which the table gives cf,(di D) = 0.1318, 
and D/ d1 = 0.833, for which the table gives cf,.(d1/ D) = 0-4792. 
These values inserted in (140)2 give 

l = 5291(10 - 6) + 5(5291 - 131)(0.4792-:- 0.1318) 

from which l = 30 125 feet = 5. 70 miles. In this case the water is 
raised one foot at a distance 5. 7 miles up~stream from the dam. 

The inverse problem, to compute f½ or d1, when one of these and 
l are given, can only be solved by repeated trials by the help of Table 
140. For example, Jet l = 30 125 feet, the other data as above, and 
Jet it be required to determine d2 so that di shall be only 5.2 feet, or 0.2 
greater than the original depth of 5 feet. Here D/ d1 = 0.962, for 
which the table gives <f,(di/D) = 0.9709. Then (140)2 becomes 

30 125 = 5291(d2 - 5.2)+ 25 800[0.9709 - cf,(d2/ D)] 

which is easily reduced to the simpler form 

Values of d2 are now to be assumed unti] one is found that satisfies 
this equati_on. Let d2 = 8 feet, then (D/ d2) = 0.625 and, from the 
table, cf,(d2/ D) = 0.2180; substituting these, the second member be­
comes 36 700, which shows that the assumed value is too large. Again, 
take d2 = 7 feet, then D/ d2 = 0.714, for which cf,(d2/D) = 0.3047, 
whence the second member is 29 200, showing that 7 feet is too smaU. 
If d2 = 7.4 feet, then D/d2 = 0:675 and cf,(d2/ D) = 0.2629, and with 
these values the equation is nearly satisfied, but 7.4 is still too smaU. 
On trying 7.5 it is found to be too large. The value of d2 hence líes 
between 7.4 and 7.5 feet, which is as close a solution as will generally 
be required. The height of dam required to maintain this depth may 
now be computed from Art. 136. 

If the slope, width, or depth of the stream changes materially, 
the above method, in which the distance l is measured from. the dam 
as an origin, cannot be used. In such cases the stream should be di-
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vided into reaches, for each of which the slope, width, and depth can 
be regarded as constant. The formula can then be used for the first 
reach and the depth of its upper section be determined; then the ap­
plication can be made to the next reach, and so on in order. For com­
mon rivers and for shallow cana]s it will probably be a good plan to 
determine D by actual measurement of the area and wetted perimeter 
of the cross-section, the hydraulic radius computed from these being 
taken as the value of D. Strictly speaking, the coefficient e varíes with 
the slope and with D, and its values may be found by Kutter's for­
mula, if it be thought worth the while. E ven if this be done, the results 
of the computations must be regarded as liable to considerable un­
ce;tainty. In computing depths for given ]engths an uncertainty of 
10 per_cent or more in the vlftue of d2-d1 should be expected. 

The following method of computation is readily applicable to 
cases of backwater and gives results which are often sufficiently 

satisfactory. The distarice l between two sections does not ap­

pear in the formulas, but it is essential that this distance shall 
be small enough so that the water surface between them may be 

regarded as a straight line. In sorne streams the distance apart 
of sections may be as high as 1000 feet, in others smaller. Let 
Fig. 140b represent the 

case of a stream where 

an obstruction, which 
is sorne distance down­

stream from the sta­

tion M,·causes a rise of 

the original surface. 

At the severa! stations 

R 
Datun Plane 

Q p 

Fig. 140b 

N J/ 

M, N, P, Q, R; etc., elevations of ethe original surface above 

a datum plane are taken. A cross-section of the stream is also 
made at each station, the levels being extended upward on the 

banks so that for any water leve! the area a and the wetted 

perimeter p may be ascertained from a drawing. At the first 

station M the elevation of the backwater is known, it being 

either assumed or computed froJ?1 Art. 136. The problem 
then is to determine the elevation of the backwater at each of 
the stations up-stream from M. 
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Fig. 140c shows on a larger scale the profile between M and 
N and also the two cross-sections at M which are drawn from 
the given data. In this diagram the elevations of M1, M2, and N1 
are known, and it is required to fi.nd that of N2. Let a1 and ~ 

, V 

N ---------------------M---==;;;.....-
Fig. 140c. 

denote the areas of the cross-section at M', the first for the original 
:fiow and the second for the backwater, and let Pi and P2 be the 
corresponding wetted perimeters. Let hi be the known di:ff erence 
of the elevations of Mi and Ni, and ~ the unknown di:fference 

of the elevations of M2 and N2. Then the formula 

~= hi ai3P2 
a23Pi 

(140)3 

determines h2, and accordingly the elevation of N2 is k~own. This 
formula expresses the condition that the same q~a~tity of water 
:fiows through the cross-sections a1 and ~, and 1t 1s deduced as 
follows. The mean discharges in these two sections are, from the 
Chezy formula, ciai %Si and c2~ -y;;;:;. Equating t~:se, re­
placing ri and r2 by ai/ p1 and ~ / p2, squarmg, and makmg the 
coefficients ci and c2 equal, gives the equation siai3/ Pi = s2~

3 
/ P2-

N ow si = hil and s2 = ~l where l is the distan ce between the two 
secti~ns. Hence hiai3/Pi =•~~3/p2, from which the above for­

mula (140)3 at once results. 

As an example, take the case of four sta.tions on Coal River, 
W.Va., data for the original water surface being as follows: 

Station = M N P Q R 
Elevation = ro.os n.s., II.95 13.44 .14.39 ft. 

Rise /11 = · r.48 0.42 1.49 0.95 ft. 

Area a1 = 3034 
Perimeter p1 = 255 

3or2 3210 2749 2340 sq. ft. 
260 280 204 192 ft. 
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and let it be required to fi.nd the elevations of the backwater sur­
face when an obstruction down-stream from M raises the water 
to elevation 12.05.at M2. Drawing the water level in the cross-• 
section at M, there are found ~ = 3533 square feet and P2 = 260 
feet. Then _ 30343 X 200 _ 

~ - 1.48 
3 

- 0.95 feet, 
3533 X 255 

and hence the elevation at N2 is 12.05 + 0.95 = 13.00 feet. For 
this water-level the cross-section for station N gives 3390 square 
feet area and 264 feet wetted perimeter for the backwater condi­
tion. Then the backwater rise at station P is 

30123 X 280 
~ = 0.42~- --= 0.30 feet, 

33903 X 264 

which gives 13.30 feet for the elevation of the backwater surface 
at P. The results for the five stations are arranged as follows, 
the last line showing the required elevations of the backwater 
surface: 

Station = M N p Q R 
Area q,i. = 3533 3390 358o 2940 2492 sq. ft. 
Perimeter P2 = 260 264 286 209 r97 ft. 
Rise h2= o.95 0.30 I.IO 0.80 ft. 
Elevation = 12.05 13.00 13.30 14.40 15.20 ft. 

While there are severa! assumptions and limitations in this 
method, it does not appear that they introduce more error than 
that which obtains when the formula (140)2 is applied to a stream 
of irregular section. By the exercise of much judgment in select­
ing the stations, and by taking the data for a cross-section as 
the mean of severa! on both sides of a station, it is believed that 
the method can be used with much confidence in all cases where 
extreme conditions do not obtain. Íf the Chezy coefficients at a 
station can be found, then the formula (140)a may be written in 
the more exact form 

Prob. 140. A stream, having a cross-section of 2400 square feet and 
a wetted perimeter of 300 feet, has a uniform slope of 2.07 feet per mile, and 
its channel is such that e = 70. It is proposed to build a dam to raise the 
water 6 feet above the former leve!, without increasing the width. Compute 
the rise of the backwater at a distance of one mile up-stream. 
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ARr 141. Tm: DRoP-DOWN SURFACE CURVE 

When a sudden fall occurs in a stream, the water surface for a long 
distance above it is concave to the bid, as seen in Fig. 138b or in Fig. 

141. This case also occurs when 

: 
1 

1 
1 
1 1 1 

1 1 

the entire discharge of a canal is 
allowed to flow out through_ a fore­
bay F to supply a water-power 
plant. Let D be the original uni-

1/, form depth of water having its 

-------- surface parallel to the bed, the 

Í/ 
1 
1 
1 
1 

d. 
1. 

! 
: F: 
1 ' -----J 

Fig. 141. slope of both being i. Let di and 

<h be two of the depths after the steady non-uniform flow has been 
established by letting water out at F, and let d1 be greater than d2, the 
distance between them being l. The investigation of the last article 

applies in all respects to this form of surface curve, and 

is the equation for practical use, in which e is the coefficient in the 
Chezy formula v = c-Jrs, and gis the acceleration of gravity. Table 
140 cannot, however, be used for this case because d/ D in that table 

is greater than unity, while here it is less than unity. 

The function <f,(d/D) with -values of d/D less than unity is here 
called the "drop-down function," in order to distinguish it from the 
backwater function of the fast article, although the algebraic expression 
for the two functions is the same. Table 141, due also to Bresse, 
gives values of this drop-down function for values of the argument 
d/D, ranging from o to r, and by its use approximate solutions of prac­

tical problems can be made. For example, take a canal ro feet deep, 
having a coefficient e equal to 8o, and let the slope of its bed be 1/ 5000 
and its ¡;urface slope be the same when the water is in uniform flow. 

Here D = ro feet, c2/g = 200, and r/i = 5000. Then 

l = - 5ooo(d1 - ~)+ 48oo{cf,(~)-c¡,(~) j 
Now suppose that a break occurs in the bank of the canal out of which 
rushes more water than that delivered in normal flow when the depth 
is 10 feet, and let it be required to find the distance between two points 
where the depths of water are 8 and 7 feet. Here d1/ D = o.8, for which 

'!... 
D 

l. 

o.999 
.998 
.997 
.996 
.995 
.994 
.993 
.992 
.991 
.990 
.989 
.988 
.987 
.986 
.985 
.984 
. 983 
.982 
.981 
.980 
.979 
.978 
.977 
.976 
.975 
.974 
.973 
-972 
.971 
.970 
.968 
.966 
.964 
.962 
.96o 
.958 
.956 
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T AllLE 141. VALUES OF THE DROP-DOWN FUNCTION 
• 

1>(t) ~ 1>(~) !!. 
D 1>(~) !!. 1>(~) D D 

00 o.954 0.8916 0.845 0.4478 0.61 
2.1831 .952 .8767 .840 

0.0454 
.4353 .60 .0325 

1.9517 .950 .8624 .835 
1.8162 .948 .8487 

.4232 .59 .0199 
.830 .4II4 .58 + 0.0074 

1.7206 .946 .8354 
1.6452 

.825 .3988 .57 -0.0050 
.944 .8226 .820 .3886 .56 

1.5841 .8102 
- .0172 

.942 .815 .3776 .55 - .0293 
1•5324 .940 .7982 .810 .3668 
1.4876 .938 

.54 - .0412 
.7866 .805 .3562 

1.4486 .936 
.53 - .0530 

.7753 .800 .3459 .52 - .o647 
I.4125 .934 .7643 
1.3804 

.795 .3357 .51 - .0763 
.932 .7537 .790 .3258 .50 - .0878 

I.35II .930 .7433 .785 .316o .49· - ;0991 
1.3241 .928 •7332 .780 .3o64 .48 - .II04 
1.2990 .926 .7234 .775 .2970 .47 - .1216 
1•2757 ·924 ,7lJ8 .770 .2877 
1.2538 

.46 - .1327 
.922 .7045 .765 .2785 .45 . - .1438 

1.2323 .920 .6953 .76o .2696 .44 - •1547 
1.2139 .918 .6864 .755 .2607 .43 - .1656 
I.1955 .916 .6776 
I.1781 

.750 .2520 .42 - .1765 
·914 .6691 

I.1615 
.745 , 2434 .41 - .1872 

.912 .6607 .740 .2350 .40 - .1980 
1•1457 .910 .6525 .735 • .226o .39 - .2086 
1.1305 .908 .6445 .730 .2184 .38 - .2192 
I.IIÓO .906 .6366 ,725 .2102 .37 - .2298 
I.1020 .9o4 .6289 .720 ,2022 .36 -
l.o886 .902 .6213 

.2403 
-715 ·1943 .35 - .25o8 

1.o757 .900 .6138 .710 .1864 .34 - .2612 
1.0632 .895 .5958 .7o5 .1787 .33 - .2716 
1.0512 .890 .5785 .70 ,I7II .32 - .2819 
r.0396 .885 .5619 .69 .156o .30 - .3025 
1.0174 .880 .5459 .68 .1413 .28 - .3230 
o.9965 .875 .53o5 .67 .1268 .25 - .3536 

.9767 .870 .5156 .66 .1127 .20 - .4042 

.9580 .865 .5012 .65 .0987 .15 - .4544 

.9402 .86o .487-2 .64 .o851 .IO - .5046 
·9233 .855 .4737 .63 .0716 .05 - .5546 
.9071 .850 

1 
.46o5 .62 .0584 .00 .6o46 
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cf,(d1 ID) = 0.3459, and d2 ID = 0.7, for which cf>(d2/ D) = 0.17n. In­
serting these values in the equation, there is found l = 7890 feet. 

In this case there is a certain limiting depth below which the above 
formula is not valid. This limit is the value of x for which ~/8x 
becomes zero or the value of x where the surface curve is vertical and 
the bore occurs (Art. 139). From (140)1 this happens when 

~ = c2i/ g or d = D(c2i/g)½ 

and for the above example this limiting depth is found to be 3.4 feet. 
Near this limit, however, the velocity becomes large, so that there is 
much uncertainty regarding the value of the coefficient c. 

When a given discharge per second is taken out of a forebay at the 
end of a canal having its bed on a slope i, the above formula must be 
modified. Let q be the discharge and let D1 be the depth at a section 
where the slope_is s, then q equals cbD1 vJJ;i. If this value of q be sub­
stituted in the equation (138)1 and then the same reasoning be followed 
as at the beginning of Art. 140, it will be found that formula (141) 
will apply to this case if D1(s/ i)! be used instead of D. For example, 
let q = 3000 cubic feet per second, D1 = 10 feet, i = 1/ 10 ooo, e= 80,. 

a.nd the width b = 100 feet. Then 
s = q2/ c2b2D13 = 1/7100 D = D1(s/ i)½ = n.2 feet. 

Now if it be required to find the distance between two points where the 
depths of waté'r are 10 and 9 feet, iormula (141) can be directly applied, 
and accordingly there is found, by the help of Table 141, 

• l = - 10 000(10 - 9) + 109 800( o. 578 - 0.355) = 14 400 feet, 

and hence a forebay admitting the given discharge will not draw down 
the water to a depth less than 9 feet if it be located 14 400 feet down­
stream from the section where the mean depth is 10 feet. 

Navigation canals are often built with the bed horizontal between 
!ocks, and here i = o. The above formula cannot be applied to this 
case because the differential equation (138)2 vanishes when i is zero. 
To discuss it, equation (138)1 must be resumed, and, inverting the same, 

.!=- c2b2<fl +t 
8d q2 g 

The integration of this between the limits d1 and d2 gives 

l = c2b2 (d14 -d24)- ~ (d1 -d2) (141)2 
4q2 g 
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from which l may be computed when q is known. As an examplc, 
take a rectangular trough for which q = 20 cubic feet per second, 
b = 5 feet, e = 89, and let d1 = 2.00 feet and d2 = 1.91 feet. Then 
from the formula lis found to be 317 feet. This is the reverse of the • 
example at th~ end of Art. 137, where l was given as 333 feet, so that 
the agreement IS very good. 

!º compare a canal having a level bed with the one previously 
collSldered, the same data will be used, namely, d1 = 10 feet, <4. = 9 
feet, b = 100 feet, e = So, and q = 3000 cubic feet per second. Then 
from (141)2 there is found 

l = 1. 778(10' - 94)- 200(10 - 9) = 5920 feet, 

and accordingly the water leve! is drawn down in one-third of the dis­
tance of that of the previous case. The quantity of water that can be 
obtained from a navigation canal is always less than from one having 
a sloping bed, and it has frequently happened, when such a canal is 
abandoned for navigation purposes and is used to furnish water for 
power or for a public supply, that the quantity delivered is very much 
smaller than was expected. 

The method of computation explained at the end of Art. 140 
may_ be used also to determine the drop-down curve. Referring 
to F1g. 140b the upper curve will be the original one and the lower 
one that which is obtained by computation. The 4>rmula (140)3 

is to be used by taking h1, a1, Pi for the upper curve and ~, a2, p2 

for the lower one. For example, let rtie data for a station on 
the upper original curve be a1 = 600 square feet and p1 = 8o 
feet, l½ = 480 square feet and P2 = 66 feet. Let the elevations 
of two points on the upper curve be 18.,26 and 16.68 feet so that 
h1 = 1.58 feet, then the fall in the lower curve is 

6oo3 X66 lz.i = 1.58 _ __:__...:_ ___ = 2.57 feet 
48o3 X8o ' 

and hence when the elevation of the first station on the lower 
curve is 16.26 feet, the probable elevation of the second station 
~n that curve i~ 13.69 feet. The fall 2.57 feet is here probably 
hable to a considerable error, since the application of (141)¡ to 
these data gives a much smaller result for h,i. Experiments 
are greatly needed in order to test the comparative value of 
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these two methods of computation, and these, on a small scale, 
might well be undertaken in the hydraulic laborato~y of an engi-

neering college. 

Prob. 141a. A canal from a river to a power house is two miles long, 
its bed is on a slope of 1 / 10 ooo, ande is 70. When the water is in uniform 
flow, the depth D is 6.o feet, and the discharge is 800 cubic feet per second. 
If there be a power house which takés 1000 cubic feet per second, find the 
probable depth of water at the entrance to its forebay. 

Prob. 141b. Show that the last formula in Art. 135, when reduced to 

the metric system, becomes v = v' + 6.1.,/rs. 

Prob. 141c. A stream 181 meters wide and S meters deep has a dis­
charge of 1318 cubic meters per second. Find the height of backwater 
when the stream is contracted by piers and abutments to a width of 96 meters. 

Prob. 141d. Which has the greater discharge, a stream 1.2 meters deep 
and 20 meters wide on a slope of 3 meters per kilometer, or a stream 1.6 

meters deep and 26 meters wide on a slope of 2 meters per kilometer ? 

Prob. 14le. A stream 2 meters deep is to be damméd so that water shall 
be 4 meters deep at the dam. Its slope is o.~2 and its chaÍmel is such that 
the metric value of e is 39. Compute the distance to a section up-stream 
where the depth of water is 3.6 meters. 

• 

Rainfall. Art. 142 

CHAPTER 11 

WATER SUPPLY AND WATER POWER 

ART. 142. RAINFALL 

365 

All the water that flows ·in a stream has at sorne previous time 
been precipitated in the form of rain or snow. The word "rain­
fall" meaos the total rain and melted snow, and it is usually 
measured in vertical inches of water. The annual rainfall is 
least in the frigid zone and greatest in the torrid zone; at the 
equator it is about 100 inches, at latitude 40º about 40 inches, 
and at latitude 6oº about 20 inches. There are, however, cer­
tain places where the annual rainfall is as high as 500 inches, and 
others where no rain ever falls. In the United States the heaviest 
annual rainfall is near the Gulf of Mexico, where 60 inches is 
sometimes registered, and near Puget Sound, where 90 inches is 
not uncommon. In that large region, formerly I• S" ,1 
called the Great American Desert, which lies be-: 1 

' 

tween the Rocky and Sierra Nevada mountains, 
the mean annual rainfall <loes not exceed 15 

inches, and in Nevada it is only about 7½ inches. 
The amo un t of rainfall· in any locality depends 
upon the winds and upon the neighboring moun­
tains and oceans. 

The standard type of rain gage used by the 
A 

B 

Fig. 142a. 

U. S: Weather Bureau has a diameter of 8 inches. 
The rain falling into the gage passes clown through 
the funnel shown in Fig. 142a and info the small 
cylinder A, the area of which is one-tenth that of 
the gage. One inch of rainfall therefore will give a 
depth 'oí 10 inches in the cylinder A and small falls can thus be 
accurately measured. As the cylinder _A fills it overflows into 


