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Chap. 9. Flow in Conduits and Canals

CHAPTER 9
FLOW IN CONDUITS AND CANALS
Arrt. 112. DEFINITIONS

From the earliest times water has been conveyed from place
to place in artificial channels, such as troughs, aqueducts, ditches,
and canals, there being no head to cause the flow except that due
to the slope. The Roman aqueducts were usually rectangular
channels about 23 feet wide and 5 feet deep, lined with cement,
sometimes running underground and sometimes supported on
arches. The word “conduit” will be used as a general term for
a channel of any shape lined with timber, mortar, or masonry,
and will also include large metal pipes, troughs, and sewers.
Conduits may be either open, as in the case of troughs, or closed,
as in sewers and most aqueducts. Ditches and canals are con-
duits in earth without artificial lining. Most of the principles
relating to conduits and canals apply also to streams, and the
word * channel ” will be used as applicable to all cases.
section of a channel is

The wetted perimeter of the cross-
act with the water.

that part of its boundary which is in cont
Thus, if a circular sewer of diameter d Be half full of water, the
wetted perimeter is 37d. In this chapter the letter p will desig-
nate the wetted perimeter.

The hydraulic radius of a water cross-section is its area divided
by its wetted perimeter, and the letter  will be used to designate
it Tf a is the area of the cross-section, the hydraulic radius of
that section is found by |

r=a/p
The letter # is of frequent occurrence in formulas for the flow
in channels; it is a linear quantity which is always expressed in
the same unit as p, and hence its numerical value is different in
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different systems of measures. It is frequently called the hy-

draulic depth or hydrauli
: ydraulic mean depth
section its value is but [ittle pth, because for a shallow

less than the mean depth of
.the water. Thus, in Fig. 112,
if & be the breadth on the

:?lt?l‘ su;fa;e. the mean depth is a/b, and the hydraulic radius is
p; and these are nearly equal, since the length of p is but
slightly larger than that of b. ; .

r=a/p=3md*/md=1d

111; samte val-ue is 1zi]so applicable to a circular section half filled
water, since then both area and we i

: tted
half their former values. e

i Ehe slope of the water surface in the longitudinal section

'51bna.ted by the letter s, is the ratio of the fall / to the len th,

! in which that fall occurs, or <
Y Il:l

The slope is hence expressed as an abstract number. which is i

flependent of the system of measures employed 'i‘o det b
its value with precision 4 must be obtained by ref‘errin th enrmne
level at each end of the line to a bench-mark by the he]g ofe “hater
;’;agel Fr other accurate means, the benches being cor?nec?edcgi
evel lines run with care. The dist i i
Zf)ntally but along the inclined chanitie aillc? i“t():h’:j;ﬂ;;:df .
siderable length in order that the relative error in % ma (1)1 :01?-
%arge. If s = o there is no slope and no flow: but Wh)(:n ?h .
is even the smallest slope the force of gravity ,furnishes ac .
ponent ac.ting down the inclined surface, and motion ensom_
The velocity of flow evidently increases with the slope i

tith;e flow in a channel is said to be steady when the same quan-
y ot water per second passes through each cross-section. If
an empt).r channel be filled by admitting water at its upper .end
the flow is at first non-steady or variable, for more watei' passe;
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through one of the upper sections pef second than is delivered
at the Jower end. But after sufficient time has elapsed the flow

becomes steady; when this occurs the mean velocities in different

sections are inversely as their areas (Art.31).

Uniform flow is that particular case of steady flow where all
the water cross-sections are equal, and the slope of the water
surface is parallel to that of the bed of the channel. If the sec-

tions vary, the flow is said to be non-uniform, although the con-
dition of steady flow is still fulfilled. In this chapter only the

case of uniform flow will be discussed.

The velocities of different filaments in a channel are not equal,
as those near the wetted perimeter move slower than the central
ones, owing to the retarding influence of friction. The mean of all

the velocities of all the filaments in a cross-section is called the

mean velocity . Thus if o, v”, etc., be velocities of different

filaments,
_ o'+ +ete.

"
i1 which # is the number of filaments. Let a be the area of
the cross-section and let each filament have the small cross-section
of area a'; then n=a/a’, and hence,
av=a'(v/ +1"" +etc.)
B the second member is the discharge g; that is, the quantity

of water passing the given cross-section in one second. There-
fore the mean velocity may be also determined by the relation

v=g/a

The filaments which are here considered are in part imaginary,
for experiments show that there is a constant sinuous motion of
particles from one side of the channel to the other. The best
definition for mean velocity hence is, that it is a velocity which
multiplied by the area of the cross-section gives the discharge,
or 9=g/a.

Prob. 112. Compute the hydraulic radius of a rectangular trough
whose width is 3.6 feet and depth 2.8 feet.

Formula for Mean Velocity. Art. 113

Art. 113. Formura rorR MEAN VELOCITY

When all the wetted cross-sections of a channel are equal
and .tl}e water is neither rising nor falling, having att'linedqlgll‘
c.ondltu)n. of steady flow, the flow is said L?) be uniform‘ This s
the case in a conduit or canal of constant size and slo'pe whosj:
supply does not vary. The same quantity of water per second
‘thelll Passes each cross-section, and consequently the mean veloc
ity in eac}f section is the same. This uniformity of ﬂ(;xv is d :
to th(f resistances along the interior surface of Ehe channel fue
were.lt perfectly smooth the force of gravity would ::ause’ t}?r
velocity to be accelerated. The entire cncrﬂ;‘ of the water d ;
to the fall / is hence expended in overcominz resistances causi'l::l3
by surface roughness. A part overcomes friction along the Slf
face, but most of it is expended in eddies of the water. wher br‘
1mpz1ct' results and heat is generated. A complete‘theo et'y
ana]y.ms of this complex case has not been perfected, but 'fre}ic
velocity be not small, the discussion given for pi ; Al o
applies equally well to channels. e

Let W be the weight of water passing any cross-section i
one second, ' the force of friction per square unit along thesurf i
p.the wetted perimeter, and / the fall in the length / y The O?CEJ
tial energy of the fall is Wh. The total resisting fi‘iction 112; FCI}-
and the energy consumed per second is F plo, if vbbe the vel tp :
fi\ccordingly Fply equals Wh. But the value of W is "va"oc'lfy‘
is the weight of a cubic foot of water and a the '1re:1 Sf Ithw
cross.—section in square feet. Therefore Fpl = waizt a‘nd si ;
a/p is the hydr(.wu]ic radius 7, and %/ is the slope s, ihis redurcl(t;:
;;)ri ;f zfa;i,tix;};tch is an appmxin'late expression for the resisting

on one square unit of the surface of the channel
In order to establish a formula for the mean velocity the v 1 .
of F must be expressed in terms of v, and this can o.nlv be dzjl 2
!)y study-ing the results of experiments. These indicate thaf nFe
1s approximately proportional to the square of the mean velocity
Therefore if ¢ is a constant, the mean velocity is ~

v=C Vrs (113)
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which is the formula first advocated by Chezy in 1775. This is
the relation between F and

really an empirical expression, since
aries with the

o is derived from experiments. The coefficient ¢ v
roughness of the bed and with other circumstances.

Another method of establishing Chezy’s formula for channels
sider that when a pipe on a uniform slope is not under
nt coincides with the water surface.
' by k and d by

is to con
pressure,. the hydraulic gradie
Then formula (90) may be used by replacing 4
its value 47. Accordingly
h=iflf a or v= V8g/f Vrs
r2g
in which the quantity V/8g/f is the Chezy coefficient.

This coefficient c is different in different systems of measures
since it depends upon g For the English system it is found that
¢ usually lies between 30 and 160, and that its value varies with
the hydraulic radius and the slope, as well as with the roughness
of the surface. To determine the value of ¢ for a particular case
the quantities o, 7, and s are measured, and then ¢ is computed.
To find r and s linear measurements and leveling are required.
To determine » the flow must be gaged either in a measuring
vessel or by an orifice or weir, or, if the channel be large, by floats
or other indirect methods described in the next chapter, and then
the mean velocity o is computed from 2 = q/a. It being a matter
of great importance to establish a satisfactory formula for mean
velocity, thousands of such gagings have been made, and from
the records of these the values of the coefficients given in the
tables in the following articles have been deduced.

Prob. 113. Compute the value of c for a circular masonry conduit

6 fest in diameter which delivers 63 cubic feet per second when running half

full, its slope or grade being 1.5 feet in 1000 feet.

Agrr. 114. Crrcurar Coxpuits, FULL OR Harr FuLL

When a circular conduit of diameter d runs either full or half
full of water, the hydraulic radius is 14 and the Chezy formula

for mean velocity is 3 2
s=cVrs=c-} \/gis
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T—l?e velocity can then be computed when c is known, and f
tl:us purpose Table 114 gives Hamilton Smith’s values‘ of ¢ for
pipes and conduits having quite smooth interior surfaces and Or
sharp bends.* The discharge per second then is R
: . g=av=c-3a Vs

in which ¢ is either the area of the circular cross-secti

half that section, as the case may be. ke

~/ TABLE 114. COEFFICIENTS C FOR CIRCULAR Conpurrs

Diameter Velocity in Feet per Second

in Feet ‘

I T

I =} | |
T BEE

96 104 | 109 |
103 111 ‘ 116
100 116 121
113 120 125
ny | 124 128
120 | 127 | 131
123 130 134
128 | 134 | 130
252 138 | 142

i 137 | 143 | 148

f
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To use Table 114 a tentativ

: a e method must be employ
since ¢ depends upon the velocity of flow. For this purposf t(l? -
may be taken roughly i

j
|
|

-
o
- O

mean ,Cj}ﬁz_): coefficient ¢ = 125
and then v may be computed for the given diameter and slope
a new value of c is then taken from the table and a new v ccf) v,
puted; and thus, after two or three trials, the probable‘.mez}l;

velocity of flow is obtained. Th
. e value of the di -
be expressed in feet. ¢ diameter d must

: For example: !et it be required to find the velocity and dis-
charge of a semicircular conduit of 6 feet diameter when laid on
a grade of o.1 feet in 1oo feet. First, '

e 1 "
=125 X3 V6 X o0.001 = 4.8 feet per second.
* Hydraulics (London and New York, 1886) p. 271
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For this velocity the table gives 147 for c; hence

=147 X3 V0.006 = 3.7 feet per second.

Again, from the table ¢ = 150, and
2 =150 X & Vo.006 = 5.8 feet per second.

. g oW (3= l
This shows that 150 is a little too large; for ¢ = 149.5, is f}i)un(
to be 5.79 feet per second, which is the final result. The discharge

per second now is :
g =0.7854 X § X 36 X 5.79 = 81.9 cubic feet,
which is the probable flow under the given conditions.

To find the diameter of a circular conduit to discharge_ a given
quantity under a given slope, the area a is to be expressed in Legms
of d in the above equation, which is then to be solved for d; thus,

( 8 V2 (2 )

=\ eV oV,

the first being for a conduit running full and the second for on;‘
running half full. Here c may at first be taken as 125; then

1 1t 9 = -'il‘v‘?" f"_'.
is computed, the approximate velocity found from v = ¢/4m¢

and with this value of » a value of ¢ is sele‘ct.cd from ’5116 Ldbgl
and the computation for d is repeated. This process ma_\d te
continued until the corresponding values of ¢ and v are found to
be in close agreement. |

As an example of the determination of diameter let it be re-
quired to find d when ¢ = 81.9 cubic feet per sccond: s = 0.001,
and the conduit runs full. Forc = 125 the formula gweb‘d =4]2
feet, whence v = 4.37 feet per second. From t}.1e table ¢ ma? )t
now taken as 142, and repeating the cor.nputatlofl d = 4.64 <;e :
whence v = 4.84 feet per second, which requires no fut;‘t e(;
change in the value of c. As the tabular cocfﬁcmntsl ;}r? as\}eV
upon quite smooth interior surfaces, suc]} as occur only ’m’ rllle t(;
clean, iron pipes, or with fine cement fmllsh..lt might bL. .V:E :
build the conduit 5 feet or 6o inches in diameter. ‘IL }:(S:t:
from the previous example that a semimrcular.condmt ot. Jdebc
diameter carries the same amount of water as is here carried by
one of 4.64 feet diameter which runs entirely full.
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Circular conduits running full of water are long pipes and all
the formulas and methods of Arts. 94 and 95 can be applied also
to their discussion. From Art. 113 it is seen that

c=V8/f or c= 16.04/ Vf

in which f is to be taken from Table 90a. Values of ¢ computed in
this manner will not generally agree closely with the coefficients
of Smith, partly because the values of / are given only to three
decimal places, and partly because Table 90a for pipes was con-
structed from experiments on smoother surfaces than those of
conduits. An agreement within 5 per cent in mean velocities de-
duced by different methods is all that can generally be expected
in conduit computations, and if the actual discharge agrees as

closely as this with the computed discharge, the designer can
be considered a fortunate man.

All of the laws deduced in the last chapter regarding the relation
between diameter and discharge, relative discharging capacity,
etc., hence apply equally well to circular conduits which run either
full or half full. If the conduit be full, it matters not whether it be
laid truly to grade or whether it be under pressure, since in either case
the slope s is the total fall % divided by the total length. Usually,
however, the word “ conduit”” implies a uniform slope for considerable

distances, and in this case the hydraulic gradient coincides with the
surface of the flowing water.

Prob. 114. Find the diameter of a circular conduit to deliver when
running full 16 500 ooo gallons per day, its slope being 0.00016,

ArT. 115. Crcurar Conpurrs, ParTry Fuir

Let a circular conduit with the slope s be partly full of water.
its cross-section being @ and hydraulic radius ». Then the mean
velocity and the discharge are given by

v o=cVrs ¢=caVrs

The mean velocity is hence proportional to V7 and the discharge
to @V, provided that c be a constant. Since, however, ¢ varies
slightly with 7, this law of proportionality is only approximate.
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When a circular conduit of diameter ¢ runs e.itl}er .full or half
full, its hydraulic radius is d (Art.112). If it is .hllcd to the
’ depth ¢’ (Fig. 115), the wetted perimeter 1s

/

. 2d —d
‘Pzé-rrd—l—darcsmL?_

and the sectional area of the water surface is
a=1dp+(d —3d) Vd'(d—d)

From these p and ¢ can be computed, ar}d then 7 is foun% bly
dividing @ by p. Table 115 gives values of p, a, ilflfl r fgr a circ i
of diameter unity for different depths of wta.t'er. To find from 1
the hydraulic radius for any other circle .1t is o!’lly necezsarynzt?
multiply the tabular values of 7 by Fhe given dm'meter. S L
table shows that the greatest value of the hydraulic radnfls ou:t:rb
when @’ = 0.81d, and that it is but little Icss. when d' = oic/z’
In the fifth and sixth columns of the table are given values of e
and a7 for different depths in the circle of .dlametet: umt}:
these are approximately proportional to the velocity and (llSChaI'ﬁL
which occur in a circle of any size. The table sl?ows that‘ the
greatest velocity occurs when the depth of the water is about eight-

Taste 115. Cross-sEcTioNs OF CIRCULAR CoNDUITS

|

Wetted ‘ Sectional Hy(quulic
Depth | Perimeter Area Radius ‘
a P a [ | vr

| Velocity 1 Discharge

av'r

|

| 9393

[ ©0.413
0.406
0.376
0.372
0.320
0.250
0.196
0.130
0.0820

|
|

| o784
0.7708

| 0.7445
0.6815
0.0735
0.5874
0.4920
Hali Full | 0.3927
0.2034
0.1981
0.1118 | 0.0389

| 0.0103

o n i i
e
[ T

[

w
[

5]
~T

o0 090 000
N otn e n
Q‘UIJ-‘:

B

0.0408

' 0.0
| 0.0 8 3 |
| . -
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tenths of the diameter, and that the greatest discharge occurs
when the depth is about 0.95d, or }§ of the diameter.

By the help of Table 115 the velocity and discharge may be com-
puted when ¢ is known, but it is not possible on account of the lack
of experimental knowledge to state precise values of ¢ for different
values of 7 in circles of different sizes. However, it is known that an
increase in r increases c, and that a decrease in r decreases ¢. The
following experiments of Darcy and Bazin show the extent of this
variation for a semicircular conduit of 4.1 feet diameter, and they also
teach that the nature of the interior surface greatly influences the values
of c. Two conduits were built, each with a slope s = o.001 sandd =
4.1 feet. One was lined with neat cement, and the other with a mor-
tar made of cement with one-third fine sand. The flow was allowed
to occur with different depths, and the discharges per second were
gaged by means of orifices ; this enabled the velocities to be computed,
and from these the values of the coefficient ¢ were found. The fol-
lowing are a portion of the results obtained, d’ denoting the depth
of water in the conduit,  the hydraulic radius, » the mean velocity,
and all linear demensions being in English feet :

For cement lining For mortar lining
d' r  Bida d' r o
2.05 T.029 6.06 154 2.04 1.022 5.55 142
1.61 0.867 520 147 1.60 0.000° 4.04 133
1.03 o.605 4.16 138 Lop 0.635 3.87 125
0.50 ©.366 3.02 129 061 0379 287 120

It is here seen that c decreases quite uniformly with 7, and that the
velocities for the mortar lining are 8 or 1o per cent less than those for
the neat cement lining.

The value of the coefficient ¢ for these experiments may be roughly
expressed for English measures by

c=c—16(3d—4d)

in which ¢, is the coefficient for the conduit when running half full.
How this will apply to different diameters and velocities is not known :
when d’ is greater than 0.84, it will probably prove incorrect. In

practice, however, computations on the flow in partly filled conduits
are of rare occurrence.

Prob. 115. Compute the hydraulic radius for a circular conduit of 4.1
feet diameter, when it is three-fourths filled with water, and also the mean
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velocity when it is lined with neat cement and laid on a grade of o.15 feet
per 1oo feet.

: , ArT. 116. RECTANGULAR CONDUITS

In designing an open rectangular trough or conduit to carry
water there is a certain ratio of breadth to depth which is most
advantageous, because thereby either the discharge is the greatest
or the least amount of material is required for its construction.

i _Aet b be the breadth and d the depth of the water section, then the

atea a is bd and the wetted perimeter pis b + 2d. 1f thearea ais
given, it may be required to find the relation between b and d
so that the discharge may be a maximum. If the wetted perim-
eter p is given, the relation between b and d to produce the same:
result may be demanded. It is now to be shown that in both
cases the breadth is double the depth, or b = 2d. This is called
the most advantageous proportion for an open rectangular con-
duit, since there is the least head lost in friction when the velocity
and discharge are the greatest possible.

Let 7 be the hydraulic radius of the cross-section, or

el 2 bd
p b+2d

then, from the Chezy formula (113), the expressions for the veloc-
ity and discharge are

bd bd?

= =cVs
; C\/E\/b-l-zd T=CV N2
In these expressions it is required to find the relation between
b and d, which renders both v and ¢ a maximum.

Let the wetted perimeter p be given, as might be the case
when a definite amount of lumber is assigned for the construction
of a trough; then b + 2d = p,ord = 3(p — b), and
; . b3 5 b 3

v=cx/§\/b( b) q=c%\,(L—l

2p : 3p
in which p is a constant. Differentiating either of these expres-
sions with respect to b and equating the derivative to zero, there
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is found b = }p, and hence d = }p. Accordingly b = 2d, or the

~ breadth is double the depth.

Again, let the area a be given, as might be the case when a
definite*amount of rock excavation is to be made; then bd = a,
or d = a/b, and

ab i \] a%h
ﬂzC\/;\'/bz+2a {0V b2+ 2a

in which a is constant. By equating the first derivative to zero,

there is found #* = 24, and hence d*> = }a. Accordingly b = 2d,
or the breadth is double the depth, as before.

It is seen in the above cases that the maximum of both z and ¢
occur when # is a maximum, or when r = 3d. It is indeed a
general rule that r should be a maximum in order to secure the
least loss of head in friction. The circle has a greater hydraulic
radius than any other figure of equal area.

In these investigations ¢ has been regarded as constant, al-
though strictly it varies somewhat for different ratios of b to d.
The rule deduced is, however, sufficiently close for all practical
purposes. It frequently happens that it is not desirable to adopt
the relation b= 2d, either because the water pressure on the sides
of the conduit becomes too great or because it is advisable to
limit the velocity so as to avoid scouring the bed of the channel.
Whenever these considerations are more important than that

of securing the greatest discharge, the depth is made less than one-
half the breadth.

The velocity and discharge through a rectangular conduit

are expressed by the general equations 2

v=cVrs g=av=caVrs
and are computed without difficulty for any given case when the
coefficient ¢ is known. To determine this, however, is not easy,
for it is only from recorded experiments that its value can be

ascertained. When the depth of the water in the conduit is one-

half of its width, thus giving the most advantageous section, the
values of ¢ for smooth interior surfaces may be estimated by the
use of Table 114 for circular conduits, although c¢ is probably
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smaller for rectangles than for circles of equal area. When the
depth'of the water is less or greater than 3d, it must be remem-
bered that ¢ increases with 7. The value of c also is subject to
slight variations with the slope 5, and to great variations with the
degree of roughness of the surface.

Table 116, derived from Smith’s discussion of the experiments
of Darcy and Bazin, gives values of c for a number of wooden
and masonry conduits of rectangular sections, all of which were
laid on the grade of 0.49 per cent or s=0.0049. The great influence

Tagre 116. COEFFICIENTS C FOR RECTANGULAR CONDUITS

Unplaned Plank Unplaned Plank Neat Cement Brick
b = 3.93 Feet =6.53 Feet b= 5.04 Feet b= 6.27 Feet

d c ¢ £ d ¢

09 89 116 0.20 8o
41 108 .30 : 12 AL 08
.67 112 .46 109 43 . 132 49
89 114 .60 - 135 o

1.00 114 ) 116 ; 136 .03

1.19 116 78 ! 136 i

1.29 117 .89 : 137 83

1.46 118 .04 : 138 .07

of roughness of surface in diminishing the coefficient is here
plainly seen. For masonry conduits with hammer-dressed sur-
faces ¢ may be as low as 6o or 5o, particularly when covered
with moss and slime. .

Prob, 116. Find the size of a trough, whose width is double its depth,

which will deliver 12 5 cubic feet per minute when its slope is 0.002, taking
the eoefficient ¢ as 100.

ArtT, 117. TRAPEZOIDAL SECTIONS

Ditches and conduits are often built with a bottom nearly,

flat and with side slopes, thus forming a trapezoidal section.
The side slope is fixed by the nature of the soil or by other cir-
cumstances, the grade is given, and it may be then required to
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ascertain the relation between the bottom width and the depth
of water, in order that the section shall be the most advantageous.
This can be done by the same reasoning as used for the rectangle
in the last article, but it may be well to employ a different method,
and thus be able to consider the subject in a new light.

Let the trapezoidal channel have the bottom width &, the
depth d, and let & be the angle made by the side slopes with the
horizontal. Let it be required to
discharge ¢ cubic units of water per
second. Now g=caV rs, and the
most advantageous proportions may
be said to be those that will render
the cross-section ¢ a minimum for a given discharge, for thus the
least excavation, will be required. From Fig. 117,

a=d(b+dcotd) p=0b+2d/sinf

and from these the value of » may be expressed in terms of a,
d, and 6 ; inserting this in the formula for g, it reduces to

cisa®  ¢%a 2( 2 )

==l g~ cotd
d d’ 1 sing

in which the second member is a constant. Obtaining the first

derivative of a with respect to d, and then replacing ¢* by its
value c%?s, there results

d=2¢*/C%* d=or
which is the relation that renders the area ¢ a minimum; that is,

the advantageous depth is double the hydraulic radius. Now
since a/p=r, it is easy to show that

b+ 2d cotf = 2d/sinf

or, the top width of the water surface should equal the sum of the
two side slopes in order to give the most advantageous section.
Since ¢ has been regarded constant, the conclusion is not a rigor-
ous one, although it may safely be followed in practice. As
in all cases of an algebraic minimum, a considerable variation
in the value of the ratio d/b may occur without materially effect-
ing the value of the area . In many cases it is not possible to




