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comparison because it is probable tbat no channel in neat cement 
has ever been constructed having a bydraulic radius as great as 
7 feet, but it serves to show that these empirical formulas differ 
widely wben applied to unusual cases. For the present, at least, 
tbe formula of Kutter appears to receive tbe most general accept
ance, but undoubtedly the time will come wben it will be re
placed by a more satisfactory one. An actual gaging of the dis
charge by the method of Art. 131 will always give more reliable 
information tban can be obtained from any formula. 

For a hydraulic radius of 3.28 feet Kutter's formula for e 
reduces to the convenient expression 

e= 1.8n/n whence 
1.8II _ r

v = -- vrs 
n 

and this may be used for approximate computations when r lies 
between 2 and 6 feet. Here nis the roughness factor, the values 
of which are given in Art. 118. When r = 3.28 feet, Bazin's 
formula gives e = 136 for brickwork, while Kutter's gives e = 140; 
for canals in good order Bazin's formula gives e = 69, while 
Kutter's gives e = 72. The comparison is very satisfactory, and 
so close an agreement is not generally to be expected when com
putations are made from different formulas. The formula of 
Bazin is largely used in Fra:rice and England, and that of Kutter 

in other countries. 

Prob. 122. Solve Problem 118 by the use of Bazin's coefficients. 

ART. 123. MAsoNRY CONDUITS 

Masonry conduits or aqueducts for conveying water have 
been used since the days of ancient Rome. In cases .where large 
quantities of water are to be carried on small slopes and where 
the topography of the country is at a suitable élevation they 
offer tbe most economical means for its conveyance. Tbe Sud
bury and Wachusett aqueducts for the supply of Boston, the 
Jersey City aqueduct for the supply of that city, the old Croton 
and the New Croton aqueducts for the supply of New York City 
are among the largest and longest which have yet been constructed. 
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In 1912 there are being built the Catskill ~ueduct also for New 
York City and the Los Angeles aqueduct for the city of Los 
Angeles in California. Large portions of these aqueducts are in 
tunnels on the hydraulic gradient, and in the case of the Catskill 
aqueduct of a total of no miles of main conduit nearly 30 per
cent is in rock tunnel from 300 to 1100 feet below the surface. 
These tunnels are circular in cross-section, and their diameters 
range from II to 15 f eet. 

Relatively few experiments for determining the coefficients 
of flow have been made on these aqueducts. From their gagings 
of the Sudbury aqueduct, Fteley and Stearns * determined a 
formula for mean velocity. The cross-section of this aqueduct, 
which is laid on a slope of 0.0002, consists of a part of a circle 9.0 
feet in diameter, having an invert of 13.22 feet radius, whose 
span is 8.3 feet and depression_ o. 7 feet, the axial 
depth of the conduit being 7. 7 feet. It is lined 
with brick, having cement joints ¼ of an inch 
thick. The flow was allowed to occur with 
different depths, for each of which the discharge 
was determined by weir measurement. A dis

Fig. 123a. 

cussion of the results led to the conclusion that in the portion 
with the brick lining the coefficient e had the value 127.,0·12 when 
r is in feet, and hence results the exponential formula 

V = l 27 ,0.12 ...¡;; = l 27 ,o.62s0.50 

In a portion of this conduit where the brick lining was coated with 
pure cement, the coefficient was found to be from 7 to 8 percent 
greater than 127r0·12. In another portion where the brick lining 
was covered with a cement wash laid on with a brush, the co
efficient was from 1 to 3 percent greater. For a long tunnel in 
which the rock sides were ragged, but with a smooth cement in
vert it was found to be about 40 percent less. 

Gagings on the New Croton Aqueduct t showed that the mean 
velocity when the aqueduct was new could be represented by the 

* Transactions American Society of Civil Engineers, 1883, vol. 13, p. II4. 
t Engineering Record, 1895, vol. 32, p. 223. 
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expression v = 124,0-00, v~. This aqueduct is constructed of 
brick laid in close mortar joints. Its cross-section is shown in 
Fig. 126b. It is 13.53 feet in height by 13.6 feet in maximum 
width. The radius of its invert is 18.5 feet, the span of the in
vert chord is r 2 .o feet, and the depression of the invert below the 
chord is r.o foot. Its slope is 0.0003. 

Gagings on various portions of the aqueduct of the Jersey 
City Water Supply Company,* a cross-section of which is shown 
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Fig. 123b. 

in Fig. 123b, gave, when the 
aqueduct was new, values of the 
coefficient e in the Chezy for
mula of from 122 to 145, while 
the average value of n in Kut
ter's formula was 0.0127. The 
value of the mean velocity in 
this conduit is closely given by 
the expression v = 131,0-50 s0·50, 

where s is the observed slope 
of the water surface. This 
slope during the experiments 
varied from 0.0001 r to 0.00036, 

tbe aqueduct being laid on a 
slope of 0.000095. This conduit is of concrete which was 
cast against smooth wooden forms, the invert being made of 
screeded and troweled concrete. 

Owing to the foulirig of such conduits as the result of vege
table growths and the deposition of materials from tbe water, a 
diminution in capacity of from ro to 20 percent with age may be 
expected, and accordingly corresponding allowances should be 
made in the design. 

It is to be noted that Kutter's formula (Art. 118) indica tes that 
e steadily increases with the hydraulic radius if n and the slope 
be constant. The results of the experiments above quoted, how
ever indicate that e becomes constant and has a maximum value 

' 
* By courtesy of Jersey City Water Supply Company, Paterson, N. J. 
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of not far from 140 for values of the hydra11lic radius of 3 feet and 
upward. 

In an aqueduct of masonry constructed so that the water will 
fl.ow in it with a free surface it will be found that the slope of the water 
surface is seldom if ever parallel to the bottom of the aqueduct. 
This, of course, is as it should be, since the expression for the slope is 
s = Q2

/ a2c2r. Here both a and r vary with Q, and it seldom happens 
that the value of e realized in the completed structure is the same as 
that assumed in the original design. Since the slope of the water 
surface is not parallel to that of the bottom of the aqueduct, there 
results a condition of steady non-uniform flow, and the formula of 
Art. (137) must be employed whenever precise determinations of the 
value of e are to be made from the results of experiments. 

Prob. 123. Compute the mean velocity in the New Croton Aque
duct when it is flowing one-half full. 

ART. 124. ÜTHER FORMULAS FOR CHANNELS 

Many attempts have been made to express the mean velocity 
and discharge in a channel by the formulas 

V = c,zs11 q = aCrs11 

where x and y are derived from the data of observations by pro
cesses similar to those explained in Art. 42. As a rule these at
tempts have not proved successful except for special classes of 
conduits, as the exponents of r and s vary with different values 
of r and with different degrees of roughness. For conduits having 
the same kind of surface a formula of this kind may be established 
which will give good results. The values _x = ¾ and x = ¾ are 
frequently advocated, y being not far from ½ ; with such values 
C is found to vary less for certain classes of surfaces than the e 
of the Chezy formula, and this seems to be the only strong argu
ment in favor of exponential formulas. 

Among the many exponential formulas which have been adYo
cated, those derived by Foss may be cited. For surfaces correspond
ing to Kutter's values of n less than 0.017 he finds* 

// = c,ts or V = cr"'r,-h/r 
* Journal of Association of Engineering Societies, 1894, vol. 13, p. 295. 
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in which C has the following values : 

for n = 0.009 0.010 0.011 0.012 0.013 0.015 0.017 

e= 23 ooo 19 000 15 000 12 000 10000 8000 6000 

For surfaces corresponding to Kutter's values of n greater than 0.018, 

his formula is 
v2 = c,I s or 

and the values of C for this case are 

for n = 0.020 0 .02 5 0.030 0.035 

e = 5000 3000 2000 1000 

For circular sections running full he also proposes the formula s = 
o.0065qlf / d5. These formulas are open to objection on account of 
the great range in the values of C . . · 

Tutton*, as the result of a study of many experiments, proposed 
the formula v = C,(l.ir-m> s'\ where s and r represent the slope and 
hydraulic radius as in the Chezy formula. The values of m ranged 
from 0.48 for • tarred iron pipes to o. 58 for pipes of lead, tin, and zinc, 
the average for all cases being m = 0.54. Using this value, the for
mula became 

for which the value of C was given as from 127 to 153 for new cast
iron pipes, from 83 to 98 for lap-riveted iron pipes, from 127 to 153 

for wooden pipes, and about 188 for lead, tin, and zinc pipes. 

Williams and Hazen t have discussed experiments on both 
pipes and open channels, and have proposed an exponential for
mula that is equivalent to 

v = 1.318 cr0·63s0·54 

in which e has different values for different surfaces and sections, 
but its range of values is less than that of the e of the Chezy 
formula. The values of e and e are the same when r is I foot and 
s is o.oor. The greater the roughness of the surface, the smaller 
is e; in general, e is supposed to vary but little for different values 
of r. The following shows the range of the mean values of e 
found from the records of experiments with different surfaces: 

• Transactions Engineers' Society of Western New York, April, 1896. 
t Hydraulic Tables, New York, 1910. 
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For coated new cast-iron pipes, 
For tuberculated cast-iron pipes, 
For riveted pipes, 
For wooden stave pipes, 
For new wrought-iron pipes, 
For fire hose, rubber lined, 
For masonry aqueducts, 
For brick sewers, 
For plank aqueducts, unplaned, 
For masonry sluiceways, 
For canals in earth, 

from 1n to 146 

from 16 to 112 

from 97 to 142 

from 113 to 129 

from 113 to 124 

from 116 to 140 

from 'u8 to 145 

from 102 to 141 

from n3 to 120 

from 34 to 75 
from 33 to 71 

The authors of this formula suggest that in computations for 
pipe capacity e be taken as 100 for cast-iron, 95 for riveted steel, 
120 for wooden, no for vitrifi.ed pipes, 100 for brick sewers, and 
120 for first-class masonry cqnduits. 

The circumstance that values of C in sorne of the exponen
tial formulas of this article have a smaller range of values than 
the e of the Chezy formula is sometimes cited as an argument 
in their favor. While this is a good argument, the fact must 
not be ovedooked that probably the true theoretic formula for 
mean velocity in a pipe or channel is of the form noted in the 

:fi.rst paragraph of Art. 110. 

In conclusion, it may be noted that when the velocity is very 
· low, the Chezy formula is not valid. In such a case the velocity 

<loes not vary with the square root of the slope, but with its fi.rst 
power, the same conditions obtaining as in pipes (Art. 110). A 
glacier moving in its b_ed at the rate of a few feet per year has a 
velocity directly proportional to its slope. Water :flowing in a • 
channel with a velocity less than one-quarter of a foot per second 
follows the same law, and the formulas of this chapter cannot be 
applied. The formula for this case is v = Cr2s, but values of C 
are not known. It is greatly to be desired that series of experi
ments should be made for determining values of C. 

Prob.124. Compute the fall of the water surface in a length of 1000 

feet for a ditch where v = 3 .62 feet per second, r = 2. 7 5 feet, and n = 0.025; 

first by Williams and Hazen's formula, and second, by formula (122) and 

Bazin's coefficients. 
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ART. 125. LOSSES OF HEAD 

The only loss of head thus far considered is that due to friction, 
but other sources of 'loss may often exist. As in the flow in pipes, 
these may be classified as losses at entrance, losses due to curva
ture, and losses caused by obstructions in the channel or by 
changes in the area of cross-section. 

When water is admitted to a channel from a reservoir or pond 
through a rectangular sluice, there occurs a contraction similar 
to that at the entrance into a pipe, and which may be often ob
served in a slight depression of the surface, as at D in Fig. 125a. 

Fig. 125a. 

At this point, therefore, the ve
locity is greater than the mean 
velocity v, and a loss of energy 
or head results from the subse
quent expansion, which is ap
proximately measured by the 

difference of the depths di and <h, the former being taken at the 
entrance of the channel, and the latter below the depression 
where the uniform flow is fully established. According to the 
experiments of Dubuat, made late in the eighteenth century, 
the loss of head for this case is 

v2 
di -<h =m-

2g 

in which m ranges between o and 2 ~ccording to the condition 
of the entrance. If the channel be small compared with the 
¡eservoir, and both the bottom and side idges of the entrance 
be square, m may be nearly 2; but if these edges be rounded, 
m may be very small, particularly if the bottom contraction is 
suppressed. The remarks in Chap. 5 regarding suppression of 
the contraction apply also here, and it is often important to pre
vent losses due to contraction by rounding the approaches to 
the entrance. Screens are sometimes placed at the entrance to 
a channel in order to keep out floating matter; if the cross-sec
tion of the channel is n times that of the meshes of the screen 

' the loss of head, according to (76)2, is (n - 1)Z.iP/2g. 

f 

• 
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The loss of head due to bends or curves in the channel is small 
if the curvature be slight. Undoubtedly every curve offers a 
resistance to the change in direction of the velocity, and thus 
requires an additional head to cause the flow beyond' that needed 
to overcome the frictional resistances. Several formulas have 
been proposed to express this loss, but they ali seem unsatisfactory, 
and hence will not be presented here, particularly as the data 
for determining their constants are very 
scant. It will be plain that the loss of 
head due to a curve increases with its 
length, as in pipes (Art. 91) . When a 
channel turns with a right angle, as in 
Fig. 125b, the ,oss of head may be 
taken as equal to the velocity-head, 

Fig. 125b. 

since the experiments of Weisbach on such bends in pipes in
dicate that value. In this case there is a contraction of the 
stream after passiñg the comer, and the subsequent expansion 
of section and the resulting impact causes the loss of head. 

The losses of head -::aused by sudden enlargement or by sud
den contraction of the cross-section of a channel may be estimated 
by the rules deduced in Arts. 76 and 77. In order to avoid these 
losses changes of section should be made gradually, so that energy 
may not be lost in impact. Obstructions or submerged dams 
may be regarded as causing sudden changes of section, and the 
accompanying losses of head are governed by similar laws. The 
numerical estimation of these losses will generally be difficult, 
but the principies which control them will often prove useful 
in arranging the design of a channel so that the maximum work 
of the water can be rendered available. But as all losses of head 
are directly proportional to the velocity-head v2/ 2g, it is plain 
that they can be rendered inappreciable by giving to the channel 
such dimensions as will render the mean velocity very small. 
This may sometiqi.es be important in a short conduit or flume 
which conveys water from a pond or reservoir to a hydraulic 
motor, particularly in cases where the supply is scant, and where 
ali the a vailable head is required to be utilized. 
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If no losses of head exist except that due to friction, this can 
be computed from (113) if the velocity v and the coeffi.cient e be 
known. For since the value of sis v2/ c2r and also h/ l, where lz 
is the fall expended in overcoming friction, h may be found from 

h=ls = lv2/c2r (125) 

but this computation will usually be liable to much error. 

As an example of the computations which sometimes occur 
in practice the following actual case will be discussed. From a canal 

~;1//;1/11/1#/,1$))~ . 

-, --= B~-=--=fr- -==;:-V--=-~ V 

~ Fig. 125c. ===-= . ----c+ 

A water is carried through a cast-iron pipe B to an open wooden fore
bay C, where it passes through the orifice D and falls upon an over
shot wheel. At the mouth of the pipe is a screen, the area between the 
meshes being one-half that of the cross section of the pipe. The pipe 
is 3 feet in diameter and 32 feet long. The forebay is of unplaned 
timber, 5 feet wide and 38 feet long,and it has threeright-angled bends. 
The orifi.ce is 5 inches deep and 40 inc;hes wide, with standard sharp 
edges on top and sides and contraction suppressed on lower side so that 
its coefficient of contraction is about o.68 and its coefficient of velocity 
about 0.98. Th~ water leve! in the canal being 3.75 feet above the 
bottom of the orífice, it is required to find the loss of head between 
the points A and D. 

The total head on the center of the orífice is 3.75-0.208 = 3.542 
feet. Let v1 be the mean velocity in the pipe, v that in the forebay, 
and V that in the contracted section beyond the orifice. The area of 
the cross-section of the pipe is 7-07 square feet; that of the forebay, 
taking the depth of water as 3. 7 feet, is 18.5 square feet, and that of 
the contracted section oi the jet issuing from the orífice is 0.945 square 
feet. It will be convenient to express all losses of head in terms of the 
velocity-head ir/ 2g, and hence the first operation is to express v1 and 
V in terms of v, or p1 = 2.62V and V = 19.6v. Starting with the screen, 
the loss of head due to expansion of section after the water passes 
through it is, by Art. 76, 

. ( )2 ,(?, 
h' = 2V¡ - V¡ = 6.9~ 

2g 2g 

• 
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The loss of head in frictionin the pipe, using 0.02 for thefriction factor, 
is, by Art. 90, 

The loss of head in the expansion of section from the pipe to the fore
bay is, by Art. 76, 

( _ )2 2 
h' = V¡ V = 2,6.E_ 

2g 2g 

The loss of head in friction in the forebay, taking e from Table 122 
for the hydraulic radius 1.5 feet and degree of roughness m = 0.16, is 
· then found to be 

h' = lv2 ~ o. i v2 
c2r 2g 

The loss of head"in the three right-angled bends of the forebay is esti
mated, as above noted, by 

v2 
h' =3.o-

2g 

The loss of head on the edges of the orifi.ce is, by Art. 56, 
v2 v2 

h' = 0.041 - = 15.9 -
2g 2g 

Now the total head is expended in these lost heads and in the velocity
head of the jet issuing from the orifice, o.r 

v2 v2 v2 
3.542 = 29.9- +-= 417- . 

2g 2g 2g 

from which the value of ir/ 2g is found to be 0.00851 feet. Finally 
the total loss of head or fall in the free surface of the water before 
reaching the orifice is 

v2 
(29.9 - 15.9)- = 14.0 X 0.00851 = 0.119 feet, 

2g . 
and therefore the water surface at D is o.n9 feet lower than that at 
A, and the pressure-head on the center of the orífice is 3.433 feet. 
This is the result of the computations, but on making measurements 
with an engineer's leve! the water surface at D was found to be 0.125 
feet lower than that at A ; the error of the computed result is there
fore 0.006 feet. 

Prob. 125. Compute from the above data the velocities v, vi, and V, 
and the discharge through the orifice. Show that the head lost in passing 
through the screen was 0.059 feet, which is about one-half of the total. 

• 
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ARr. 126. VELOCITIES IN A CROSS-SECTION 

For a circular conduit_ running full and under pressure the 
velocities in different parts of the section vary similarly to those 
in pipes (Art. 86). When it is partly full, so that the water flows 
with a free surface, the air resistance along that surface is much 
smaller than that along the wetted perimeter, and hence the sur
face velocities are greater than those near the perimeter. Fig. 
126a illustrates the variation of velocities in a cross-section of the 
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Fig. 126a. 

Sudbury conduit when the water was about 3 feet deep, as deter
mined by the gagings of Fteley and Stearns.* The 97 dots are 
the points at which the velocities were measured by a current 
meter (Art. 40), and the velocity for each point in feet per second 
is recorded below it. From these the contour curves were drawn 
which show clearly the manner of variation of velocity throughout 
this cross-section. Since the dots are distributed over the area 
quite uniformly, that area may be regarded as divided into 97 
equal parts, in each of which the velocity is that observed, and 
hence the mean of the 97 observations is the mean velocity (Art. 
39). Thus is found v=2.620 feet per second, and this ·is 85 per 
cent of the maximum observed velocity. 

Similarly Fig. 125b shows the results of an experiment on the 
New Croton Aqueduct.t In this case the average velocity de-

* Transactions American Society of Civil Engineers, 1883, vol. 12, p. 324. 
t Reporto[ The Aqueduct Commissioners, New York, 1895-1907 . 

• 
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termined from the 128 individual observations is 3.570, and this 
is 89 percent of the maximum observed velocity. A description 
of the methods followed in mak.ing the gagings on this aqueduct 

Ñovember Hth 1906 

SCALE OF FEU 

Fig. 126b. 

is to be found at page 106 of vol. 66, Transactions American So-
ciety of Civil Engineers. See also Art. 123. · 

. ~n examination of the distribution of velocities in Fig. 126b 
mdicates that the maximum velocity <loes not occur at the center 
of the cross-section. This is due to the fact that the aqueduct 
at the point where the gaging was taken is located on a curve 
which tends to throw the maximum velocity away from the 
center and toward the outside of the curve. 
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If all the filaments of a stream of water in a channel have the 
same uniform velocity v, the k.inetic energy per second of the fl.ow 
is the weight of the discharge multiplied by the velocity-head; or 

v2 v2 v3 
K=W-=wq-=wa-

2g 2g 2g 

in which W is the weight of the water delivered per second, w 
is the weight of one cubic unit, q the discharge per second, and a 
the area of the cross-section. For this case, therefore, the energy 
of the fl.ow is proportional to the area of the cross-section and to 
the cube of the velocity. Since, however, the filaments have 
different velocities, this expression may be applied to the actual 
fl.ow by regarding v as the mean velocity. To show that this 
method will be essentially correct, Fig. 126a may be discussed, 

and for it the true energy per second of the fl.ow is 

K' = wa(v1
3 + v2

3 + ... + v973) 
97 2g 2g 2g 

now the ratio of this true kinetic energy to the kinetic energy 

expressed in terms of the mean velocity is 

K' = v13+~3 + ... +v91
3 

K 97v3 

By cubing each individual velocity and also the mean velocity, 
there is found K' = 0.9992K, so that in this instance the two 
energies are practically equal, and he'1ce it is probable that in 
most cases computations of energy from mean velocity give 

results essentially correct. 
Prob. 126. Draw a vertical plane through the middle of Fig. 126b 

and construct a longitudinal vertical section showing. the distribution of ve
locities. Also draw a horizontal plane through the region of maximum ve
locity and construct a longitudinal horizontal section. Ascertain whether 
the curves of velocity for these sections are best represented by parabolas 

or by ellipses. 

ART. 127. COMPUTATIONS IN METRIC MEASURES 

(Art. 113) The coefficient e in the Chezy formula depends upon 
the linear•unit of measure. Let c1 be the value when v and r are ex
pressed in f eet and ~ the val u e when v and r are expressed in meters, 
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and _Jet g1 and g~ be the corresponding values of the acceleration of 
gravity. Then smce e = ...Jsi7j, it is seen that 

C2 = C1Vg2/ g1 = C1v9.80/32.r6 = 0.552 C¡ 

Hence any val~e of e i~ the Englfsh system may be transformed into 
the corresponding metnc value by multiplying by o.552. The metric 
value of e for conduits and canals usually lies between r6 and roo. 

~Art. 114) ~able 127 a gives values of the Chezy coefficient e 
for crrcular condmts full or half full I • . . ' · n usmg 1t a tentatlve method 
must be employed, and for this purpose there may be used at first 

' 
mean Chezy coefficient e = 68 

and then, after v has been computed, a new value of e is taken from the 
• table_and a ne,~ vis found. For example, let it be required to find the 

velocity_ and discharge of a circular conduit of r.5 meters diameter 
when la1d on a grade of o.8 meters in rooo meters. First, 

v = 68 X ly X 8 2 r.5 0.000 = r.r8 meters per second, 

and for this velocity the table gives about 77 for e A d t f th • • secon compu-
. a 1011 en. g1ves_ v = r.33 meters per second and from the table e 
is 78.2. W1th this value is found v = r.35 meters per second which 
may be regarded as the final result. When running full th d'' h 
of this conduit is o 78 X z • ' e isc arge · 54 r.5 X r.35 = 2.39 cub1c meters per second. 

TABLE 127a. 

Diameter 
in 

Meters 0.3 

0.3 53 
0.5 57 
0.7 61 
0.9 64 
1.1 66 
1.3 68 
1.6 72 
2.0 74 
2.4 76 

C:iµ:zy -CoEFFICIENTS FOR CIRCULAR CoNDUITS 

Metric Measures 

Velocity in Meters per Second 

o.6 0.9 I 5 
1 

3.0 4.5 

57 6o 63 67 68 
61 64 67 71 73 
65 68 71 76 78 
68 70 74 79 81 
70 72 76 81 83 
72 74 78 83 
74 77 8~ 
77 79 83 
79 82 


