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The moment of resistance may be found by taking moments about the
center of compression in the concrete, thus,

M = f, pbd? (1 — § &) (68)
or by taking moments about the center of pull in the steel,
M = §f kbd® (1 — &) (69)

Eliminating % from these equations by substituting its value from equa-
- tion (63), and also substituting the value of p from equation (66), we have

ﬂ,[zgfsbdg_;[l_________ 3‘] ;
TRl
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APPENDIX III

FORMULAS FOR REINFORCED CONCRETE CHIMNEY AND
HOLLOW CIRCULAR BEAM DESIGN

The analysis which follows is based upon the several fundamental
assumptions adopted in reinforced concrete beam design with the additional
assumption that, since the concrete is usually thin as compared to the
diameter of the chimney, no appreciable error is involved in assuming all
material as concentrated on the mean circumference of the shell. An
analysis for shear is also given together with an example of chimney design
and review,

The principles involved in the demonstration of the thickness of steel and
concrete are taken by permission from the analysis by Messrs. C. Percy
Taylor, Charles Glenday, and Oscar Faber.*

The principal formulas given below are quoted in the text, where
the general subject of concrete chimneys is discussed, and tables are
presented there with the values of constants for use in design.

NOTATION

W = weight in pounds of the chimney above the section under considera-
tion.

M = moment in inch pounds of the wind about that section.

P = total compression in concrete.

T = total tension in steel.

"o = E* = ratio of ‘modulus of elasticity of steel to that of concrete

(]
Je = maximum compression in concrete in pounds per square inch (meas-

ured at the mean circumference).
f, = maximum tension in the steel in pounds per square inch,
D = mean diameter of shell in inches.
r = mean radius of shell in inches.
¢t = total thickness of shell in inches.
¢, = thickness in inches of concrete only.

* Engineering (London), Mar. 13, 1908.
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¢ = thickness in inches of an imaginary steel shell of mean radius 7.
and having a cross-sectional area equivalent to the total area of rein-

8

forcing bars.

A, = total cross-sectional area, in square inches, of reinforcing bars in the

section under consideration.

k= ratio of distance of neutral axis, from mean circumference on com-
pression side, to diameter .

j,5,Cp and Cp = constants for any given value of k. (Tables 1 and 2,
pp. 635 and 636.) |

D = distance between center of compression and centre of tension.

2D — distance from center of compression to center of force due to weight.

Referring to Fig. 243, if f, is the maximum intensity of stress in the con-
crete at the mean circumferenceon the

compression side, then the intensity
of compression in the steel at that
pointisnf, Sincef,is the maximum
intensity of stress in the steel at the
mean circumference on the tension
side, then the variation of the stress
in the steel, across the section cd, is
represented by the straight line ab
which cuts the linecd at e, thus locat-
ing the neutral axis or the line of
zero stress.  Having assumed a con-
stant value for the modulus of elas-
ticity of the concrete in compression,
it therefore follows that, at any point
of a given section, the stress in either the concrete or the steel is directly
proportional to the distance of that point from the neutral axis.

Calling D the distance of the neutral axis from the mean circumference
on compression side as shown in Tig. 243, we have by similar triangles

E

) CENTRI

NEUTRAL

Fic. 243.—Resist1;ng Forces in a Re-
inforced Chimney. (See p. 766.)

kD nf,
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By this formula the position of the neutral axis may be determined for any
combinations of £, f,, and .

1f now, as shown in Fig. 244, @ represents half the angle subtended at the
center by the portion in compression, we have

cos & = (r—2 k)

from which, for any given value of z, cos @ becomes known as well as «
and sin @. Thus having located
the neutral axisfor any given com-
binationsof £,, f, and » and bear- @ OEHTHE OF
ingin mind that the stress at any ”w’\' s

point of the shell is proportional CENTRE iy

. ¥ ' OF COM-
tothe distance of that point from ~ PRESSIONG

the neutral axis, it isnow possible i
to determine the total force on the ~— CONCRETESGR
compression side, the total force ~ PPESS'OM

. . T STEEL IN
on tllle tension side, and also the STEEL IN i TENSION
location of the center of compres- g

sion and the center of tension.

ey : F1c. 244.—Distribution of Stresses in the
COHSidermg a small radial ele- Steel of a Reinforced Chimney. (Ses
ment subtending an angle df, as p. 767.)

shown in Fig. 244, we have in this
element, since the length of an arc is its radius times the angle,

area of concrete = frd0

area of steel = 1

The distance of the element from the neutral axis is #(cos § — cos @)
. . » ?
while the distance from the neutral axis to the point of extreme stress f, is
q . ¥ e
71 — cos ). Therefore the intensity of stress on this elemental area is

r (cos{l — cos a) .
o —_’ in the concrete

¢ ¢ (r— cosa)

7 (cos § — cos a)

fon in the steel.

¥l — cos @)
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Assuming these intensities at the mean circumference to represent the
average for the entire element, we have the total force onthe clemental area
(concrete and steel)

f, r(cos @ — cos a)
dP=(t dut)ed0— =

r (1 — cos?)i

The total force P on the compression side of the section is therefore

a
[for (cos ) — cos a)

(1 — cosa)

P () 8 il

“ 0
Integrating this expression, gives

2
(sin @ — a cos a)

= t) ———
Pe=frlornl) o o
Since any given position of the neutral axis determines «, as shown above,
this equation may take the form

P =Cpf,rt,+ nt,) (2)

in which Cpis a constant for a given position of the neutral axis. (See
Table 1, page 635.)

Having determined the magnitude of P, its location, with respect to the
neutral axis, may best be found by taking its moment about that axis and
dividing by P, thus giving the distance from the neutral axis to the center
of compression 1, as shown in Fig. 244.

As before, the compressive force on an elemental area is
for (cos § — cos a)

AP = (b + ni)rd 0= S
The distance of this force from the neutral axis being r(cos 0 — cos a), we
have as its moment about that axis

far? (cos 0 — cos @)’

aM,= (,+n !s) rd 0 -rF_:_(_:OS 704)77

while the moment of the total compressive force P is

@ f r(cosf — cosa)?
MC=(zc+ms)2I r a0

(1 — cos )
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(44
< [Jﬁ cos? #d 8
[+ 4 ¢4
—2cosacj cnsﬁdﬁ?+t:0:s2a’jl di)]

Integrating, we have

2
M,=(,+nt)[r T [(a cos®* . — } sin w cos a + % a)]

Dividing M, by P we have

M, (xcos*a~ §sinacosa ++a)

L = = o i i o
5 P (sin @ — @ cos @) i \3)

Following a similar method of procedure it is possible to determine the
total tension and the location of the center of tension. :

In accordance with our assumption that the concrete is to take no tensile
stress it is evident that in considering the forces on the tension side of the
section we are concerned merely with the steel. On the tension side a small
element therefore has an area = £, 7 d ¢

The intensity of stress on this element, being proportional to its distance
from the neutral axis, is

r (cosl + cos a)

fs SRy B e
7 (1 + cosa)

while the total tension on the small element is

(cos f + cos a)
(1 + cos a)

The total force T on the tension side of the section is therefore

(r—) (cos f + «
T=2Itrf (cos COSﬁ)dﬁ

dT =t,rdff,

8

o 7% (1 +cosa)
Integrating, we have

2
T =fx1‘lsms—a‘) (sina + (z — a) cos @)

Since, as before, any given position of the neutral axis determines e, this
equation may take the form

T = Cplyrt, (4)

in which Cyis a constant for a given position of the neutral axis (see Table
1, page 635). Bya method similar to that used in considering the force on
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the compression side we may write the moment, about the neutral axis, of
the force on a small element on the tension side as

7 (cos 8 + cos a)?

2 My =410, (1 + cosa)

while the moment of the total tensile force T" about this axis is
(r—a) y (cos 0 + cos a)?
My =2

g7 Js 7(71 + cos a)

Integrating, we have
2
Mao=1t72f —— — [(r — &) cos®  +} sin a cos @ 1z —a
s % (1 + cos @) [(= a) = it )]
Dividing M, by T' we have as the distance of the center of tension from

the neutral axis

((z — @) cos* @ + §sinm cosa + 5
4= - {sin @ + (xr — a) cos @)

From formulas (3) and () it is evident that the distance between the total
force incompression and the total force
in tension (i. e., /i + Js) may, for any
given position of the neutral axis, be
expressed as a constant times the
diameter D. Thus /i + . = jD as
shown in Fig. 245. Likewise, as shown
in Fig. 245, 2D may represent the dis-
tance of the center of compression
from the center of the chimney, z also
being a constant for any given position
of the neutral axis.

In a chimney the tensile and compres-
sive stresses which we have been con-
sidering are produced by a combina-
tion of wind pressure and the weight of the chimney. Thus, on any
horizontal section ¢d, as shown in Fig. 245, the forces external to that sec-
tion are: the horizontal pressure of the wind, causing a moment M about
the section, and a central vertical load W representing the weight of that
portion of the chimney above the section under consideration. These
forces are resisted, and held in equilibrium, by the forces P and T which
represent the compressive and tensile stresses in the concrete and steel.

Fic. 2435 —External and Internal
Forces Acting upon a Chimney.

(See p. 770.)
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The system of forces as shown in Fig. 245 must be in equilibrium. Hence,
taking moments about the force P, we may write

TiD = M — WzD
But
= Cnfn
Therefore =

CpfirtgD = M —WsD
Whence

M — WzD
?’f«s o= = e
CTfs.fD
The total area of steel 4, = 2771,
Therefore
e 2 (M — WzD)
B CiiDi (6)
/s
‘F rom Table I, page 635, it may be seen that the constant j changes but
slightly for a considerable variation in the position of the neutral axis.

SR
TakmgT = 8 for all cases, equation (6) may be

el (M — WzD)
TG @
While this formula is not exact, the error involved is inappreciable for almost
any case so that formula (7) may always be used instead of formula (6).

Applying now the condition that the summation of all vertical forces must
be zero, we have

2= W
Substituting values of P and T" as previously found, the equation becomes
Cpfr @, + m) —Copfrt, = W
Transposing and solving for #; we obtain
_ W+ (Cat, — oty
5 Cple s

The total thickness of the shell is

=it
whence
. W + (Cpf, — Cpfm) 7,

Cpfr
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For convenience in use, after having determined A, by the formula given

D A
above, by substituting r = — and {, = —1;, this formula for £ may best
e z

be written
- - ~ ‘1
2 Ii’ "{' (("Tj:'} — C P-/Cn) —

7 A
— |

=

®)

> — 8 =
CchD ' ?TD

In view of the fact that formulas (6), (7) and (8) contain the constants 2,1,
Cp and Cp, which, as has been shown, are dependent for their value solely
upon the location of the neutral axis, it is evident that, for any specific
values of f,, f,, and n, which in turn will determine the position of the
neutral axis, the expressions for 4, and £ will admit of a further simplification.
For given values of f, f, and n, the necessary thickness of shell and area of
reinforcement may be expressed merely in terms of the moment of the wind
M, the weight W, and the mean diameter D. The expressions, as given,
however, seem best adapted to general use, and when supplemented by
the tables given on pages 635, 636, are rendered quite simple of solution
for specific values.

In Table 2, page 636, is given values of %, the location of the neutral axis,
for various combinations of f, f, and »; while Table 1, page 635, gives the
corresponding values of the constants Cp, Cyp, 2 and § for various positions
of the neutral axis.

Shear or Diagonal Tension. Having determined the necessary thickness
of shell and vertical reinforcement, the size and spacing of the circular steel
hoops must be considered. The external forces produce shear and diagonal
tension which may be analyzed similarly to like stresses in rectangular beams,
and the reinforcement necessary to resist the diagonal tension, which is a
function of the vertical tension, may be determined. Usually this reinforce-
ment is not so great as that which it is advisable to insert for the proper dis-
tribution of temperature stresses, but nevertheless it should be determined
to be sure that it is sufficient in quantity.

The concrete should never be relied upon to carry any tension or vertical
shear because the expansion from the heat may cause vertical cracks in the
concrete. These need not be considered dangerous if sufficient horizontal
reinforcement is provided any more than the vertical cracks in a brick or
tile chimney. Considering the stresses due to vertical shear, it may be
easily shown that at any horizontal section of a chimney the vertical shear
per inch of height is the total horizontal shear on that section divided by the
distance between centers of tension and compression, jD. With this as a
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basis there may be developed a formula for practical use in determining the
necessary area and spacing of horizontal steel hoops at any given section.

Thus let
hy; = height, in feet, of chimney above section under consideration.
F = effective wind pressure against chimney in pounds per square foot.
Jfs = allowable tensile stress in pounds per square inch in steel hoops.
D = mean diameter of shell in inches.
P ;= ratio of area of steel hoop to area of concrete.

At any horizontal section of a chimney the total shear on that section is
equal to

D
o
2

1
while the maximum shear per inch of height is therefore

D
3D

Having seen that for all positions of the neutral axis j remains practically
constant, and giving j an average value of, say, o.783, the expression for
the maximum vertical shear per inch of height becomes

o.106 hF

while the shear or diagonal tension in one foot of height is 12 X 0.106 hF.

The area of steel in one foot of height of chimney will be 12 bp, and the
stress the hoops in this height are capable of sustaining on their two sec-
tions is

2. X 12 8pg1,
Equating these we have
12 X 106 IyF = 2 X 12 4p,f,

whence
 kF
= B[

0
L]

This ratio of steel is for shear or diagonal tension only. To provide for
temperature stresses or rather to distribute the strainsso as to prevent the
localization of cracks an additional amount of horizontal steel is needed.
This may be provided for arbitrarily by assuming o.25%, steel or rather
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0.0025 for temperature stress in addition to the steel for shear. Express-
ing this as a formula for ratio of steel gives

B (9)
= —— 4 o.002
Do 188/, 0025 9

Small rods spaced 6 to 1o inches apart except in the upper part of thestack
where the spacing may be greater are advised.

The spacing of hoops in many of the chimneys already built has been 18
inches to 36 inches, but as such chimneys have frequently cracked quite
seriously, more recent designs have called for 8 or ¢ inch spacing through
the entire stack.

Design of Hollow Circular Beams. The analysis of a hollow circular
reinforced concrete beam whose thickness, compared relatively with its
diameter, is small, is similar in principle to that of a chimney. In this case
#he weight of the member acts in the same direction as the external forces,
50 that in formulas (7) and (8) W the weight in the axial direction, is zero.
The forces of compression, P, and tension, T, are equal. The area of steel
and the thickness of shell are therefore obtained from formulas (7) and (8),
pages 771 and 772, by making W= O.

APPENDIX IV

APPENDIX 1V
METHOD OF COMBINING MECHANICAL ANALYSIS CURVES

In Chapter XI the method of forming mechanical analysis curves is dis-
cussed, and approximate rules are given for combining individual curves
to form the curve of the mixture. More exact methods, which also illus-
trate the principles, are given in the following pages, taking up first simple
cases and then the more complicated ones.

Case I._ Curves which meet, but do notoverlap. In Fig. 246 are shown
three curves, No. 1, No. 2, and No. 3, representingideal grades of sand and
stone, which may be combined in such proportions that the curve of the mix-
ture will be of the ideal form required. The problem requires the deter-
mination of the percentages of each of the three materials which when com-
bined will form a mixture whose curve is nearly the ideal. In order to
prove that the percentages found will produce the resultant curve, and also
to illustrate the theory of the mixture, the resultant curve will be first plotted
and described in a very elementary manner, and afterwards by the method
of ratios which would be employed in practice.

Curve No. 3 represents a material all of whose particles will pass through
a sieve having holes 2.00 inches diameter and all of whose particles will be
retained on a sieve having holes o.75 inch diameter. Stone represented
by curve No. 2 lies between diameters o.75 and o.z5 inch, while the
material of curve No. 1 is all finer than o.25 inch, that is, is all under }
inch. Curves No. 31 and No. 3. are referred to later.

The curve OebA is first plotted® asa parabola. Although the latest tests
indicate that the best curve is a combination of an ellipse and a straight line,f
the parabola will illustrate the principle of combination as well as any other,
and so for this problem we may assume now that the required theoretical
mix of materials lies in this parabolic curve. This is equivalent to saying
that the desired theoretical mixture of materials is such, that at any ordinate

% CONSTRUCTION OF THE PARABOLA.

D = largest diameter of stone
d = any given diameter
P = per cent. of mixture smaller than any given diameter

The equation of the parabola is
PD
G

10000

The parabola can be constructed in any of the numerous ways given in text-books, the writer
finding it easiest fo use a slide rule. Set D on the B scale of the rule opposite 100 on D scale,
read any value of 4 on the B scale opposite any corresponding value of Pon the D scale.

1Laws of Proportioning Concrete " by William B. Fuller and Sanford E. Thompson, Trans-
actions American Society of Civil Engineers,




