Chap. 8. Theoretical Hydraulics

CHAPTER 3

THEORETICAL HYDRAULICS
Art. 21. Laws or FAarLinG BoDIES

Theoretical Hydraulics treats of the flow of water when
unretarded by opposing forces of friction. In a perfectly smooth
inclined trough water would flow with accelerated velocity and
be governed by the same laws as those for a body sliding down
a frictionless inclined plane. Such a flow is, however, never
found in practice, for all surfaces over which water moves are
more or less rough. Friction retards the motions caused by
gravity so that the theoretic velocities deduced in this chapter
constitute limits which cannot be exceeded by the actual veloc-
ities: Many of the laws governing the free fall of bodies in a
vacuum are similar to those of both theoretical and practical
hydraulics, and hence they will here be briefly discussed.

A body at rest above the surface of the earth immediately
falls when its support is removed. When the fall occurs in a
vacuum, its velocity at the end of one second is g feet, the mean
value of g being 32.16 feet per second per second, and at the end
of ¢ seconds its velocity is V = gf. The distance passed through
in the time ¢ is the product of the mean velocity 3V by the
number of seconds, or & = } gf2. Eliminating ¢ from these two
equations gives

V=V2gh or h=V?2g (21)
which show that the velocity varies with the square root of the
height and that the height varies as the square of the velocity.

When a falking body has the initial velocity # at the begin-
ning of the time #, its velocity at the end of this timeis V' =u + g/
and the distance passed over in that time is f=ut+73 g
Eliminating # from these equations gives

V=vVagh+ut or h=(V*—u)/2g (21),
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as the relations between V and % for this case. These formulas
are also true whatever be the direction of the initial velocity »

.thn a body of weight W is at the height / above a given
!mnzontal plane, its potential energy with respect to this plan
Is Wh. When it falls from rest to this plane, the potential ellljcrrre-'
is changed into the kinetic' energy H'I'"‘"f’err if no x;'ork ht')l)
been done against frictional resistance, and lflercfore V=g ‘;’
When it has a velocity # in any direction at the height % abaogvé
the plane, its energy there is partly potential and partly kinetic
.the sum of these being Wk + W - u*/2g; on reaclﬁnn ;11(5 lanf,:
it has the kinetic energy WV?/2g. Placing these f ual It)her
results V* = 2gh + 22, as found above by ar?other mgtho;l Ie
general, reasoning from the standpoint : e

( e ; A
of energy is more satisfactory than Q vy
that in which the element of time is i o 2
employed. i. 3
iy }
| by
\!f :

Y

The general case of a body moving
toward the earth is represented in
Fig.21. When the body is at 4, it is
at a'height I above a certain horizontal plane and has the
\'eloat.y %. When it has arrived at B, its height above the
p?ﬂ{le s 7y and its velocity is #,. In the first position the sum
of its potential and kinetic energy with respect to the given

horizontal plane is 4
I-I-'(izl +E>

and in the second position the sum of these energies is

Wi +2)
28

If no energy has been lost between the two positions, these two
expressions are equal, and hence

Fig. 21.

B,]? A 2.22
r’h"%‘;‘é—’—]l‘z‘;‘ 2 (2]).}

This equation is the simplest form of Bernouilli’s theorem (Art.
31). It contains two heights and two velocities, and when
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three of these quantities are given, the fourth can be found ;
thus, if v;, /1, and A are given, the value of 2, is

% = Vgl — h)+ 9

where /, — hy is the vertical height of A above B. Wit.h proper
changes in notation this expression reduces to (21),, which is for
the case where the horizontal plane passes through B, and to (21);,
which is the case where there is no initial velocity.

Prob. 21. A body enters a room through the ceiling with a vc.locil)-' of 47
feet per second, and in a direction making an angle of 17 w1t.h the vgr—
tical. If the height of the room is 16 feet, find the velocity of the body
as it strikes the floor, resistances of the air being neglected.

ArtT. 22. VEerocrry oF FLow FroM ORIFICES

When an orifice is opened, either in the base or sid-e of a Yesstf:l
containing water, the water flows out with a vciom}.’ wlnch_ is
greater for high heads than for low heads. The Lheo'reu? ‘\-'eloaty
of flow is given by the theorem established by Torricelli in 1644 :

The theoretic velocity of flow from the orifice is the
same as that acquired by a body after having fallen from
rest in a vacuum through a height equal to the head of
water on the orifice.

One proof of this theorem is by experience. When.a vessel is
arranged, as in the first diagram of Fig.22, so that a jet of water

from an orifice is directed vertically upward, it is known .that it
never attains to the height of

the level of the water in the
vessel, although under favor-
able conditions it nearly reaches
that level. It may hence be
inferred that the jet would
actually rise to that height
were it not for the resistance
of the air and the friction of
the edges of the orifice. Now, since the velocity required to
raise a body vertically to a certain height is the same .as-that
acquired by it in falling from rest through that height, it is re-
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garded as established that the velocity at the orifice is that stated
in the theorem.

The following proof rests on the law of conservation of energy.
Let, as in the second diagram of Fig. 22, the water surface in a vessel
be at 4 and let the flow through the orifice occur for a very short in-
terval of time during which the water surface descends to 4;. Let
W be the weight of water between the planes 4 and 4;, which is evi-
dently the same as that which flows from the orifice during the short
time considered. Let Wy be the weight of water between the planes
4, and B, and F, the height of its center of gravity above the orifice.
Let / be the height of 4 above the orifice, and 8% the small distance
between 4 and 4;. At the beginning of the flow the water in the vessel
has the potential energy W H,+ W (h—%8h) with respect to B.
V' being the velocity at the orifice, the same water at the end of the
short interval of time has the energy W, W - V¥/2g. By the law
of conservation these are equal if no energy has been expended in
overcoming frictional resistances; thus k— } 8h=V%/2g. Here 8
is very small if the area 4 is large compared with the area of the ori-
fice, and thus V* = 2gh, which is the same as for a body falling from
rest through the height 4. Or h—1 8k may be regarded as an aver-
age head corresponding to an average velocity ¥, so that in general
V/2g is equal to the average head on the orifice.

For any orifice, therefore, whether its plane is horizontal,
vertical, or inclined, provided the head % is so large that it has
practically the same value for all parts of the orifice, the relation
between ¥ and / is

V=Voh o k= V?/2g (22),
the first of which gives the theoretic velocity of flow due to a given
head, while the second gives the theoretic head that will produce
a given velocity. The term “velocity-head” will generally be
used to designate the expression V2/2g, this being the height to
which the jet would rise if it were directed vertically upward and
there were no frictional resistances. Using for g the mean value
32.16 feet per second per second (Art.7), these formulas become

V =8.020Vh h=o.01555 V? (22),

in which % must be in feet and V in feet per second. The follow-
ing table gives values of the velocity V' corresponding to a given
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head / and also values of the velocity-head /4 cu!'respon('iing to a
given velocity V. It is seen that small heads p.roduce high theo-
retic velocities. The relation between / and V is the same as that
between the ordinate and abscissa of the common parabola wh?‘n
the origin is at the vertex. It may also be noted that -th'e (!1.5:
cussion here given applies not only to water but to any hqmd:
thus V? = 2gh is theoretically true for alcohol and mercury as

ART. 23. FLOW UNDER PRESSURE

The level of water in the reservoir and the orifice of outflow
have been thus far regarded as subjected to no pressure, or at least
only to the pressure of the atmosphere which acts upon both with
the same mean force of 14.7 pounds per square inch, since the
head / is rarely or never so great that a sensible variation in at-
mospheric pressure can be detected between the orifice and the

well as for water.

TABLE 22.

VELOCITIES AND VELOCITY-HEADS

Velocity
in Feet
per Second

Head' |
in Feet |

¥ = Vagh = 8020

Head
in Feet

Vi

Velocity

in Feet
per Second

0.1 2.537
0.2 3.587
0.3 4.393
0.4 5.072
0.5 5.071
| G212

o7 | 610
7.I71

7.608

8.020

S S

© w1 o

‘IO

8.02
I11.33
13.80
16.04
17.03
19.64
21.22
22.68
24.00
25.36

| Velocity
in Feet
per
Second |

k=V/2g =o.01555 V*

(Velocity|
Head in Feet
in Feet ‘ per

| Second

Head
in Feet

0.016
0.002
0.140
0.249
0.380
0.560
0.762
0.005
1.260

1.555

1.56
6.22
13.99
24.88
38.87
5507
76.19
99.51
125.95
155.50

When a Pitot tube (Art.41) is placed with its mouth in th_e
plane of the horizontal orifice in Fig.22, and at the contract(?d
section of the jet (Art. 45), it will be found.that the “-'a:er in
it stands practically at the level of the water in 'th{f ves‘sel‘. In
this manner the frictional resistance of the air is eliminated,
and a valuable experimental demonstration of t}le theore:?l
which connects the velocity and the velocity-head is
obtained. ’

Prob. 22. Find from Table 22 the velocity due to a head ?f 0.085
feet, and the velocity-head corresponding to a velocity of 65.5 feet per
second.

* Engineering Record, Feb. 15, 1902.

water level. But the upper level of the water may be subject to
the pressure of steam or to the pressure due to a heavy weight or
to a piston. The orifice may also be under a pressure greater or
less than that of the atmosphere. It is required to determine
the velocity of flow from the orifice under these conditions,

First, suppose that the surface of the water in the vessel or
reservoir is subjected to the uniform pressure of p, pounds per
square unit above the atmospheric pressure, while the pressure
at the orifice is the same as that of the atmosphere. Let % be
the depth of water on the orifice. The velocity of flow V7 is greater
than V/2gh on account of the pressure p,, and it is evidently the
same as that from a column of water whose height is such as to
produce the same pressure at the orifice. If w is the weight of
a cubic unit of water, the unit-pressure at the orifice due to the
head is wk, and the total unit-pressure at the depth of the orifice
is p = wh 4 py, and from formula (11), the head of water which
would produce this total unit-pressure is

NS
w_k+w

Accordingly the theoretic velocity of flow from the orifice is
or, if /iy denote the head corresponding to the pressure p,,
V=~V2g(h+hy)

The general formula (22), thus applies to any small orifice if I
be the head corresponding to the static pressure at the orifice.

Secondly, suppose that the surface of the water in the vessel
is subjected to the unit-pressure p,, while the orifice is under the
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external unit-pressure p;. Let & be the head of actual water on
the orifice, &, the head of water which will produce the pressure
b, and &, the head which will produce p,. The theoretic ve-
locity of flow at the orifice is then the same as if the orifice were
under a head & + kg — Iy, or

V=V2g(h+ho— In) (23),
in which the values of %, and /; are

ho=po/w .and = p/w

Usually po and p, are given in pounds per square inch, while
ho and Iy are required in feet; then (Art. 11)

g = 2.304 o Iy = 2.304p1
The values of p, and p, may be absolute pressures, or merely pres-
sures above the atmosphere. In the latter case p, may sometimes
be negative, as in the discharge of water into a condenser.

As an illustration of these principles let the cylindrical tank
in Fig. 23 be 2 feet in diameter, and upon the surface of the water
' let there be a tightly fitting pis-
i ton which with the load W weighs
3000 pounds. At the depth 8 feet
below the water level are three
small orifices: one at 4, upon
which there is an exterior head of
water of 3 feet; one not shown
in the figure, which discharges
directly into the atmosphere ; and
one at C, where the discharge is
into a vessel in which the air pressure is only 10 pounds per
square inch. It is required to determine the velocity of efflux
from each orifice. The head /, corresponding to the pressure on
the upper water surface is

g o Lo L 300 15.28 feet
w  3.042X62.5

The head /, is 3 feet for the first orifice, o for the second, and
— 2,304 (14.7 — 10)=—10.83 feet for the third. The three
theoretic velocities of outflow then are:
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V=802V8+15.28— 3 = 30.1 feet per second,
V=802V8+1528+ 0 = 38.7 feet per second,
V=2802V8+15.28+ 10.83 = 46.8 feet per second.

_ I.n the case of discharge from an orifice under water, as at 4
in Fig. 23, the value of 4 — hy is the same wherever the ;riﬁce be
placed below the lower level, and hence the velocity depends
upon the difference of level of the two water surfaces, and not
upon the depth of the orifice. )

The velocity of flow of oil or mercury under pressure is to be de-
termined in the same manner as water by finding the heads which will
!Jroduce the given pressure. Thus in the preceding numerical example
if the liquid is mercury whose weight per cubic foot is 850 pougds:
the head of mercury corresponding to the pressure of the piston is

hh=—3990_
0 $142 X 850 1.12 feet,

and, accordingly, for discharge into the atmosphere at the depth

« h=8 feet the velocity is

V'=8.02V8+ 1.12= 24.2 feet per second,

while for water the velocity was 38.7 feet per second. The general
formula (22); is applicable to all cases of the flow of liquids from
a small orifice if for # its value p/w be substituted where  is the re-
suita:?t unit-pressure at the depth of the orifice and w the weight of
a cubic unit of the liquid. Thus for any liquid

‘ V=~agp/w (23).
is the thf:oretic velocity of flow from the orifice. Accordingly for the
Same unit-pressure p the velocities are inversely proportional to the
Square roots of the densities of the liquids.

2 Prc_)b. 23.. What is the theoretic velocity of flow from a small
oritice in a boiler 1 foot below the water level when the steam-gage reads

pO pe Sq v H
60 Llﬂds T uar 1N¢ h ‘ihat 15 t]le thEOI‘eth ‘eIOClty “‘hell the

ART. 24. INFLUENCE OF VELOCITY OF APPROACH

3 Thus far in the determination of the theoretic velocity and
charge from an orifice, the head upon it has been regarded
4s constant. But if the cross-section of the vessel is not large,
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the head can only be kept constant byan inflow of water, and this
will modify the previous formulas. In this case the water ap-
proaches the orifice with an initial velocity. Let a be the area of
the orifice and 4 the area of the horizontal cross-section of the
vessel. Let V be the velocity of flow through
a and v be the vertical velocity of inflow
through 4. Let W be the weight of water
flowing from the orifice in one second; then
an equal weight must enter at 4 in one sec-
ond in order to maintain a constant head #A.
The kinetic energy of the outflowing water is
W - V?/2g, and this is equal, if there be no loss of energy, to
the potential energy Wk of the inflowing water plus its kinetic
energy W - v*/2g,
or W —whtwZ
2g 2g
Now since the same quantity of water () passes through the two
areas in one second, Q = aV = Av, whence v = V-a/4. In-
serting this value of  in the equation of energy, there is found

J ey
: [ 20h
Ni—(a/4) ‘ A%

which is always greater than the value V/2gh.

The influence of the velocity of approach on the velocity of
flow at the orifice can now be ascertained by assigning values to
the ratio a/4. Thus, if ¢ = A, the velocity V' must be infinite
in order that the water may fill the entire section of the vessel
and orifice. Further,

for T =1.342 V2gh

I

for /= 1154 V2gh

s

for = 1.061 \/:glz

Gl ol g IR
.

for f'=1.021 \fzgr’l

et

NN K
o - N+

o 7 = 1.00§ V agh

—|
=

It is here seen that the common formula (22), is in error 2.1 per-
cent when a = £ 4, if the head be maintained constant by a uni-

- in Fig.24b. Here let A be ‘the are

Influence of Velocity of Approach. Art. 24 53

form vertical inflow at the water surface, and o.5 percent when
@ =15 4. Practically, if the area of the orifice be less than one-
twentieth of the cross-section of the vessel, the error in using the
form.ulzt V = V/2gk is too small to be noticed, even in the most
precise e:s:periments, and fortunately most orifices are smaller in
relative size than this.

.A more common case is that where the reservoir is of large
horizontal and small vertical cross-section, and where the water
approaches the orifice with velocity in a horizontal direction, as
a of the vertical cross-section
?f the trough or pipe, a the area of the orifice, and % the head on
its center. Then if / be large compared with the depth of the

Fig. 24. Fig. 24¢

orifice, .exactiy the same reasoning applies as before, and the
theoretic velocity at the orifice is given by the above formula (25),
The same is also true for the case shown in Fig. 24¢, where water

. 15 forced through a hose with the velocity o and issues from a

nozzle with the velocity V, the head % being that due to the pres-
sure at the entrance of the nozzle.

The “effective head” on an orifice is the head that will pro-
duce tEe’ theoretic velocity V. If H is this effective head, then
H = V?/2¢, and from the first equation of this article

H=h+ 7 ‘
0 (24),
The effective head on an orifice is, therefore, the sum of the
pressur(.i and velocity heads which exist behind it. Another
expression for the effective head can be obtained from (24),, or

" /]

E (_(I‘_‘"‘A )E
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When H has been found from either of these formulas, the
theoretic velocity and discharge are given by

V=v2H and Q=aV=a\/2g—H
for all instances where  is sufficiently large so that its value is

sensibly consfant for all parts of the orifice. But if this is not
the case, the value of Q is to be found by the methods of Arts.

47 and 48.

Prob. 24. In Fig. 24¢ let the head / be 50 feet, the diameter of the nozzle
1} inches, and the diameter of the hose 3 inches. Compute the effective
head H, and also the discharge ( in cubic feet per second. !

Art. 25. THE PATH OF A JET

When a jet of water issues from a small orifice in the vertical
side of a vessel or reservoir, its direction at first is horizontal, but
the forfe of gravity immediately causes the jet to move in a curve
which will be shown to be the common parabola. Let x be the
abscissa and y the ordinate of any
point of the curve, measured from the
orifice as an origin, as seen in Fig. 25a.
The effect of the impulse at the orifice
is to cause the space x to be described
uniformly in a certain time ¢, or, if v be

of the force of gravity is to cause the
space y to be described in accordance
with the laws of falling bodies (Art. 21), or y = 3gi#. Elimi-
nating ¢ from these. two equations, and replacing ¢* by its
theoretic value 2gh, gives
y = gat/20* = x*/4h

which is the equation of a parabola whose axis is vertical and
whose vertex is at the orifice.

The horizontal range of the jet for any given ordinate y is
found from the equation 2% =4hy. If the height of the vessel
be I, the horizontal range on the plane of the base is

x=2Vh(l—h

Fig. 25a.

the velocity of flow, x = o1. The effect °

The Path of a Jet. Art. 25

This value is o when 7 = 0 and also when % =1, and it is a maxi

‘hen = 2 L
mum “h.LD / =13l Hence the greatest range is from an orifice
at the mid-height of the vessel.

. A more general case is that where the side of the vessel is
inclined to the vertical at the angle 6, as in Fig. 255 Her;z th:
jet at first issues perpendicularly p \ :
to the side with a velocity o,
having the theoretic value Vv'2gh,
and under the action of the im-
pulsive force a particle of water
would describe the distance 4B
in a certain time ¢ with the uni-
form velocity ». But in that
same time the force of gravity causes it to descend through the
dllstance BC. Now let x be the horizontal abscissa and tlia ver-
tical ordinate of the point C measured from the origin ;4 Th

AB = x sec, and BC =« tang —y. Hence by - v

Fig. 258.

xsecd =9/  xtand—ry=1pp
The elimination of ¢ from th s
_ : ese expressions gives, after replac-
ing #* by its value 2g#, S 5.
y = x tanf — 2?sec’d/4h (25)
which is also the equation of a common parabola.

To. find the horizontal range in the level of the orifice take
¥ =o in the last equation ; then
x = 4h tand/sec’d = 2/ sin 26

i '12‘:1;1}?; \;r}len _i= ) or~6 =g0°; i.t is a maximum and equal
e il 45°. '-To fimd the highest point of the jet the
‘ erivative of y with reference to « is to be equated to zero
n order to obtain the maximum ordinate, and there results

x = fisin 26 y=hsin%

gll:zh.a_re the coordinates of the highest point with respect to
- beng{n A. In tl‘xese if § = 0%, xisoand y is k; that is, if a

e rected vertically upward, it will, theoretically, rise to the
eight of the water level in the reservoir.




56 Chap. 3. Theoretical Hydraulics

As a numerical example let a vessel whose height is 16 feet
stand upon a horizontal plane DE, Fig. 25b, the side of the vessel
being inclined to the vertical at the angle § = 30°. Let a jet
fice at A under a head of 1o feet. The jet

issue from a small ori
1 % 10 = 2.5 feet, at the dis-

rises to its maximum height, y =
tance x = 3 V3 X 10=28.66 fect from A. At x = 17.32 feet
the jet crosses the horizontal plane through the orifice. To locate
t where it strikes the plane DE, the value of y is made —6

the poin
ion of the curve, « is found to be 24.6

feet; then, from the equat
feet, whence the distance DE is 21.2 feet.

+ In practice the above equations are modified by the frictional
{ges of the orifice which renders v less than the
theoretic value v/2gh, and also by the resistance of the air.
They are, indeed, extreme limits which may be approached but
1ed by equations that take these resistances into account.

Prob. 25.. A jet issues from a vessel under a head of 6 feet, one side
of the vessel being inclined to the vertical at an angle of 45° and its depth
being 1o feet. Find the maximum height to which the jet rises, the point
where it strikes the horizontal plane of the base, and its theoretic velocity as

it strikes that plane.

resistance of the ec

not reacl

Art. 26. THE ENERGY OF A JET

¢ or stream of water have the velocity o, and let W be
the weight of water per second passing any given cross-section.
The kinetic energy of this moving water is the same as that stored
up by a body of weight W falling freely under the action of gravity
through a height % and thereby acquiring the velocity 2. Thus,
if K represents kinetic energy per second,

K=Wh=W -v*/2¢g (26),
section and w the weight of a
eight of a prism of water of
whence

Let a je

Now if @ be the area of the cross-
cubic unit of water, W is the w
Jength # and cross-section a, or W = wav,
K = wav®/2g
and accordingly the energy which a jet can yield in one second
is directly proportional to its cross-section and to the cube of its
The term “power” is often used to express energy

26)»

velocity.

The Energy of a Jet. Art. 26 57

per second, and when K is in foot-pounds per second, the hors

power that a jet can yield is ascertained by dividin ‘ K {;) 'Ol'bt‘-
Hence the horse-powers of jets of the same cross—fc ti Y 550-
as the cubes of their velocities. For example, if the \'Cl et e
jet be c:‘loublcd, the cross-section remaining tl}le s e ‘;)ICIL}’ of a
1'30“::31: 1s made eight times as great. The term “e, o ?or‘s g
jet " is often used in hydraulics for brevity, but it al?elv’g& of a
energy per second of the jet; that is, the ;J;)wer of theaj)est i s

Th bt :
% the expressions J'ust deduced give the theoretic energy of the
gm, at 1; }t)he maximum work which can be obtained from it
e second, but this, in practic ¥
: e, can never be fully utili
i o S ! y utilized. The
s Ofwfﬂ\ realized when a jet strikes a moving surface, like the
A w;- llxxba;ter-r?oltor;idepends upon a number of circumstances
explained in a later chapter it i e
' ; a , and it is the Z
aim of inventors so to arr ' i
: ange the conditions th
5 o ge tl at the work real-
Ciencn-liy be as near the theoretic energy as possible. The “effi
o y t(?f a? apparatus for utilizing the power of moving vmte-
e ratio of the work % actually utili it |
utilize i
B y utilized to the theoretic energy,
e=k/ 3
The great i 4 a
atta'b eda est.possable value of ¢ is unity, but this can never b
frictlize 1 owing to the imperfections of the apparatus and th(j
o 01;;: .rf351stances. Values greater than o.go have howeverL
ained ; that is, go percent or more of the theoretic poure;

of the water has been utilized i
as been utilized ]
Mol motors. in some of the best forms of hy-

For e i
S vc‘}m“‘lph’-, let water issue from a pipe 2 inches in diameter
L ocity of 1o feet per second. The cross-section in square
-142/144, and the kinetic energy et i :
per second is ergy of the jet in foot-pounds

K =o0.01555 X 62.5 X 0.0218 X 16* = 21.2

which is 0.0385 h
0305 horse-power. If the velocity is
ond, the theoretic horse-power will be 3?; ') ki v
a motor yieldi i ey
otor yielding 27.7 effective horse-powers, the efficiency of th
e

apparatus is 27.7/38.5 =
energy is utih'.:;e;/3 5 =0.72, or 72 percent of the theoretic

if this jet operates




