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boiling, Tt is then set aside over night, or for a few hours, filtered, ignited,
“and weighed as BaSO,. :

Total Sulphur: One gram of the material is weighed out in a large
platinum crucible and fused with Na,CO, and a little KNO,, being careful
fo avoid contamination from sulphur in the gases from source of heat.
This may be done by fitting the crucible in a hole in an asbestos board.
The melt is treated in the crucible with boiling water and the liquid poured
into a tall, narrow beaker and more hot water added until the mass is
disintegrated. The solution is then filtered. The filtrate contained in a
No. 4 beaker is to be acidulated with HCl and made up to 250 c.c. with
distilled water, boiled, the sulphur precipitated as BaSO, and allowed to
stand over night or for a few hours.

Loss on Ignition: Half a gram of cement is to be weighed out in a plati-
num crucible, placed in a hole in an asbestos board so that about  of the
crucible projects below, and blasted 15 minutes, preferably with an inclined
flame. . The loss by weight, which is checked by a second blasting of
s minutes, is the loss on ignition.

May, 1903:

Recent investigations have shown that large errors in results are often
due to the use of impure distilled water and reagents. The analyst should,
therefore, test his distilled water by evaporation and his reagents by ap-
appropriate tests before procecding with his work.
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APPENDIX II

FORMULAS FOR REINFORCED CONCRETE BEAMS*

]?irect working formulas suited to all ordinary cases of reinforced concrete
d.ESIgﬂ are presented in Chapter XXI, The analytical methods of deduc-
tion, however, are omitted there in order to make the book handier for
every day use and are presented in this Appendix.

These formulas cover all the usual conditions occurring in practice
and in theoretical treatment of beam design, as follows:

(1) Rectangular beams with steel in bottom, assuming that concrete
bears no tensile stress. (See page 751.)

(2) T-shaped section of the beam, for use in combined beam and
slab construction. (See p. 754.)

(3) Beam with steel in both top and bottom, for use in connection with
the design of a continuous beam at the supports and other special cases.
(See p. 757.)

(4) Beam with steel in bottom and concrete assumed to bear tensile
stress, for theoretical use in determining accurate stresses at early stages
of loading. (See p. 760.)

(5) Beam with compressive stress varying as a parabola, to illustrate
a method of computation occasionally used. (See p. 762)

The first three of these analyses are for common use and follow the

recommendations of the Joint Committee on Concrete and Reinforced
Concrete. This fact has necessitated no changes in the analyses in the
first edition of this treatise except in the adoption of the new standard of
notation.
. As stated in Chapter XXI, the straight line theory,—that is, the theory
in which the modulus of elasticity of concrete in compression is assumed
to be constant within usual working limits,—is adopted as the standard
and the concrete is assumed to bear no tension.

The various other rational formulast which have been advanced by

#The authors are indebted to Prof. Frank P. McKibben for th i i

: ; i e formul i

which have been especially prepared by him for this Treatise. iadodi e
+See Christophe’s Béton Armé and Morel’s Ciments Armé, 1go2.
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different mathematicians are based upon the same analytical methods of
treatment, but on different assumptions of stress. Mary have complicated
their equations by taking moments about the neutral axis instead of about
the centers of tension or compression, but the general principles of the
deduction are the same and in accordance with the analyses given below.

It is possible to evolve by calculus a general formula which satisfies all
of the various hypotheses* but the treatment is omitted here and only
the more practical demonstrations are given

NOTATION

The same notation is adopted in this Appendix as in Chapter XIV.
k= height of beam.
! thickness of slab, 4. e., thickness of T-flange.
b breadth of rectangular beam or breadth of flange of T-beam.
b’ = breadth of web of T-beam.
p = ratio of cross-section of stecl in tension to cross-section of beam
above this steel.
— ratio of cross-section of steel in compression to cross-section of beam
above the steel in tension.
= unit compressive stress in outside fiber of concrete.
= unit tensile stress, or pull, in outside fiber of concrete.
= unit tensile stress, or pull, in steel.
= unit compressive stress in steel.
> = modulus of elasticity of concrete in compression.
7] = modulus of elasticity of concrete in tension.
= modulus of elasticity of steel.
E

Eﬁ
distance from outside compressive fiber to center of gravity of steel.
ratio of depth of neutral axis to depth of steel in tension.
— distance from outside compressive surface to neutral axis in beam
in which the depth to steel in tension is d.
depth of resultant compression below top.
= ratio of lever arm of resisting couple to depth d.
= d—z = arm of resisting couple.
= cxtra thickness of concrete below steel in tension.
= depth to center of compressive steel.
= moment of resistance or bending moment in general.

#See Burr’s Materials of Engineering, 1903, p. 633.

APPENDIX II

ANALYSIS OF RECTANGULAR BEAM

We may represent the stresses in the beam by the diagram shown in Fig.
238, page 751. At any vertical section through the beam the concrete in
the upper portion resists the forces which tend to compress it, and the
steel in the lower part of the beam resists the forces which tend to stretch
and break it in tension. The compressive resistance acts in onedirection
and the tensile resistance in another direction, as designated by the large
arrows in the diagram. The center of tension in the steel is at the center
of the bar, or, if there is more than one tier of bars, at the center of
gravity of the set of bars. The center of pressure of the concrete passes
through the center of gravity of the triangle which represents the com-
pressive stresses.

—
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Fie. 238.—Resisting Forces in a Reinforced Concrete Beam. (See p. 751.)

The internal resisting forces may be replaced by two forces: the total
compression acting in the center of gravity of the triangle, having for its
base f, and its height kd, and the total pull acting in the center of gravity
of steel. For equilibrium the sum of all forces must equal zero or the
total compression must equal the total pull, so that the forces form a couple.
If either tension or compression exceeds its maximum strength, the beam
fails. These conditions are assumed to be true only after the point of
loading is reached at which the tension is transferred to the steel, as other-
wise the tension would be made up of two forces, the tension in the steel
and the tension in the concrete, as discussed on page 760 in this Appendix.

The moment of resistance of the couple must be equal to or greater
than the bending moment produced by the live and dead loads.
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Since it is assumed that a plane section before bending remains a_plane
section after bending, we have the proportion
deformation in steel d(1—k)

~ deformation in outside compressive concrete fibers kd
stress per square inch

And since deformation = we have

5 -
B e L f ack
T W g

Le

modulus of elasticity

From which

Solving formula (1) for f,
fa=1, ?_(I = k) O

Now, as stated above, for equilibrium the total tension in the steel must
be equal and opposite to the total compression in the concrete. The total
tension in the steel s its unit tension, f,, multiplied by the area of the steel,

b, and the total compression in the concrete is represented by the area °

of the pressure triangle, 4f.kd times the breadth of the beam, b. Equat-

ing these two stresses and cancelling out the db which occurs in both,
Tk

Phe (4)

If the value of & in formula (2) be substituted for the k in formula (4),

we have
I

P*_fc—(.fs“ o (s)
o)

For any given perceniage of steel the values of f, and f, cannot be assumed
indepondently, as they bear a constant ratio to each other.
Substituting the value of £, in formula (3) for f, in formula (4), we have
bk
i (1—=Fk)n
Solving this quadratic equation and adopting the positive sign before the
square root,

b= =ppt Vonp + op) (©)
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We thus have % in terms of # and $, and from formula (6) the location
of the neutral axis may be calculated with any percentage of steel for con-
crete and steel having known moduli of elasticity.

The moment of resistance is obtained from the couple by taking moments
about the center of compression in the concrete, using for the force the
total tension in the steel, which, as above, is pfhd times the arm (see
Fig. 238, p. 751), 1d
or o . M

M = pfjbd® and f, = T ()

The moment of resistance may also be expressed in terms of compression
in the concrete by combining equations (4) and (7), or, more directly, by
taking moments about the center of the tension in the steel, thus

[, kibd? 2 M
M= e 8
: 2 = g )

Values for k with various percentages of steel and moduli of elasticny
are given in table 12 on page 521. :

The value of the moment of resistance, M, may also be expressed without
using £ by substituting in formulas (7) and (8) the value of p from formula
(5) and the value of % from (2), thus giving

Ly i
o A e
uf(l % nf;) (I +?fc>
- fc I
I — otz
i . (
Al ) 9

Formula (10) is apparently more complex than (7) and (8), but as the
latéer require the determination of &, formula (10) is more readily solved
unless the table on page 521 is employed.

In the use of formula (ro), £, and f, must be corresponding values and
cannot be assumed independently of each other, since for any given per-
centage of steel the ratio of £, to f, is a constant. (See formula (5), pmfuz‘

For a given quality of concrete and steel the values of f,, and f, and n

are constant, so that the term in brackets may be replaced by a constant "Iz
¢
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We may thus write in place of formulas (9) and (10) the formula

bd?

f = )
Mo (i1

where C is a constant for any given concrete and steel. Values of C under
different conditions are tabulated on pp. 519 and 5z0. _
Following directly from formula (11)

d=C \l Jb[ (12)

In the above formula M represents the bending moment “:hxch.must
be equal to or smaller than the moment of resistance. Also, since in fig.
238, p. 751, d = I — ¢, the formula may be written

h=C \’ Tg + e (13)

from which the required height of the rectangular beam or slab may be
directly obtained.

T-SHAPED SECTION OF BEAM

When a reinforced concrete floor slab and beam are built as or{ehpfe?e
the slab adds to the strength of the beam by increasing the area which isin
compression. : : ;

The working formulas for this shape of beam termed a F-beam’are g;]ven
in Chapter XXI, page 423, in sufficient detail for the ordinary design where

e b

Fed-ty %
J;(_TE'(I)

NEUTRAL AXIS

STEEL
: e o & 0

——

F16. 2 30.—Resisting Forces in T-shaped Section of Beam. (See p. 755.)
$230:

the beam and the slab are assumed to act as a unit. The method of analysis
and the formulas deduced are presented below, _ \

These are based upon the assumption that the intensity of the compres-
sion in the concrete does not diminish from the web outward towards the
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edges of the flange. For a section having a narrow flange, this is practi-
cally corvect, but with a wide flange, it is probable that the intensity of
the compression in the flange diminishes from the web outward so that
the breadth of slab should be limited, as indicated on page 424. If this
pressure is assumed to decrease either uniformly or otherwise, the formulas
may be modified accordingly.

Assuming the compression to be distributed as shown in the diagram,
and the steel to take all the tension, the formul

as given below may be
deduced as in the preceding cases.

Case L. Neutral Axis Below Flange, kd > 1.
Neglect the slight amount of compression in the web below the intersec-
tion of the web and flange.

As in the previous case using notation on page 750 and referring to
Fig. 230.

B
n/e
By equating the forces acting on the section

2kd — ¢

Solving the two above equations for kd and eliminating /, and f,

2rsz,+ b?

5.0 T A (
i 2nd,+ 2b¢ (14)

The position of the resultant compression lies in the center of gravity of
kd 1

the trapezoid, the parallel sides of which are equal to f, and f, wd

and
the height to ¢.
The distance of this center of compression from upper surface of heam is
3kd —at |
: “Tokd—i 3 (ts5)
The arm of resisting couple

jd =d—-z
hence

M = A4,jdf, (16) and
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M Mkd

: e (19
or fs:AEjd(IS) and f, bied— ) 0

From the figure, taking similar triangles, therelation between f; and f, 1s

found to be

Ae (20)
¢ n 1—k
The approximate moment arm of resisting couple may be taken as
!

id =d-— (21)
which changes formula (19) to

(approximate) (22)

This formula gives for ordinary cases correct and s.afe resultl_g, but should
not be used when the flange is small as compared with t1'1e stem.

In the ahove formulas the compression in the stem 1 neg]ect-ed. In
large beams, where the stem forms the larger le.l‘t 'of the com.pregsnie‘?ea
the following formulas derived by the same principles used in derivation

of formulas in the previous analysis should be used,

———

nd A+ b—b) P (»z_fis+(bfb’)t)2 nd,+ b=b)
= = - + s o S _—

(23)
kd =N W b o

(kdf — 3 1) bt [(m = m(z 41 (kd — z))] 4

L (24)
§(ckd — 1) b + (kd — 1)*D

2 =

Arm of resisting couple
jd =d—2

. Moment of resistance

fe

= = — Dbt + (kd—1)%']jd
M= Ajdf, (6) M= "7 [(akd — )bt + (d =]

Fiber stresses =
1{ 72Mk_d : AL (2 )
= Aajd(zg) and f = [(dejt)bt + (kd — J)Zb’]fd :

Case 1. Neutral Axis in Flange or at Underside of Flange, kd &

In this case use the rectangular beam formula, considering th.e T:beam
as a rectangular beam of the same depth, the breadth of which is the
breadth of the flange. The percentage is then based on the total area bd.
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STEEL IN TOP AND BOTTOM OF BEAM, NO TENSION IN
CONCRETE

Although the use of steel in the compressive portion of the beam is gen-
erally uneconomical, its introduction there is sometimes a necessity for
practical reasons. 1In the ends of a continuous beam the steel in the bottom
is usually carried through into the supports, and if the length is enough to
provide bond its value in compression may be taken as assisting to resist
the negative bending moment.

It is possible to reduce the working formulas to extremely simple form
by introducing constants .which vary with different conditions, as outlined
on page 427, the values for the constants being given in table 8, page s16.

The treatment of a beam subjected to bending and direct stress with
the steel in compression is presented in connection with the design of arches

on page 563, and these formulas may also be used in other cases of eccentric
thrusts.

A

e ° o

R

Fi6. 240—Resisting Forces with Steel in Top and Bottom of Beam.
(See p.757.)

The analytical treatment of the design of an ordinary beam adopting as
usual the assumption of a constant modulus of elasticity and no tension
in the concrete, but assuming that the compressive stresses are partially
borne by the steel in the compression portion of the beam, is as follows:

FORMULAS.

Deformations, as usual, are assumed to vary directly as distance from
neutral axis, hence from Fig. 240, using notation on page 750.

£

E _d(i—-k 1-tk o
7. dk =T hence b= i
# e
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kd = kd — d
31) and f/=nf, T (32)

1—'k fk k

fi= .~ o ad 7 (34)
Equating the horizontal forces acting on the cross-section of the beam

we have:

(f'k + ¢ ) = bapf,

(fck ) 1<f ¥ ,kd—d’)
Whenge = B0 )= i + 2%, —

Hence . = m) =
Solving equation (33) for &,

k:\lzn(pw )+n2(p+p)“ﬂn(p+p)
Taking moments about the center of pull in the steel, we have
bfckd kd) A4S :
M (d——s + f/ pbd(d — &)
o= ) eel- )
—bd’[ = Gl A

- or by eliminating f;/ by means of equation (32),

% k Bl 7 (37)
M = j,bd lz(l E) &

Taking moments about the center of compresssive stress in the steel, we

: TN E R g
M = bd {fsp<1—d')—~ z(g—d‘)]

have
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or by eliminating f,,

M =f,bd2[p(; = j) s -m(lkz_-k-)(;f—g) ] (38)

T : - Lt
hen taking moments about center of compression in concrete:

' k Eodr
ﬂf=bd2[a ( _—) 7 ;(__ ]

or by eliminating f,

= 1 —k k ’

M = fbd? d,(l“*)‘F}V(%“d—)

2= MEGCS 3 4d (39)
d

The values in the square brackets in formulas (37), (38) and (39) are

constant for any combination of #, $, " and —
7

Substituting

(42)

M=itf,C, (43) and [, = deC (44)

o LM
M =bdf, C, (45) and f, =C, (46)

v M.
M=0bd? [;Cy) and f! = ba*‘C : (48)

and

Values of C,, C,, and C, for different combinations of , p, p’ and -
bs b d

are given in table 8, page 516.
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STEEL IN BOTTOM OF BEAM, CONCRETE BEARING TENSION

Tn the earlier stages of loading of reinforced concrete beams, the defor-
mation curves (see fig. 130, . 409) indicate that the cm}crete actu:etlly
hears a portion of the pull. Although it is not g'ood practice to conmd}c}:r
this pull in the design of beams, but, instead, it is customary to t;ke t 1e
working strength as a factor of the ultimate, or nearly the u!tllmate strength
of the beam, the following formulas are useful for determmmg the actual
stresses and for calculating deflections at the earliest stages of loading. .

Formulas. Since elongation of steel and concrete at the same point

Moy ek

E,

4 (h-Fed)-4 ot
k_. §h'
o —

A7) —

T
(

STEEL
L: ] a

‘
!
|

L
|

il

Li

Bt s

I
Fic. 241.—Resisting Forces with Concrete Bearing Tension. (See p. 760.)

must be equal, and since cross-sectional planes are assumed to remain plane
during bending, we have from Fig. 241, the following equations:
X
12 d~k(§} Pl L*’,f’dﬁkd
7 =g R /o= B0 b hi
c
Bt

(49)

E kd

s g Tl 0)
fo= 51 ) —h (s
B, i B bk
fazf\fcik_ ] (SI) {LISOfc o chc il
Equating horizontal forces on the section we have
bf, kd fo b — kd)

= pbd+

The elimination of £, and f;/ from (53) gives
t—k - ENh = kd)
B i e - E 2 kd

c ¢

APPENDIX II

From wnich

(56)

Taking monients about the center of the pull in the concrete, the center
of compression in the concrete and the center of pull in the steel respec-
tively, we have the three following equations for the moment of resistance:

i bd(i kd zk) /, bkd 2h
e {_3_3 T 3

fbd[ (d & Qk) Eor R ]
sasd B U R

L 0(h — kd) 2k
4 3
E\E, 1—¢%

:f’b[P(ia(I—-*>—s—.__+f?_(h_kd)] (58)
3 SEEE b g

kd
M=j;f’bd<dﬁ 3)+

e B R OC B

2 3 2 =

i
71.b ] b B (b — kd)® kd 2k
2 3 £, kd 3 3
If now E/ = E,, that is, if the modulus of elasticity of concrete is the
same in tension as in compression, the line M N hecomes straight.
: . E,
Equaticn (55) then becomes, letting g ="
e
b 2kd—h

Pz,}ndz 1—k
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From which
. b2 + 2 pnd’
"~ 2dh + 2pnd’

Equation (57) is hot changed
Equation (58) simply has F, instead of E/
Equation (59) becomes

b BN (b — kAP kd
Ly e
2 3 kil ,

fcbk[ Ii zhz]
M= - Qd#k-h_}—‘gkd

COMPRESSIVE STRESS AS A PARABOLA, STEEL IN BOTTOM
OF BEAM, NO TENSION IN' CONCRETE.

Many experiments upon the compression of concrete show a gradually
decreasing modulus of elasticity as the load increases. From the form of
the stress deformation curve of these specimens, the stress on the com-
pression side of a beam is sometimes assumed to vary as a parabola instead
of as a straight line. This method was first suggested in the United States
by Prof. W. Kendrick Hatt* The formulas which follow present this
method of analysis, and permit the comparisonf of results by this assump-

242 —Resisting Forces with Pressure Varying as a Parabola. (See p. 762.)

tion, with results of the straight line theory adopted by the authors in chap-
ter XXI.

% Proceedings American Society for Testing Materials, 1902.
 See p. 407 for comparative values by the two theories.
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Formuias. As in preceding cases, from Fig. 242,

we have

Js
Es__d(I:k) :L_Tj

k

from which

Equating horizontal forces on the section of the beam we have

2bf kd
pbdf, = —; , or more simply, pf, = 2fk
. 3

Substitute the value of k from (63) and we have:

2

p e —— .
i i (66)
3J;(I +nf;)

which gives the ratio of steel required for any consistent values of £, f,
E, E. The position of the neutral axis is dependent upon the per cent
of steel and the moduli of elasticity of steel and concrete, and the value of
% may be found by substituting in (65) the value of /, from equation (64) .
Thus
2f k " 1—k B2
= ei— — o, P=8 -
ot B

Solving this quadratic equation and using the positive sign after taking
the square root,

or in another form,
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The moment of resistance may be found by taking moments about the
center of compression in the concrete, thus,

M = f, pbd? (1 — § &) (68)
or by taking moments about the center of pull in the steel,
M = §f kbd® (1 — &) (69)

Eliminating % from these equations by substituting its value from equa-
- tion (63), and also substituting the value of p from equation (66), we have

ﬂ,[zgfsbdg_;[l_________ 3‘] ;
TRl
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APPENDIX III

FORMULAS FOR REINFORCED CONCRETE CHIMNEY AND
HOLLOW CIRCULAR BEAM DESIGN

The analysis which follows is based upon the several fundamental
assumptions adopted in reinforced concrete beam design with the additional
assumption that, since the concrete is usually thin as compared to the
diameter of the chimney, no appreciable error is involved in assuming all
material as concentrated on the mean circumference of the shell. An
analysis for shear is also given together with an example of chimney design
and review,

The principles involved in the demonstration of the thickness of steel and
concrete are taken by permission from the analysis by Messrs. C. Percy
Taylor, Charles Glenday, and Oscar Faber.*

The principal formulas given below are quoted in the text, where
the general subject of concrete chimneys is discussed, and tables are
presented there with the values of constants for use in design.

NOTATION

W = weight in pounds of the chimney above the section under considera-
tion.

M = moment in inch pounds of the wind about that section.

P = total compression in concrete.

T = total tension in steel.

"o = E* = ratio of ‘modulus of elasticity of steel to that of concrete

(]
Je = maximum compression in concrete in pounds per square inch (meas-

ured at the mean circumference).
f, = maximum tension in the steel in pounds per square inch,
D = mean diameter of shell in inches.
r = mean radius of shell in inches.
¢t = total thickness of shell in inches.
¢, = thickness in inches of concrete only.

* Engineering (London), Mar. 13, 1908.




