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CHAPTER 3 

THEORETICAL llYDRAULICS 

A.Rr. 21. LAWS OF FALLING Booms 

Theoretical Hydraulics treats of the flow of water when 
unretarded by opposing forces of friction. In a perfectly smooth 
inclined trough water would flow with accelerated velocity and 
be governed by the same laws as those for a _body sliding down 
a frictionless inclined plane. Such a flow 1s, however, never 
found in practice, for ali surfaces over which water moves are 
more or less rough. Friction retards the motions caused by 
gravity so that the theoretic velocities deduced in this chaptcr 
constitute limits which cannot be exceeded by the actual veloc
ities. Many of the laws governing the ~ee fall of bodies in a 
vacuum are similar to those of both theoretical and practical 
hydraulics, and hence they will here be briefly discussed. 

A body at rest above the surface of the earth immedi~tely 
falls when its support is removed. When the fall occurs m a 
vacuum, its velocity at the end of one second is g feet, the mean 
value of g being 32.16 feet per second per second, and a.t the end 
of t seconds its velocity is V= gt. The distance passed through 
in the time t is the product of the mean velocity ½ V by the 
number of seconds, or h = ½ gfl. Eliminating t from these two 
equations gives 

V= -v:;¡jz or h = V2/ 2g (21)1 

which show that the velocity varies with the square root of the 
height and that the height varies as the square of the velocity. 

When a faUing body has the initial velocity u at the begin
ning of the time t, its velocity at the end of this time is V = it + gt 
and the distance passed over in that time is h = ut + ½ gt2• 

Eliminating t from these equations gives 
V= -v'2gh+u2 or h=(V2 -u2)/ 2g (21)2 
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, as the relations between V and h for this case. These formulas 
are also true whatever be the direction of the initial velocity u. 

When a body of weight W is at the height h above a given 
horizontal plane, its potential energy with respect to this plane 
is Wh. When it falls from rest to this plane, the potential energy 
is changed into the k.inetic' energy WV2/2g ü no work has 
been done against frictiona~ resistance, and therefore v2 = 2gh. 
When it has a velocity u in any direction a t the height h above 
the plane, its energy there is partly potential and partly kinetic, 
the sum of these being Wh + W · u2/2g; on reaching the plane 
it has the k.inetic energy WV2/2g. Placing these equal, there 
results V2 = 2gh + u2

, as found above by another method. In 
general, reasoning from the standpoint A 

of energy is more satisfactory than Q~ 
that in which the element of time is ¡ 
employed. rl¡ 

The general case of a body moving : 
toward the earth is represented in 
Fig. 21. When the body is at A, it is 

Fig. 21. 

at a height h1 above a certain horizontal plane and has the 
velocity V¡. When it has arrived at B, its height above the 
plane is /0, and its velocity is v2• In the first position the sum 
of its potential and k.inetic energy with respect to the given 
horizontctl plane is 

and in the second position the sum of these energies is 

w(112+~) 
If no energy has been lost between the two positions, these two 
expressiqns are equal, and hence 

V 
2 vi h1+ _1_ =1iz+- (21)3 

2g 2g 

This equation is the simplest form of Bernouilli's theorem (Art. 
31). It contains two heights and two velocities, and whcn 
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three of these quantities are given, the fourth can be found ; 
thus, if v1, h1, and lt-i are given, the value of V2 is 

'112 = ..../ 2g(h1 - !-vi)+ v1
2 

where Ji1 - Jz2 is the vertical height of A above B. Wi~h p~oper 
changes in notation this expression reduces to (21)2, which 1s for 
the case where the horizontal plane passes through B, and to (21)1, 
which is the case where there is no initial velocity. 

P b 21 A body enters a room through the ceiling with a velocity of 47 
ro . . º 'th th 

feet per second, and in a direction making an angle of 17. w1 e ver-
tical. If the height of the room is 16 feet, find the veloc1ty of the body 
as it strikes the floor, resistances of the aiI being neglected. 

ART. 22. VELOCITY OF FLOW FROM ÜRIFICES 

When an orifi.ce is opened, either in the base or side of a :7ess~l 
containing water, the water :fl.ows out with a velocit~ which_ is 
greater for high heads than for low heads. The the~retl~ :'elocity 
of :fl.ow is given by the theorem established by Torncelh m 1644: 

The theoretic velocity of flow from the orífice is the 
same as that acquired by a body after having _fallen from 
rest in a vacuum through a height equal to the head of 
water on the orífice. 

One proof of this theorem is by experience. When a vessel is 

nged as in the first diagram of Fig. 22, so that a jet of water 
arra , . . • h · 
from an orifice is directed vertically upward, 1t 1s known t at 1t 

,Fig. 22. 

never attains to the height of 
the level of the water in the 
vessel, although under favor
able condi tions i t nearly reaches 
that level. It may hence be 
inferred that the jet would 
actually rise to that height 
were it not for the resistance 
of the air and the friction of 

the edges of the orifi.ce. Now, since the velocity required to 
raise a body vertically to a certain height is the same as that 
acquired by it in falling from rest through that height, it is re-
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garded as established that the velocity at the orifi.ce is that stated 
in the theorem. 

The following proof rests on the law of conservation of energy. 
Let, as in the second diagram of Fig. 22, the water surface in a vessel 
be at A and let the flow through the orífice occur for a very short in
terval of time during which the water surface descends to A

1
. Let 

W be the weight of water between the planes A and A1, which is evi
dently the same as that which flows from the orífice during the short 
time considered. Let W1 be the weight of water between the planes 
A1 and B, and h1 the height of its center of gravity above the orífice. 
Let h be the height of A above the orífice, and 8h the small distancc 
between A and A1. At the beginning of the flow the water in the vessel 
has the potential energy W1H1 + W (h-½Sh) with respect to B. 
V being the velocity at the orifice, the same water at the end of the 
short interval of time has the energy W1 h1+ W · V2/ 2g. By the law 
of conservation these are equal if no energy has been expended in 
overcoming frictional resistan ces; thus h- ½ 8h = v2 / 2g. Here 8h 
is very small if the area A is large compared with the area of the orí
fice, and thus v2 = 2gh, which is the same as for a body falling from 
rest through the height h. Or h-½ 8h may be regarded as an aver
age head corresponding to an average velocity V, so that in general 
v2 / 2g is equal to the average head on the orifice. 

For any orifice, therefore, whether its plane is horizontal, 
vertical, or inclined, provided the head lt is so large that it has 
practically the same value for all parts of the orífice, the relation 
between V and Ji is 

V=~ or h = V2/ 2g (22)¡ 
the first of which gives the theoretic velocity of :fl.ow dueto a given 
head, while the second gives the theoretic head that will produce 
a given velocity. The term "velocity-head" will generally be 
used to designate the expression V2/2g, this being the height to 
which the jet would rise if it were directed vertically upward and 
there were no frictional resistances. Using for g the mean value 
32.16 feet per second per second (Art. 7), these formulas become 

V= 8.020-vh h = 0.01555 V2 (22h ./ 

in which lt must be in feet and V in feet per second. The follow-
ing table gives values of the velocity V corresponding to a given 
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head h and also values of the velocity-head h corresponding to a 
given v-elocity V. lt is seen that small heads ~roduce high theo
retic velocities. The relation between h and V 1s the same as that 
between the ordinate and abscissa of the common parabola when 
the origin is at the vertex. It may also be noted that t~e ~is
cussion here given applies not only to water but to any hqmd ; 
thus V2 = 2gh is theoretically true for alcohol and mercury as 

well as for water. 

TABLE 22. VELOCITIES AND VELOCITY-HEADS . 

y_..¡;¡¡_ 8.020../i h = V'/ 2t - 0.01555 V' 

Head 1 1 
Head 1 

Velocity IVelocityl Velocity Velocity in Feet Head in Feet Head 
in Feet in Feet in Feet per in Feet per in Feet 

"'"'I per Second per Second Second Second 

l 8.02 l 0.016 10 1.56 0.1 2.537 
6.22 3.587 2 11.33 2 o.o62 20 0.2 

1 
4.393 3 13.89 3 0.140 JO 13.99 0.3 

24.88 0.4 5.072 4 16.04 4 0.249 40 

0.5 5.671 5 17.93 5 0.389 50 38.87 

o.6 
1 

6.212 6 
1 

19.64 6 o.56o 60 55.97 

0.7 6.710 7 21.22 7 0.762 70 76.19 

o.8 7.171 8 22.68 8 0.995 8o 99-51 

7.6o8 9 

1 

24.oó 9 1.260 90 125.95 0.9 

1 
8.020 10 25.36 ro 1.555 100 155.50 I.O 

When a Pitot tube (Art. 41) is placed with its mouth in the 
plane of the horizontal orífice in Fig. 22, and at the contract~d 
section of the jet (Art. 45), it will be found that the water m 
it stands practically at the level of the water in _th~ ves_sel_.* In 
this manner the frictional resistance of the a1r 1s ehmmated, 

• and a valuable experimental demonstration of the theorem 
which connects the velocity and the velocity-head 1s 

obtained. 

Prob. 22. Find from Table 22 the velocity due to a head of o.o85 
feet, and the velocity-head corresponding to a velocity of 65.5 feet per 

second. 

• Engineering Record, Feb. 15, 1902. 

. . 

Flow under Pressure. Art. 23 49 

ART. 23. Fww UNDER PRESSURE 

The leve! of water in the reservoir and the orifice of outflow 
have been thus far regarded as subjected to no pressure, or at Ieast 
only to the pressure of the atmosphere which acts upon both with 
the same mean force of 14.7 pounds per square inch, since the 
head lt is rarely or never so great that a sensible variation in at
mospheric pressure can be detected between the orífice and the 
water level. But the upper leve! of the water may be subject to 
the pressure oí steam orto the pressure due to a heavy weight or 
to a piston. The orifice may also be under a pressure greater or 
less than that of the atmosphere. It is required to determine 
the velocity of flow from the orifice under these conditions. 

First, suppose that the surface of the water in the vessel or 
reservoir is subjected to the uniform pressure of Po pounds per 
square unit above the atmospheric pressure, while the pressure 
at the orifice is the same as that of the atmosphere. Let li be 
the depth of water on the orífice. The velocity of flow V is greater 
than V2gh on account of the pressure Po, and it is evidently the 
same as that from a column of water whose height is such as to 
produce the same pressure at the orí.fice. If w is the weight of 
a cubic unit of water, the unit-pressure at the orifice due to the 
head is wh, and the total unit-pressure at the depth of the orífice 
is P = wh + Po, and from formula (11)1 the head of water which 
would produce this total unit-pressure is 

p_= Ji+ Po 
w w 

Accordingly the theoretic velocity of flow from the orífice is 

V= V2g(h+p0/w) 
or, if ho denote the head corrcsponding to the pressure p

0
, 

V = v 2g (h + Izo) 

The general formula (22)1 thus ;pplies to any small orífice if H 
be the head corresponding to the static pressure at the orifice. 

Secondly, suppose that the surface of the water in the vessel 
is subjected to the unit-pressure Po, while the orifice is under the 
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external unit-pressure p1• Let h be the head of actual water on 
the orifice, h0 the head of water which will produce the pr:ssure 
p0, and /11 the head which will produce p1• The theoretic ve
locity of flow at the orifice is then the same as if the orifice were 
under a head h + h0 - hi, or 

V= v 2g (/t + h0 - lz1) (23)1 

in which the values of h0 and h1 are 

ho = Po/w .and h1 = pi/w 
Usually p0 and p1 are given in pounds per square inch, while 
ho and h1 are required in feet; then (Art. 11) 

ho = 2.304po h1 = 2.304p1 

The values of p0 and p1 roa y be absolute pressures, or merely pres
sures above the atmosphere. In the latter case P1 may sometimes 
be negative, as in the discharge of water into a condenser. 

As an illustration of these principles let the cylindrical tank 
in Fig. 23 be 2 feet in diameter, and upon the surface of the water 

· let there be a tightly fitting pis-

' . i:. 

Fig. 23. 

ton which with the load W weighs 
3000 pounds. At the depth 8 feet 
below the water level are three 
small orifices : one at A, u pon 
which there is an exterior head of 
water of 3 feet; one not shown 
in the figure, which discharges 
directly into the atmosphere; and 
one at C, where the discharge is 

into a vessel in which the air pressure is only 10 pounds per 
square inch. It is required to determine the velocity of efflux 
from each orífice. The head h0 corresponding to the pressure on 
the upper water surface is 

ho = Po = 3opo = 15.28 feet 
w 3.142 X 62.5 

The head lt1 is 3 feet for the first orifice, o for the second, and 
- 2.304(14.7- ro)= - 10.83 feet for the third. The three 
theoretic velocities of outflow then are: 

Influence of Velocity of Approach. Art. 24 

V= 8.02 V8 + 15.28 - 3 = 36.1 feet per second, 

V= 8.02 v8 + 15.28 + o = 38.7 feet per second, 

V= 8.02 v's + 15.28 + 10.83 = 46.8 feet per second. 

51 

In the case of discharge from an orifice under water as at A 
in Fig. 23, the value of h - h1 is the same wherever the ~rifice be 
placed below the lower level, and hence the velocity depends 
upon the difference of level of the two water surfaces, and not 
upon the depth of the orifice. 

The velocity of flow of oil or mercury under pressure is to be de
termined in the same mannei- as water by finding the heads which will 
~roduc~ th_e g!ven pressure. Thus in the preceding numerical example, 
1f the liqUid 1s mercury whose weight per cubic foot is 850 pounds 
the head of mercury corresponding to the pressure of the piston is 

ho = 3000
8 

= 1.12 feet, 
3.142 X 50 

and, accordingly, for discharge into the atmosphere at the depth 
li = 8 feet the velocity is 

V= 8.02v8 + 1.12 = 24,2 feet per second, 

while for water the velocity was 38. 7 feet per second. The general 
formula (22)i is applicable to ali cases of the flow of liquids from 
a small orifice if for lt its value p/w be substituted where p is the re
sultant unit-pressure at the depth of the orífice and w the weight of 
a cubic unit of the Iiquid. Thus for any Iiquid 

V= v 2gp/w (23)2 

is the theoretic velocity of flow from the orífice. Accordingly for the 
same unit-pressure P the velocities are inversely proportional to the 
square roots of the de¡¡sities of the liquids. 

. Pr?b. 23. What is the theoretic velocity of flow from a small 
onfice m a boiler I foot below the water leve! when the steam-gage reads 
6o pounds per square inch ? What is the theoretic velocity when the 
gage reads o ? 

ART. 24. lNFLUENCE OF VELOCITY OF APPROACH 

. Thus far in the determination of the theoretic velocity and 
discharge from an orífice, the head upon it has been regarded 
as constant. But if the cross-section of the vessel is not large, 
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the head can only be kept constant byan inflow of water,and this 
will modify the previous formulas. In this case the water ap
proaches the orífice with an initial velocity. Let a be the area of 
the orí.fice and A the area of the horizontal cross-section of the 

.;{ vessel. Let V be the velocity of füw through 

11 a and v be the vertical velocity of intlow -
through A. J;,et W be the weight of water 
flowing from the orífice in one se~ond ; then 
an equal weight must enter at A m one sec
ond in order to maintain a constant head h. 

Fig. 
2
4J. The kinetic energy of the outflowing water is 

W • V2/zg, and this is equal, if there b~ no loss of energy, to 
the potential energy Wh of the inflowing water plus its kinetic 
energy W • v2/ 2g, 

or 

Now since the same quantity of water Q passes through the two 
areas in one second, Q = aV = Av, whence v = V· a/ A. In
serting this value of v in the equation of energy, the~e is found ~ 

V - I 2glt (24)1 
-'\J1- (a/A)2 

which is alw·ays greater than the value ~-

The influence of the velocity of approach on the velocity of 
flow at the orí.fice can now be ascertained by assigning values to 
the ratio a/ A. Thus, if a= A, the velocity V must be infinite 
in order that the water may fill the entire section of the Yessel 
and orífice. Further, 

for 
for 
for 

a= 

a= 
a= 

¾A 
½A 

½A 
for a= ¼A 
for a= io-A 

V= 1.342 Y 2g/z 

V= u54 v'2gh 
V= 1.06 1 v' 2glt 

V = 1.021 v' 2gh 

V = 1.005 °V2gh 
It is here seen that the common formula (22)1 is in error 2.1 per
cent when a = ¼ A, if the head be maintained constant by a uni-
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form vertical inflow at the water surface, and 0.5 percent when 
a = /O' A. Practically, if the area of the orí.fice be less than one
twentieth of the cross-section of the vessel, the error in using the 
formula V = ,/ ij)i is too small to be noticed, even in the most 
precise experiments, and fortunately most orífices are smaller in 
relative size than this. 

A more common case is that where the reservoir is of large 
horizontal and small vertical cross-section, and where the water 
approaches the orífice with velocity in a horizontal direction as 

• in Fig. 24b. Here let A be ºthe area of the vertical cross-sec~ion 
of the trough or pipe, a the area of the orífice, and h the head on 
its center. Then if lz be large compared with the depth of the 

·-------,-
' : :=_--r --- -- ----

---~==----___. 
~ . 
¡ 

Fig. 24b. Fig. 24c. 

orí.fice, exactly the same reasoning applies as before, and the 
theoretic v_elocity at the orífice is given by the above formula (25)

1
• 

The same 1s also true for the case shown in Fig. 24c, where water 
• is forced through a hose with the velocity v and issues from a 

nozzle with the velocity V, the head lt being that due to the pres
sure at the entrance of the nozzle. 

The "eff ective head" on an orífice is the head that will pro
duce the theoretic velocity V. If H is thi~ effective head, then 
H = V2/zg, and from the first equation of this article 

The eff ective head on an orífice is, therefore, the sum of the 
pressure and velocity heads which exist behind it. Another 
expression for the effective head can be obtained from (24)

1
, or 

H= lz 
r - (a/A)2 
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When H has been found from either of these formulas, the 
theoretic velocity and discharge are given by 

V = ,,¡;;¡ji and Q = a V = a Y 2gH 

for ali instances where h is sufficiently large so that its value is 
sensibly consfant for ali parts of the orí.fice. But if this is not 
the case, the value of Q is to be found by the methods of Arts. 

47 and 48. 
Prob. 24. In Fig. 24c let the head h be 50 feet, the diameter of the nozzle 

i½ inches, and the diameter of the hose 3 inches. Compute the effective 
head H, and also the discharge Q in cubic feet per second. 

ART. 25. 'fm: PATH OF A JET 

When a jet of water issues from a small orífice in the vertical 
side of a vessel or reservoir, its direction at first is horizontal, but 
the forte of gravity immediately causes the jet to move in a curve 
which will be shown to be the common parabola. Let x be the 

abscissa and y the ordinate of any 
point of the curve, measured from the 
orí.fice as an origin, as seen in Fig. 25a. 

Fig. 25a. 

- The eff ect of the impulse at the orí.fice 
is to cause the space x to be described 
uniformly in a certain time t, or, if v be 
the velocity of flow, x = vt. The effect · 
of the force of gravity is to cause the 
space y to be described in accordance 

with the laws of falling bodies (Art. 21), or y = ½gt2• Elimi
nating t from these two equations, and replacing v2 by its 
theoretic value 2gh, gives 

y = gx2 / 2v
2 = x2 / 4h 

which is the equation of a parabola whose axis is vertical and 
whose vertex is at the orí.fice. 

The horizontal range of the jet for any given ordinate y is 
found from the equation x2 = 4hy. If the height of the vessel 
bel, the horizontal range on the plane of the base is 

x= 2-Yh(l-h) 
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This value is o when h = o and also when h - t d ·t · · 
1 

- , an I Is a maxi-
mum when h = 2 l. Hence the greatest range is from an orifi 
at the mid-height of the vessel. ce 

A more general case is that where the side of the 1 . · lin d vesse IS 
~c efi to _the vertical at the angle e, as in Fig. 25b. Here the 
Jet at rst Issues perpendicularly 
to the side with a velocity v 
having the theoretic value viilz: 
and under the action of the im
pulsi ve force a particle of water 
would describe the distance AB 
in a certain time t with the uni-
form velocity v. But in that FIG 25b. 

s~me time the force of gravity causes it to descend through the 
d_Istance _BC. Now let x be the horizontal abscissa and y the ver
tical ordinate of the point C measured from the origin A. Then 
AB = x seco, and BC = x tanO - y. Hence 

x seco = vt x tan0 - y = ½ gt2 

!he elim~ation of t from these expressions gives, after replac
mg v2 by Its value 2gh, 

Y = x tan0 - x2 sec20 / 41z (25) 

which is also the equation of a common parabola. 

T~ find the horizontal range in the leve] of the orífice take 
Y= 0 m the last equation ; then 

x = 4h tan0 / sec20 = 2h sin 20 

This is o when O - oº 0 0 ° · · · t h h - r = 9° ; 1t IS a max1mum and equal 
o 2 w. en.º= 45º. To find the highest point of the jet the 

~rst denvative o_f y with reference to x is to be equated to zero 
m order to obtam the maximum ordinate, and there results 

x· = h sin 20 y = h sin20 

~;ich. ~re the coordinates of the highest point with respect to 
. e ong~n A. In these if 0 = 90º, x is o and y is h; that is if a 
~e~ ~e d1.rected vertically upward, it will, theoretically rise t~ the 

eig t of the water level in the reservoir. ' 
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As a numerical example let a vessel whose height is 16 feet 
stand upon a horizontal plane DE, Fig. 25b, the side of the vesscl 
being inclined to the vertical at the angle () = 30º. Let a jet 
issue from a small orifice at A under a head of 10 íeet. The jet 
rises to its maximum height, y = ¼ X 10 = 2.5 feet, at the dis
tance x = ½ 'V3 X 1~ = 8.66 íeet from A. At x = 17.32 feet 
the jet crosses the horizontal plane through the orifice. To locate 
the point where it strikes the plane DE, the value of y is made -6 
feet; then, from the equation of the curve, x is found to be 24.6 

feet, whence the distance DE is 2r.2 feet. 

· In practice the above equations are modified by the frictional 
resistance of the edges of the orífice which renders v less than the 
theoretic value ✓2gh, and also by the resistance of the air. 
They are, indeed, extreme lirnits which may be approached but 
not reached by equations that take these resistances into account. 

Prob. 25. A jet issues from a ves.sel under a head of 6 feet, one side 
of the vessel being inclined to the vertical at an angle of 45º and its depth 
being 10 feet. Find the maximum height to which the jet rises, the point 
wherc it strikes the horizontal plane of the base, and its theoretic velocity as 

it strikes that plane. 

ART. 26. THE ENERGY OF A JET 

Let a jet or stream of water- have the velocity v, and let W be 
the weight oí water per second passing any given cross-section. 
The kinetic energy of this moving water is the same as that stored 
up by a body of weight W falling freely under the action oí gra\'ity 
through a height lt and thereby acquiring the velocity v. Thus, 

ií K represents kinetic energy per second, 
K=Wlt=W-v2/ 2g (26)1 

Now if a be the area oí the cross-section and w the weight of a 
cubic unit of water, lV is the weight of a prism of water of 

length i ami cross-section a, or W = wav, whence 
K = wav3 / 2g· (26)2 

and accordingly the ·energy which a jet can yield in one second 
is directly proportional to its cross-section and to the cube oí its 
velocity. The term "power" is often used to express energy 
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per second and when K · · f ' . is m oot-pounds per second th h 
power that a Jet can yield is ascertained by dividin ' K ~ orse
Hence t~e horse-powers of jets of th g . y 550. 
as the cubes of their velocities For e e same :ross-section vary 
jet be doubled the .' ~a~ple, if the velocity of a 

' cross-section remamm th 
power is made eight times g e same, the horse-
. " . as great. The tenn " f 
Jet is of ten used in hydraulics for brevit . energy o a 
energy per second of the jet . that is th Y, but it alwa~s means 

' , e power of the Jet 
The expressions just deduced . h · 

jet that is the . g1:7e t e theoretic energy of the 
' ' maximum work wh1ch can b b . 

one second but th' · . e 
O 

tamed from it in 
actual work. realiz;¿ :h~:a~t~c;, ~a: never be !ully utilized. The 
vane of a water-motor depe~~ s n es a movmg surface, like the 

which will be explained in a la:e~~~n a number_of_ circumstances 
aim of inventors so to arrange the e ap~e:, and it is the constant 
ized may be as near the th f on tions that the work real
ciency" of an eore ic energy as possible. The "effi-

apparatus for utilizin th . 
is the ratio of the work k actuall t~· ; power of movmg water 
or the efliciency e is Y u 1 ize to the theoretic energy, 

e =k/ K (26) 

The greatest possible value of e is unit . . a 
attained owing to the . f . Y, but th1s can never be 

. . ' imper ect1ons of the 
fnctional resistances V 1 apparatus and the 

· a ues greater than h 
been obtained . that i º·90 ave, however 

' s, 90 percent or more of th th . ' 
of the water has been ufli d . · e eoretic power 
draulic motors. 1 ze m sorne of the best forms of hy-

For example, Iet water issue from · • . 
with a velocity ofio feet d a pipe 2 mches m diameter 

. per secon The . . 
feet is 3.142/144 and th k' . . cross-sect1on m square 
per second is ' e metic energy of the jet in foot-pounds 

K = º·º1555 X 62.5 X 0.0218 X 10a = 21.2 

which is o.0385 horse-power If h . . 
ond, the theoretic horse-po; -~ ~ veloc1ty is ioo feet per sec-
a motor yielding 27 7 ff ti erhwi e 38.5; if this jet operates 
apparatus is 27 7/3.8 e ~c ve orse-powers, the efficiency of the 

· ·5 - 0.72 or 72 pe t f energy is utiliz d ' rcen o the theoretic 
e . 


