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which is the equation of the surface curve, C being the constant of
integration. To use this let the logarithmic and circular function
in the second parenthesis of the second member be designated by

&(x) or ¢(d/D), namely,

$(x) = $(d/D) = g log,
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Then the above value of  may be written
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Now let d, be the depth at the dam and let I be measured up-stream
from that point to a section where the depth is d;. Then, taking the
integral between these limits the constant C disappears, and

e[ g] o

which is the practical formula foruse. In like mannerd, may repre-
sent a depth at any given section and d; any depth at the distance /
up the stream. :

When d = D, the depth of
the backwater becomes equal to
that of the previous uniform
flow, % is unity, and hence / is
infinity. The slope CC of uni-
form flow is therefore an asymptote to the backwater curve. Accord-
ingly the depth d; is always greater than D, although practically
the difference may be very small for a long distance /.

e e

Fig. 140a.

In the investigation of backwater problems by the above formula
there are two cases: first, d, and d, may be given and /is to be found;
and second, / and one of the depths are given and the other depth is
to be found. To solve these problems the values of the backwater
function ¢(d/D) computed by Bresse are given in Table 140.* The
argument of the table is D/d, which, being always less than unity,
is more convenient for tabular purposes than d/D, since the values of
the latter range from 1 to co. By the help of Table 140 practical
problems may be discussed and the following examples will illustrate
the method of procedure.

.
* Bresse’s Mécanique appliqués (Paris, 1868), vol. 2, p. 556.

The Backwater

TasrLe 140. VALUES oF

Curve. Art. 140

THE BACKWATER FUNCTION

D
d

*(5)

4(5)

(5

D

)

[
[
L

0.9073
8o31
8795
8663
8539
8418
8301
8188
Bo79
1973
871
J772
7675
7581
-7490
7401
7315
7231
-7149
7069
.6090
6014
.6839
6766
.6603
6025
0550
6489
6327
6173
.0025
.5884
-5749
.5019
-5494

-5374
.5258

5146 -

0.5037
4932
4831
4733
4637
4544
4454
4307
.4281
.4108
.41]17
4030
.3062
.3886
.3813
3741
.3071
.3603
-3536
.3470
.3400
3343
.3282
.3221
.3102
.3104
3047
.2001
2037
.2883
.2778
2077
.2580

. .2486
-2305
.2306
12221
2138




356 Chap. 10. The Flow of Rivers

A stream of 5 feet depth is to be dammed so that the water shall
be 10 feet deep a short distance up-stream from the dam. The uni-
form slope of its bed and surface is 0.000189, or a little less than one
foot per mile, and its channel is such that the coefficient ¢ is 65. It
is required to find at what distance up-stream the depth of water is
6 feet. Here D = 5, dy = 10, d; = 6 feet, 1/7 = 5291, and c*/g =
131. Now D/d, = o.3, for which the table gives ¢(d;/D) = 0.1318,
and D/dy, = 0.833, for which the table gives &(d,/D) = 0.4792.
These values inserted in (140), give

I = 5291(10 — 6) + 5(5291 — 131)(0.4792 — 0.1318)

from which / = 30 125 feet = 5.70 miles.  In this case the water is
raised one foot at a distance 5.7 miles up-stream from the dam.

The inverse problem, to compute d, or d;, when one of these and
[ are given, can only be solved by repeated trials by the help of Table
140. For example, let I = 30 125 feet, the other data as above, and
let it be required to determine d, so that d, shall be only 5.2 feet, or 0.2
greater than the original depth of 5 feet. Here D/d; = o.962, for
which the table gives ¢(d;/D) = 0.9709. Then (140), becomes

30125 = 5291(ds — 5.2) + 25 800 [0.9709 — $(d=/ )]
which is easily reduced to the simpler form
32 590 = 5291 d3 — 25 800 ¢(ds/D)

Values of d, are now to be assumed until one is found that satisfies
this equation. Let d, = 8 feet, then (D/d,) = 0.625 and, from the
table, ¢(d,/D) = o.2180; substituting these, the second member be-
comes 36 700, which shows that the assumed valueis too large. Again,
take d» = 7 feet, then D/d, = o.714, for which ¢(d,/D) = 0.3047%,
whence the second member is 29 200, showing that 7 feet is too small.
If dy = 7.4 feet, then D/d, = 0675 and ¢(d,/D) = 0.2629, and with
these values the equation is nearly satisfied, but 7.4 is still too small.
On trying 7.5 it is found to be too large. The value of d, hence lies
between 7.4 and 7.5 feet, which is as close a solution as will generally
be required. The height of dam required to maintain this depth may
now be computed from Art. 136.

If the slope, width, or depth of the stream changes materially,
the above method, in which the distance / is measured from the dam
as an origin, cannot be used. In such cases the stream should be di-
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vided into reaches, for each of which the slope, width, and depth can
be regarded as constant. The formula can then be used for the first
reach and the depth of its upper section be determined ; then the ap-
plication can be made to the next reach, and so on in order. For com-
mon rivers and for shallow canals it will probably be a good plan to
determine D by actual measurement of the area and wetted perimeter
of the cross-section, the hydraulic radius computed from these being
taken as the value of D. Strictly speaking, the coefficient ¢ varies with
the slope and with D, and its values may be found by Kutter’s for-
mula, if it be thought worth the while. Even if this be done, the results
of 'the computations must be regarded as liable to considerable un-
certainty. In computing depths for given lengths an uncertainty of
10 percent or more in the vdlue of da—d; should be expected.

The following method of computation is readily app]icﬁblc to
cases of backwater and gives results which are often sufficiently
satisfactory. The distance / between two sections does not ap-
pear in the formulas, but it is essential that this distance shall
be small enough so that the water surface between them may be
regarded as a straight line. In some streams the distance apart
of sections may be as high as 1000 feet, in others smaller. Let
Fig. 140b represent the
case of a stream where
an obstruction, which
is some distance down-
stream from the sta-
tion M, causes a rise of Datuud Plase
the original surface. BRI o
At the several stations o
M, N, P,Q, R, etc., elevations of ¢the original surface above
a datum plane are taken. A cross-section of the stream is also
made at each station, the levels being extended upward on the
banks so that for any water level the area a and the wetted
perimeter p may be ascertained from a drawing. At the first
station M the elevation of the backwater is known, it being
either assumed or computed from Art.136. The problem
then is to determine the elevation of the backwater at each of
the stations up-stream from M.
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Fig. 140c shows on a larger scale the profile between M and
N and also the two cross-sections at M which are drawn from
the given data. In this diagram the elevations of My, M, and Ny
are known, and it is required to find that of N». Let a; and @

Backwater

Original

Fig. 140¢.

denote the areas of the cross-section at JM, the first for the original
flow and the second for the backwater, and let p, and p_g be the
corresponding wetted perimeters. Let /; be the known d{fference
of the elevations of My and Ny, and %, the unknown difference
of the elevations of M, and Np. Then the formula

(140)s

determines /, and accordingly the elevation of Nz is kPown. This
formula expresses the condition that the same qt_xal}tlty of water
flows through the cross-sections a; and a,, and it is deduced as
follows. The mean discharges in these two sections are, from the
Chezy formula, C;al\/ﬁ—s; and Gyt V1355, : Equating th.ese, re-
placing 7, and 7 by ay/p1 and as/ s, squaring, a?d makmg3 the
coefficients ¢; and ¢y equal, gives the equation 5101 /1 = $20a°/ P2
Now s; = kil and sy = hul where [ is the distance between the two
sectiéns. Hence has/p1 =*1:a2%/ps, from which the above for-
mula (140); at once results.
As an example, take the case of four stations on Coal River,

W.Va., data for the original water surface being as follows:

Station N B Q R

Elevation : 1153 1193 13.44 4.39ft.

Rise =" 1.48 o042 149 0.5 ft.

Area g1= 3034 3012 3210 2740 2340 5Q. ft.

Perimeter p1= 255 260 280 204 102 ft.
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and let it be required to find the elevations of the backwater sur-
face when an obstruction down-stream from M raises the water
to elevation 12.05 at M. Drawing the water level in the cross-
section at M, there are found @, = 3533 square feet and p, = 260

feet. Then Bl 3_%%9@ s

3533° X 255
and hence the elevation at IV, is 12.05 + 0.95 = 13.00 feet. For
this water-level the cross-section for station N gives 3390 square
feet area and 204 feet wetted perimeter for the backwater condi-
tion. Then the backwater rise at station P is

by =o0.42 3——%012: T 0.30 feet,
3390° X 204
which gives 13.30 feet for the elevation of the backwater surface
at P. The results for the five stations are arranged as follows,
the last line showing the required elevations of the backwater

surface:
Station =M N a Q R

Area g2= 3533 3300 3580 2040 2492 sq. ft.
Perimeter po= 260 264 286 209 197 it.

Rise h2 = 0.05 o030 LIo o.8oft
Elevation =1205 1300 13.30 14.40 15.20 ft.

While there are several assumptions and limitations in this
method, it does not appear that they introduce more error than
that which obtains when the formula (140), is applied to a stream
of irregular section. By the exercise of much judgment in select-
ing the stations, and by taking the data for a cross-section as
the mean of several on both sides of a station, it is believed that
the method can be used with much confidence in all cases where
extreme conditions do not obtain. If the Chezy coefficients at a
station can be found, then the formula (140); may be written in
the more exact form :

I = hy Cladps /ey (140),

Prob. 140. A stream, having a cross-section of 2400 square feet and
a wetted perimeter of 300 feet, has a uniform slope of 2.07 feet per mile, and
its channel is such that ¢ = 70. Tt is proposed to build a dam to raise the
water 6 feet above the former level, without increasing the width. Compute
the rise of the backwater at a distance of one mile up-stream.
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ArT 141. TeHE DROP-DOWN SURFACE CURVE

When a sudden fall occurs in a stream, the water surface for a long Tapre 141. VALUEs or THE DRop-DowN F
-DOWN FuNcTion

distance above it is concave to the béd, as seen in Fig. 1385 or in Fig. :
141. This case also occurs when e ¢,(£) d
Y . ‘ s(2 @
the entire discharge of a canal is E () ¢(5) ] “5(%)
allowed to flow out through a fore- ‘ _ - g o
. . 0.00Q1 0.4 478 0.04
10454

bay F to supply a water-power | 2.1831 . 8767
' 4 4353 . .0325

plant. Let D be the original uni- e 1.9517 : 8624 | . D
1.8162 848 ‘ 0199
0407 . 4114 ; +0.0074

. form depth of water having its :
il . 1.7206 : 82z

surface parallel' to.the bed, the ! S Si;g : 3088 || . el

slope of both being 7. Let di and il : b - - 3886 | . 0172

d, be two of the depths after the steady non-uniform flow has been 1.5324 : .7;2 ; -3;7; : 0203

' ' : -366 . .0412

established by letting water out at F, and let d, be greater than ds, the ot Lo A
.35 : .0
1.4486 . 7753 - -3459 ; ogi:

distance between them being I The investigation of the last article
1.4125 . 7643 : 3357 : ks

applies in all respects to this form of surface curve, and s
1‘3-04 : LRk A -3258 . .0878
aBRE 7433 || 3160 || .40 .09o1

e dy—dy (E L EE)[ (@) o (@>] 14 = ;
] : +D ; ¢ D (] D ( 1) | . 1.3241 E 7332 . .3004 ’ '.1104

g
1.2090 2 7234 4 .2070 . 1216

is the equation for practical use, in which ¢ is the coefficient in the j 1.2757 : 7138 3
7 : : 2877 : i
1.2538 . 7045 : 2785 45 .123575

Chezy formula v = cV/'rs, and g is the acceleration of gravity. Table j

140 cannot, however, be used for this case because d/D in that table ! : : 2385 . 6953 || . 2606 || . i

is greater than unity, while here it is less than unity. : S e 0864 || . 2607 || . 66
. i el S L gy || 1763

The function #(d/D) with values of d/D less than unity is here 1.1781 ; 6601 2434
1.1615 : .6607 : .:2350 iggz

called the “drop-down function,” in order to distinguish it from the ;
backwater function of the fast article, although the algebraic expression ‘ L1457 : 6525 ; .2260 . 2086
for the two functions is the same. Table 141, due also to Bresse, - ' i'iig; : -24?;; . 2184 = 2102
3 € 03 " .2102 o 2208
229

gives values of this drop-down function for values of the argument a0 6289
d/D, ranging from o to 1, and by its use approximate solutions of prac- i de ‘6213 . .i(m ' e
. ; : : 1043 : 2508
1.0757 3 6138 ; 1864 2 2612

tical problems can be made. For example, take a canal 1o feet deep,

having a coefficient ¢ equal to 8o, and let the slope of its bed be 1/5000 : Lob3z | = 5958 || . a8y | . Pl

and its surface slope be the same when the water is in uniform flow. ! s S 5785 || . ol 381
19596 : 5019 . 1560 ; 3025

Here D = 10 feet, ¢*/g = 200, and 1/i = 5000. Then o !
0- 6-? : -5459 . 1413 : .3230
2905 Il gl sl 1268 || a3

B B _ gt .
— ool — )+ 4300 o 5) 4 (7) 9% | oo | o | s | 6 | o | e | = e
A : A g .05 z | .5012 | 3 _0987 : .45

t of which vk : 4872 : 0851 : : 5322

Now suppose that a break occurs in the bank of the canal ou
rushes more water than that delivered in normal flow when the depth 1 9233 || 955 | 4737 || - o716 | 5546
: S 4005 || 6 0584 || . 6046

is 10 feet, and let it be required to find the distance between two points
where the depths of water are 8 and 7 feet. Here di/D = 0.8, for which

¥t
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&(di/D) = 0.3459, and do/D = 0.7, for which ¢(d2/D) =o.x711. In-
serting these values in the equation, there is found / = 78qo feet.

In this case there is a certain limiting depth below which the above
formula is not valid. This limit is the value of x for which 8l/8x
becomes zero or the value of x where the surface curve is vertical and
the bore occurs (Art. 139). From (140): this happens when

1
2@ =clfg or d=D(cC/g)’

and for the above example this limiting depth is found to be 3.4 fee?.
Near this limit, however, the velocity becomes large, so that there is
much uncertainty regarding the value of the coefficient c.

. When a given discharge per second is taken out of a forebay at the
end of a canal having its bed on a slope i, the above formula must.be
modified. Let ¢ be the discharge and let Dy be thg depth at a section
where the slope is s, then ¢ equals cbD1VDys. i this va.lue of ¢ be sub-
stituted in the equation (138)1 and then the same reasoning be followed
as at the beginning of Art. 140, it will be found that formula (141)
will apply to this case if Di(s/ i)} be used instead .of D. : For example,
let ¢ = 3000 cubic feet per second, Dy = 10 feet, 7 = 1/10000, C= 8o,
and the width b = 100 feet. Then

s = ¢*/cb*Dy’ = 1/y100 D= D,(s,-".-')%f = 11.2 feet.

Now if it be required to find the distance between two p?ints where ‘the
depths of water are 1oand 9 feet, formula (141) can be directly applied,
and accordingly there is found, by the help of Table 141,

’

] = — 10 00o(10 — 9) + 109 800(0.578 — 0.355) = 14 400 feet,
and hence a forebay admitting the given discharge will not draw down
the water to a depth less than g feet if it be located 14 400 feet down-
stream from the section where the mean depth is 10 feet.

Navigation canals are often built with the bed horizontal betwee'n
locks. and here i = o. The above formula cannot be applied to this
i . . ¥ i .8
case because the differential equation (138)s vanishes w}}m i 1S Zero.
To discuss it, equation (138)1 must be resumed, and, inverting the same,

‘ 2 s o2
o__ord, ¢
8d P
The integration of this between the limits di and d gives

1= —a)-S@-d) , (4D
4q° 8
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from which / may be computed when ¢ is known. As an example,
take a rectangular trough for which ¢ = 20 cubic feet per second,
b = 5 feet, c = 89, and let d; = 2.00 feet and d; = 1.91 feet. Then
from the formula / is found to be 317 feet. This is the reverse of the
example at the end of Art. 137, where / was given as 333 feet, so that
the agreement is very good.

To compare a canal having a level bed with the one previously
considered, the same data will be used, namely, di = 10 feet, dy = g

feet, b = 100 feet, c = 8o, and ¢ = 3000 cubic feet per second. Then
from (141): there is found

I = 1.778(10" — ¢*) — 200(10 — 9) = 5020 feet,
and accordingly the water level is drawn down in one-third of the dis-
tance of that of the previous case. The quantity of water that can be
obtained from a navigation canal is always less than from one having
a sloping bed, and it has frequently happened, when such a canal is

abandoned for navigation purposes and is used to furnish water for

power or for a public supply, that the quantity delivered is very much
smaller than was expected.

The method of computation explained at the end of Art. 140
may be used also to determine the drop-down curve. Referring
to Fig. 1400 the upper curve will be the original one and the lower
one that which is obtained by computation. The fprmula (140);
is to be used by taking %, @, p, for the upper curve and ks, as, ps
for the lower one. For example, let the data for a station on
the upper original curve be a; = 6oo square feet and p; = 8o
feet, a2 = 480 square feet and p, = 66 feet. Let the elevations
of two points on the upper curve be 18.26 and 16.68 feet so that
hy = 1.58 feet, then the fall in the lower curve is

600® X 66 _

b =1.58
A 480% X 8o

2.57 feet,

and hence when the elevation of the first station on the lower
curve is 16.26 feet, the probable elevation of the second station
on that curve is 13.69 feet. The fall 2.57 feet is here probably
liable to a considerable error, since the application of (141); to
these data gives a much smaller result for 7. Experiments
are greatly needed in order to test the comparative value of
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these two methods of computation, and these, on a small scale,
might well be undertaken in the hydraulic laboratory of an engi-
neering college. '

Prob. 141a. A canal from a river to a power house is two miles long,
its bed is on a slope of 1/10000,and cis 70. When the water is in uniform
flow, the depth D is 6.0 feet, and the discharge is 8o cubic feet per second.
If there be a power house which takes 1oco cubic feet per second, find the
probable depth of water at the entrance to its forebay.

Prob. 141b. Show that the last formula in Art. 135, when reduced to
the metric system, becomes v = 9 + 6.1V/7s.

Prob. 141c. A stream 181 meters wide and 5 meters deep has a dis-
charge of 1318 cubic meters per second. Find the height of backwater
when the stream is contracted by piersand abutments to a width of g6 meters.

Prob. 141d. Which has the greater discharge, a stream 1.2 meters deep
and 20 meters wide on a slope of 3 meters per kilometer, or a stream 1.6
meters deep and 26 meters wide on a slope of 2 meters per kilometer 2

Prob. 141e. A stream 2 meters deep is to be dammed so that water shall
be 4 meters deep at the dam. TIts slope is 0.0002 and its channel is such that
the metric value of c is 30. Compute the distance to a section up-stream
where the depth of water is 3.6 meters.

Rainfall.  Art. 142

CHAPTER 11
WATER SUPPLY AND WATER POWER
Art. 142. RAINFALL

All the water that flows in a stream has at some previous time
been precipitated in the form of rain or snow. The word “rain-
fall” means the total rain and melted snow, and it is usually
measured in vertical inches of water. The annual rainfall is
least in the frigid zone and greatest in the torrid zone; at the -
equator it is about oo inches, at latitude 40° about 40 inches,
and at latitude 60° about 20 inches. There are, however, cer-
tain places where the annual rainfall is as high as 500 inches, and
others where no rain ever falls. In the United States the heaviest
annual rainfall is near the Gulf of Mexico, where 6o inches is

. sometimes registered, and near Puget Sound, where go inches is

not uncommon. In that large region, formerly 5
called the Great American Desert, which lies be- g
tween the Rocky and Sierra Nevada mountains,
the mean annual rainfall does mnot exceed 15 \/
inches, and in Nevada it is only about 73 inches.
The amount of rainfall in any locality depends
upon the winds and upon the neighboring moun-
tains and oceans.

The standard type of rain gage used by the
U. S. Weather Bureau has a diameter of 8 inches.
The rain falling into the gage passes down through
the funnel shown in Fig. 142¢ and into the small
cylinder 4, the area of which is one-tenth that of ——— 2
the gage. One inch of rainfall therefore will give a el
depth of 10 inches in the cylinder 4 and small falls can thus be
accurately measured. As the cylinder 4 fills it overflows into




