
• 

A TREATISE ON CONCRETE 

boiling. It is then set aside over night, or for a few hours, filtered, ignited, 

and weighed as BaSO4• • • 

Total Sulphur: One gram of the material is weighed out m a large 

platinum crucible and fused with Na2CO3 and a little KNO3, being careful 
to avoid contamination from sulphur in the gases from source of heat. 
This may be done by fitting the crucible in a hole in an as~est?s board. 
The melt is treated in the crucible with boiling water and the liqmd poured 
into a tall narrow beaker and more hot water added until the mass is 
disintegrat~d. The solution is then filtered. The filtrate contained i~ a 
No. 4 beaker is to be acidulated with HCl and made up to 250 e.e. with 
distilled water, boiled, the sulphur precipitated as BaSO4 and allowed to 

stand over night or for a few hours. . . 
Loss on Ignition: Half a gram of cement is to be weighed out m a plati-

num crucible, placed in a hole in an asbestos board so that ~bout ~ of_ the 
crucible projects below, and blasted 15 minutes, preferably with an m_clmed 
!lame . . The loss by weight, which is checked by a second blastmg of 

5 minutes, is the loss on ignition. 

May, 1903: 
Recent inve~tigations have shown that large errors in results are often 

due to the use of impure distilled water and reagents. The analyst should, 
therefore, test bis distilled water by evaporation and his reagents by ap­

appropriate tests before proce€ding with his work. 
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APPENDIX 11 

FORMULAS FOR REINFORCED CONCRETE BEAMS* 

Direct working formulas suited to ali ordinary cases of reinforced concrete 
design are presentcd in Chapter XXI. The analytical methods of (kduc­
tion, however, are omitted there in order to make the book handier for. 
every <lay use and are presented in this Appendix. 

These formulas cover ali the usual conditions occurring in practice 
and in theoretical treatment of beam design, as follows: 

(1) Rectangular beams with steel in bottom, assuming that concrete 
bears no tensile stress. (See page 751.) 

(2) T-shaped section of the beam, for use in combined beam and 
slab construction. (See p. 754.) 

(3) Beam with steel in both top and bottom, for use in connection with 
the design of a continuous beam at the supports and other special cases. 

(See p. 757.) 
(4) Beam with steel in bottom and concrete assumed to bear tensile 

stress, for theoretical use in determining accurate stresses at early stages 
of loading. (See p. 760.) 

(5) Beam with compressive stress varying as a parabola, to illustrate 
a method of computation occasionally used. (See p. 762) 

The first three of these analyses are for compion use .and follow thc 
recommendations of the J oint Committee on Concrete and Reinforccd 
Concrete. This fact has necessitated no changes in the analyses in the 
first edition of this treatise except in the adoption of the new standard of 
notation. 

As stated in Chapter XXI, the straight line theory,-that is, the theory 
in which the modulus of elasticity of concrete in compression is assumed 
to be constant within usual working limits,- is adopted as the standard 
and the concrete is assumed to bear no tension. 

The various other rational formulast which have been advanced by 

"'The authors are indebted to Prof. Frank P. McKibben for the formulas in this Appendix 
wh,ch have becn especially prepared by him for this Treatise. 

tSee Christophe's Béton Armé and Morel's Cimcnts Armé, 1902. 
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different mathematicians are based upon the same analytical methods of 
treatment, but on different assumptions of stress. Mar.y have complicated 
their equations by taking moments about the neutral axis instead of about 
the centers of tension or compression, but the general principies of th~ 
deduction are the same and in accordance with the analyscs given bclow. 

It is possible to evolve by calculus a general formula which satisfies ali 
of the various hypotheses,* but the treatment is omitted here and only 
the more practical demonstrations are given 

NOTATION 

The same notation is adopted in this Appendix as in Chapter XIV. 
h = height of bcam. 
t = thickness of slab, i. e., thickness of T-flange. 
b = breadth of rectangular beam or breadth of flange of T-beam. 
b' = breadth of web of T-beam. 
p = ratio of cross-section of stecl in tension to cross-section of beam 

above this steel. 
p' = ratio of cross:section of steel in compression to cross-section of beam 

above the steel in tension. 
fe = u1út compressive stress in outside fiber of concrete. 
fe' = unit tensile stress, or pull, in outside fiber of concrete. 
f, = unit tensile stress, or pull, in steel. • 
fs' = unit compressi,·e stress in steel. 
E, = modulus of elastirity oí concrete in compression. 
Ec' = modulu5 ;f elasticity of concrete in tension. 
E, = modulus of elasticity of steel. 

- E. 
- ff,e 

rl = distance from outside compressive fiber to center of gravity of steel. 
k = ratio of depth of neutral axis to depth of steel in tension. 
kd = distance from outside compressive surfacc to neutral axis in beam 

z 

in which the depth to steel in tension is d. 
= dcpth of resultan! compression below top. 

1 = ratio of levcr arm of resisting couplc to depth d. 
jd = d-z - arm of resisting couplr. 
e 
d' 

= extra thickness oí concrete below stcel in tension. 
- depth to center of compressive steel. 

M - moment of resistancc or bcnding moment in general. 

*Scc Bun's Materia Is of Enginccring, 1903, p. 633. 

APPENDIX II 

ANALYSIS OF RECTANGULAR BEAM 

We may represent the stresses in the beam by the diagram shown in Fig. 
238, page 751. At any vertical section th1ough the beam the concrete in 
the uppcr portian resists the forces which tend to compress it, and the 
steel in the lower part of the beam resists the forces which tend to strctch 
and bre:tk it in tension. The compressive resistance acts in onedirection 
and the tcnsile resistance in another direction, as designated by the large 
arrows in the diagram. The center of tension in the steel is at the center 
of the bar, or, if there is more than one tier of bars, at the center of 
gravity of the set oí bars. The center of pressure of the concrete passes 
through the ccnter of graYity of the triangle which represents the com­
pressive stresses. 

/, STEEL 

<.> 

STEEL 
• e 

FIG. 238.-Resisting Forces in a Reinforced Concrete Beam. (See p. ¡s1.) 

The interna! resisting forces may be replaced by two forces: the total P • 

compression _actin? in the center of gravity of the triangle, having for its .,. • 
base fe and 1ts he1ght kd, and the total pull acting in the center of gravity 
of steel. For equilibrium the sum of ali forces must equal zero or the 
tota! compres~ion must equal _the total pull, so tbat the forces forma couple. 
If e1ther tens1on or compress10n exceeds its maximum strength, the beam 
fails: ~hese conditions are assumed to be true only after the point of 
loadmg IS reached at which the tension is transferred to the steel as other­
wise the tcnsion would be made up of two forces, the tension ~ the stcel 
and the tcnsion in the concrete, as discussed on page 760 in this Appendix. 

The momc~t of resistance of the couple must be equal to or greater 
than the bencling moment produced by the live and dead loads. 
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Since it is assumed that a plane section before bending remains a plane 
section after bending, we have the proportion 

deformation in steel 
deformation in outside compressive concrete fibers 

· . stress per square inch 
Ancf since deformahon = . . we have 

modulus of elast1c1ty 
Js 
Eª d (r-k) or h_ = 1-k 
fe kd nfe k 
He 

From which 

Solving formula (1) for fe 
k 

fe=fªn(r-k) 
(3) 

Now, as stated above, for equilibrium the total tension in the steel must 
be equal and opposite to the total compression in the concrete. The total 
tension in the steel is its unit tension,f

8
, multiplied by the area of the steel, 

pdj, and the total compression in the concrete is represented by the area 
of the pressure triangle, ½f )d times the breadth of the beam, b. Equat­
ing these two stresses and cancelling out the db which occurs m both, 

f) 
Pf.=-;- (,:) 

lf the value of k in formula ( ~) be substituted for the k in formula (4), 

we have 

P= - ---~ 
fe ( · fa ) 

2 - I +-
fa nfe 

(5) 

For any given percentage of steel tite values off. and fe cannot be assumcJ 
indepcndently, as they bear a conslant ratio to each other. 

Substituting the value of fe in formula (3) for fe in formula (4), we havc 

k k 

p =-;(1-k)n 

Solving this quadratic equation and adopting the positive sign beforc the 

square root, 
(6) 
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We thus have k in terms of n and p, and from formula (6) the location 
of the neutral axis may be calculated with any percentage of steel for con­
crete and steel having known moduli of elasticity. 

The moment of resistance is obtained from the couple by taking moments 
about the center of compression in the concrete, using for thc force the 
total tcnsion in the steel, which, as above, is pf8bd times the arm (see 
Fig. 238, p. 751), jd 

or M 
M = p_.r1'bd2 and j = -

'Js s pjba-

The momcnt of resistance may also be expressed in terms of comprcssion 
i:J. the concrete by combining equations (4) and (7), or, more directly, by 
taking moments about the center of the tension in the steel, thus 

fekjbd2 
2 M 

M = -- and J. = --
?. e kjbd2 (8) 

Values for k with various percentages of steel and moduli of elastirny 
are given in table 12 on page 521. 

The value of the moment of resistance, lvi, may also be exprcssed witbout 
using k by substituting in formulas (7) and (8) the valuc of p from formula 
(s) and tbe value of k from (2), thus giving 

M = bd
2 

rl zf. (,

1
: .f.) e -3(1 I+ f. ) ) l 

fe nfe nfe 

(9) 

or 

M - bJ' [ ;(' ~ ~)('- ,(, ~ ~)) l (10) 

Formula (10) is apparently more complex than (7) and (8), but as thé 
latter require the detcrmination vf k, formula (10) is more readily solved 
unlcss the table on page 521 is employed. 

In thc use of formula (ro),f. and f, must be corresponding values and 
cannot be assumed independently of each other, since for any given per­
centage of steel the ratio off. to fe is a constant. (See formula (5), p~52). 

For a given quality of concrete and steel tbe values off,, and fe and n 

are constant, so that the term in brackets may be replaced by a constanti2 

r 
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\Ve may thus write in place of formulas (9) and (10) the formula 

btf 
M = C' (u) 

where C is a constant for any given concrete and steel. Values of C undcr 
different conditions are tabulated on pp. 519 and 520 . • 

Following directly from formula. (u) 

1
.1[ 

d.=C ~ b (12) 

In the above formula .lf represents the bending moment which must 
be equal to or smaller than the moment of resistance. Also, since in fig. 
238, p. 751, d = h - e, the formula may be written 

✓M h=C b+e 

from which the required height of the rectangular beam or slab rnay be 
directly obtained. 

T-SHAPED SECTION OF BEAM 

When a reinforced concrete floor slab and beam are built as one piece 
the slab adds to the strength of the beam by increasing the area which is in 
compression. 

The working formulas for this shape of bearn termed a T-beam are given 
in Chapter XXI, page 423, in sufficient detail for tbe ordinary design where 

FJG. 2 39.-Resisting Forces in T-shaped Section of Beam. (See p. 755.) 

the beam and the slab are assumed to act as a unit. The mcthod of analysis 
and the formulas deduccd are presented below. 

These are based upon tbe assumption that the intensity of the compres­
sion in the concrete does not diminish from the web outward towards tbe 

• 
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edges of the flange. For a section having a narrow flange, this is practi­
cally correct,. but_ with a wide flange, it is prohable that the intensity of 
the compress10n m the flange diminishes from the web outward so that 
the brea~th of slab should be limited, as indicated on page 424. If this 
pressure 1s assumed to decrease either uniformly or otherwise the formulas 
may be modified accordingly. ' 

Assuming the compression to be distributed as shown in the diagram, 
and the stcel to take ali the tension, the formulas given below may be 
deduced as in the preceding cases. 

Case I. Neutral Axis Below Flange, kd > t. 
. Ncglect the slight amount of compression in the web below the intersec­

tlon of the web and flange. 

As in the previous case using notation on page 750 and referring to 
Fig. 239. 

k=---

+ 
.r. 

I -
nfe 

By equating the forces acting on the section 

2kd - t 
A .f, = fe 2kd b t 

Solving the two above equations for kd and eliminating f and r 
. e J, 

2 n d A,+ b t2 

kd= - --
2nA,+ 2 bt 

The position of the resultan! compression lies in the c:enter of gravity of 

the trapezoid, the parallel si<les of which are equal to f. and r kd - t and 
e Je kd 

thc height to t. 

The distance of this center of compression from upper surface of heam is 

3kd - 2t t 

z = 2kd - t 3 (r5) 
The arm of resisting couple 

hence 
jd = d-z 

2kd - t 
M - A,jdf, (16) and M ~ l>tidf. 

2kd · e 
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or 
M Mkd 

fe= A :;¡(18) au<l fe= bt(kd-1t) jd 
.1 

From the figure, taking similar triangles, the relation between fa and fe is 

found to be 
fa k 

Íe = n r-k 

The approximate moment arm of resisting couple may be taken as 
t 

jd = d- - (21) 
2 

which changes formula (19) to 
M 

f, - A,(d- ',) ( approximate) 

This formula gives for ordinary cases correct and safe result~, but should 

t be used when the flange is small as compared with the stcm. 
no · 1 d I In the above formulas the compression in the stem 1s neg ect_e . n 
large beams, where the stem forros the Jarger p~rt _of the com?ress1~e. ª:ea 
the following formulas derived by the same prmc1ples used m denvat10n 
of formulas in the previous analysis should be used, 

✓ 2ndA
8 
+(b-b'J 12 (11 A,+ (b-b') t)2 n A.+ (b-b~ t 

kd = b' + b' b' 

z= 
(kdt2 - ?, t3) b + [ (kd - t)2 

( t + 1 (kd - t))] b' 

t (2kd - t) b + (kd - t) 2 b' 

Arm of resisting couple 
jd = d-z 

Moment of resistance 

M = A
8
jdf. (26) M = ;;i (2kd - t)bt + (kd-t) 2b']jd (27) 

Fiber stresses 
lvf 2Mkd 

fa= A.jd (28) and fe= [(2kd ~t)bt + (kd - t)2b']jd 

Case II. Neutra/, Axis in Flange or at U nderside of Flange, kd < t 
In this case use the rectangular beam formula, considering the T-beam 

as ;i rectangular beam of the same depth, the breadth of which is the 
breadth of the flange. The percentage is then based on the total area bd, 
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STEEL IN TOP AND BOTTOM OF BEAM, NO TENSION IN 
CONCRETE 

Although the use of steel in the compressive portion of the beam is gen­
erally uneconomical, its introduction there is sometimes a necessity for 
practica! reasons. In the ends of a continuous beam thc steel in the bottom 
is usually carried through into the supports, and if the length is enough to 
provide bond its value in compression may be taken as assisting to resist 
the negative bending moment. 

It is possible to reduce the working formulas to extremely simple form 
by introducing constants .which vary with different conditions, as outlined 
on page 427, the values for the constants bcing given in table 8, page 516. 

The treatment of a beam subjected to beuding and direct stress with 
the steel in compression is presented in connection with the design of arches 
on page 563, and these formulas may also be used in other cases of eccentric 
thrusts. 

STEEL 

• • 

STEEL 

• • 
Fw. 240.-Resisting Forces with Steel in Top and Bottom of Beam. 

(Seep. 757 .) 

The analytical treatment of the design of an ordi.uary beam adopting as 
usual the assumption of a constant modulus of elasticity and no tem,ion 
in the concrete, but assuming that the compressive stresses are partially 
bqrne by the steel in the compression portion of the beam, is as follows: 

FORMULAS. 

Deformations, as usual, are assumed to vary <lirectly as distance from 
neutral axis, hence from Fig. 240, using notation on page 750. 

J. 
E3 = d (r - k) _ _ r _- _k 

fr dk k 
E 

Whencek= f s 

I +­
nfe 
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kd - d' kd - d' 
f.'= fo c.i - kd (31) and/,'=nfc kd 

l - k fk k 
J.= nfc -k- (33) and/c=; 1 ~ 

Equating the horizontal forces acting on the cross-section of the beam 

we have: 

bd (1 '; + P'f.') = bdpf. 

1 (f) ) 1 (/~ k
2 

, kd - ~') 
Whence P = J. 

2 
+ P'fs' = fa 2n 1 - k + p 'J. d - kd 

Hence 

d' 
k--

kz • d 
p---- +p' --

- 2n (1 - k) I - k 

Solving equation (35) for k, 

Taking moments about the center of pull in the steel, we have 

bf kd ( kd) M = -¾- d - 3 + fs' p'b d ( d - d') 

or by eliminatingf.' by means of equation (32), 

[

k ( k) n P' ( k - !) c -1') ] 
M=jbd2-1-- + 

e 2 3 k 

Taking moments about the center of compress5ive stress in the steel, we 

have 

[ ( 
d' ). J: k (k d') ] 

M = bdz J. p I - d - e;- 3 - i 
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or hy eliminating f e1 

M = f. bd2 r p ( 1 - d~ ) - k
2 

( ~ - C: ) ] 
L d 2n (r - k ) 3 d 

Then taking moments about center of compression in concrete: 

or by eli,minating J., 

(39) 

The values in the squarc brackets in formulas (37), (38) and (39) are 

t f b
. . d' 

cons ant or any com mat10n of n, p, p' and a· 
Substituting 

and 

and 

( d') P ( k d') c. = p 1 
- d - w (r - le) 3 - i 

r - k ( k ) ( k d' ) C'. = p l - - + P' - - -
d' 3 3 d 

k- -
d 

M = 1/{Pfc Ce (43) 
M 

andfc = bd2C 

M 
and .f.= bd2C 

e 

• 

M 
M = bd2 fs' C/ (47) and f,' = - ·_ 

• bá'C.' 

Values of Ce, c., and C/ for different combinations of n p p' and d' 
' ' d 

are given in table 8, page 516. 
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STEEL IN BOTTOM OF BEAM, CONCRETE BEARING TENSION 

In tbe earlier stages of loading of reinforced concrete beams, the defor­
mation curves (see fig. 130, p. 409) indicate that the concrete actually 
bears a portion of tbe pul!. Although it is uot good practice to considcr 
this pull in the design of beams, but, instead, it is customary to take the 
working streugth as a factor of the ultimale, or nearly the ultimate strength 
of the beam, the following formulas are useful for determining the actual 
stresses and for calculating deflectious at the earliest stages of loading. 

Formulas. Since elongation of steel and concrete at the same point 

-b-· 

STEEL 
e o 

FIG. 241.-Resisting Forces with Concrete Bearing Tension. (See p. 760.) 

must be equal, and since cross-sectional planes are assumed to remain plane 
during bending, we have from Fig. 24 r, the following cq uations: 

J. 
E d - kd E. f I d - kd 
fe; = h - kd hence fs = Ec' e h - kd 

Ec' 

E 1 - k 
f, = E• fe - k. 

e 

(51) also fe' 
E: h - kd 
Ee fe - kd 

Equating horizontal forces on the section we have 

bfc hl fe' b (h - kd) 
= Pf, bd + -

2 2 

The elimination off, andfc' from (53) gives 

kd E
8 

r - k E/ (h - kd)2 

= pd - - - - + 
2 Ee k Ec 2 M 

(so) 

(54) 
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From wmcn 

= - I l- Ec 2 _ E/(h-kd)
2

] 

p 2 (r - k) E k E d 
8 8 

Solving equation (55) for /,, 

J
- E' e /¡J I E' /¡ l-

2 

2p+- p+ e 
E. d2 E d, 

k= --~- + _ s 
E E' E E' 
~ ~ e e e 
E E -E--E 

8 8 8 8 

E' h 
p + - C­

E8 d 

E' e 

(55) 

(56) 

Taking mon1ents about the center of the pull in the concrete the center 
0_f cornpression in the concrete and the center of pull in the s~eel respec­
tively, we have the three following equations for the moment of resistance: 

M = f, p bd ( d _ kd _ 2h ) + fe bkd 2h 
3 3 2 3 

= f.bd [p (d _ kd _ 2h) + Ec hk2 ] 
3 3 E, 3 (r - k) (57) 

or 

M = fs p bd ( d _ kd ) + fe' b (h - kd) 2h 
3 2 3 

f. ' b [ 3 ( k ) E. r - k h ] = e pd I - - -, --- + - (h - kd) 
3 E ch · · kd 3 

(58) 

or 

M = fe bkd ( d _ kd) _ fe' b (h - kd) ( d _ kd _ 2h ) 
2 3 2 3 3 

= fe b [ kd~ ( 
1 

_ ~) _ E~ (h - kd)
2 

( kd 2¡1 
) ] 

2 3 Ec kd d - 3 - 3 (59) 

If ~ow Ec~ = Ec: that is, if the modulus of elasticity of concrete is the 
same m lens10n as 10 compression, the line .lfN becomes straight. 

E 
. E 

,quatmn (55) then becomes, letting • = n 
Re 

h 2kd - h 
p = ½ nd2 1 - k (60) 
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From which 
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h2 + 2 pnd2 

k=--- --
2dh + 2 pndi 

Equation (57) is not changed 
Equalion (58) simply has Re instead of E/ 
Equation (59) becomes 

fe b [ ( k) (h - kd)
2 

( kd 2h) 1 M= - k<F 1- - d- - -
2 3 kd 3 3 

or 

(61) 

COMPRESSIVE STRESS AS A PARABOLA, STEEL IN BOTTOM 
OF BEAM, NO TENSION IN· CONCRETE. 

Many experiments upon the compression of concrete show a gradually 
decreasing modulus of elasticity as the load increases. From the form of 
the stress deformation curve of these specimens, the stress on the com­
pression side of a beam is sometimes assumed to vary as a parabola instead 
of as a straight line. This method was first suggested in the United States 
by Prof. W. Kendrick Hatt.* The formulas which follow present this 
method of analysis, and permit the comparisont of results hy this as~ump-

STEEL . " 

242.-Resisting Forces with Pressure Varying as a Para bola. (See p. 762.) 

tion, with results of the straight line theory adopted by the authors in chap­

ter XXI. 

* Proceedings American Society for Testing Materia Is, 1902. 
t See p. 407 for comparative values by the two theories. 
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Form.Ulas. As in preceding cases, from Fig. 242, 

we have 

hence 

from which 

f, 
E 8 

fe 

P.e 

k = 

d(r-k) 

kd 

fa 
1 + -

nfe 

fs k 
fe= n 1 - k 

1 - k 
--

k 

Equating horizontal forces on the section of the beam wc have 

2bfc kd 2f ,k 
pbdfs = , or more simply, pf, = -

3 3 

Substitute the value of k from (63) and we have: 

2 
p- - - -- 3½(1 +fa_) 

fe nfe 

(66) 

which gives the ratio of steel required for any consistent values of r J. . . Js, e, 
E., Ec The posit10n of the neutral axis is dependent upon the µer cent 
of steel and the moduli of elasticity of steel and concrete. and the valuc of 
k may be found by substituting in (65) the value of .f. from equation (64). 

Thus 

2fck I - k k2 
3 - = Pfe n - k or, p = ! (1 - k) n 

Solving this quadratic equation and using the positive sign after taking 

the square root, 

k = V:¡. np + (t np )2 
- ¾ np 

or in another forro, 
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The moment of resistance may be found by taking moments about the 
center of compression in the concrete, thus, 

M =f,pbd2 (1 - }k) (68) 

or by taking moments about the center of pul! in the steel, 

M = Uc kbd2 (1 - ik) 
Eliminating k from these equations by substituting its value from equa­

tion (63), and also substituting the value of p from equation (66), we have 

M ~ ¡/, bá' f • ( ' /, ) [ ' - - ( 3 {) ] ( 70) 
- 1+ - 8 1+ -
fc nfc nfc 

or 

APPENDIX III 
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FORMULAS FOR REINFORCED CONCRETE CHIMNEY AND 
HOLLOW CIRCULAR BEAM DESIGN 

The analysis which follows is based upon thc severa! fundamental 
assumptions adopted in reinforced concrete beam design with the additional 
assumption that, since the concrete is usua°Ily thin as compared to the 
diameter of the chimney, no appreciable error is involved in assuming ali 
material as concentrated on the mean circumference of the shell. An 
analysis for shear is also given together with an example of chimney design 
and review. 

The principies in volved in the demonstration of the thickness of steel and 
concrete are taken by permission from the analysis by Messrs. C. Percy 
Taylor, Charles Glenday, and Osear Faber.* 

The principal formulas given below are quoted in the text, where 
the general ~ubject of concrete chimneys is discussed, and tables are 
presented there with the values of constants for use in design. 

NOTATION 

W = weight in pounds of the chimney above the section under considera-
tion. 

M = moment in inch pounds of the wind about that section. 
P = total compression in concrete. 
T = total tension in steel. 

n = Eª = ratio of modulus of elasticity of steel to that of concrete 
Ec 

fe = maximum compression in concrete in pounds per square inch (meas-
ured at the mean circumference). 

f, = maximum tension in the steel in pounds per square inch. 
D = mean diameter of shell in inches. 
r = mean radius of shell in inches. 

= total thickness of shell in inches. 
te = thickness in inches of concrete only. 

* Eugiueering (London), Mar. 13, 1903. 


