and the thickness of the arch, $h l$, is 30 inches, the value of C_{e} for 0.8% steel
(that is, for $p=0.008$) is 1.38 and $f_{c}=\frac{1.38 \mathrm{~N}}{b h}$
Distribution of Stress When One Surface is in Tension. When the thrust is applied at a distance from the gravity axis with eccentrictiy, e, greater than that given for e_{0} by formula (49), page 567 , and the concrete is assumed unable to carry any tension, the above general formulas are not easily applied and the following method may be used. Here the steel on the side opposite to that on which the thrust acts is designed to carry all the tensile stresses. In this case having a section with a bending moment and thrust, there are three unit stresses to be determined, namely, maxi-

Fig. 178.-Stresses Caused by a Force Producing Compression and Tension upon a Reinforced Section, Tensile Strength of Concrete Neglected. (See p. 570 .)
mum unit compression in concrete, maximum unit compression in steel, and maximum unit tension in steel. The method of procedure is similar to that used for beams in Appendix II, page 757. Referring to Fig. 178, the unit stress in the upper steel, as shown by inspection, is

$$
\begin{equation*}
f_{s}^{\prime}=n f_{c}\left(1-\frac{d^{\prime}}{k h}\right) \tag{53}
\end{equation*}
$$

The unit tension in the lower steel is

$$
f_{0}=n f_{c} \frac{d-k h}{k h}
$$

Hence, when the compression in concrete, f_{c}, is known, the stresses in the steel are determined by the above formulas. Since the sum of the stresses
$n=$ ratio elasticity. $N=$ thrust. $f_{c}=$ compression in concrete. $f_{s}=$ tension in steel $n=$ ratio elasticity. $N=$ thrust. $\quad f c=$ compression in concrete. $f_{s}=k=$ ratio depth
$f_{s}^{\prime}=$ compression in steel. $b=$ breadth. $h=$ height. $p=$ ratio of steel.
acting on the section must be equal to the thrust, we have, since each steel area is $\frac{p b h}{2}$

$$
\begin{equation*}
N=\frac{f_{s}^{\prime} p b h}{2}+\frac{f_{c} b k h}{2}-\frac{f_{s} p b h}{2} \tag{55}
\end{equation*}
$$

Placing values of f_{s}^{\prime} and f_{s} from (53) and (54) in (55),

$$
\begin{equation*}
N=\frac{f_{c} b h}{2} \frac{k^{2}+2 n p k-n p}{k} \tag{56}
\end{equation*}
$$

The moment of the stresses about the gravity axis, which is obtained by taking the sum of the moments of all the stresses about the gravity axis and eliminating f_{s}^{\prime} and f_{s} by use of equations (53) and (54), is

$$
\begin{equation*}
M=f_{c} b h^{2}\left[\frac{n p a^{2}}{h^{2} k}+\frac{k}{4}-\frac{k^{2}}{6}\right] \tag{57}
\end{equation*}
$$

Designating by C_{a} the quantity $\left[\frac{n p a^{2}}{h^{2} k}+\frac{k}{4}-\frac{k^{2}}{6}\right]$ from equation (57) we may write

$$
\begin{equation*}
M=C_{a} f_{c} b h^{2} \tag{58}
\end{equation*}
$$

Hence in investigating a given section of an arch, if M, b, h, C_{a} are known, the unit compression in the concrete is

$$
\begin{equation*}
f_{c}=\frac{M}{C_{a} b h^{2}} \tag{59}
\end{equation*}
$$

To solve this equation easily, values of C_{a} should be taken from curves. Fig. 180, page 573 , gives values of C_{a} for $n=15,2 a=\frac{4}{5} h$ and various values of k.

Evidently before using equations (57) or (59) to find the unit compression in the concrete, the position of the neutral axis must first be determined. To do this we must find the value of k. Since the moment, $M=N e$, that is, the thrust multiplied by the eccentricity, equation (56) may be multiplied by e and equated to (57). From this process, the following equation containing k is obtained

$$
\begin{equation*}
k^{3}+3\left(\frac{e}{h}-\frac{I}{2}\right) k^{2}+6 n p k \frac{e}{h}=3 n p \frac{e}{h}+\frac{6 n p a^{2}}{h^{2}} \tag{60}
\end{equation*}
$$

$M=$ moment. $n=$ ratio elasticity. $N=$ thrust. $\quad f_{c}=$ compression in concrete. $f_{s}=$ tension in steel. $f^{\prime} s=$ compression in steel. $b=$ breadth. $\quad h=$ height. $e=$ eccentricity. $p=$ ratio in steel. $f_{s}=$ compression in steel. $b=$ breadth. $\quad h$
of steel. $k=$ ratio depth neutral axis. $\quad C_{a}=$ constant.

Fig. 17.9.-Diagram for Determining Depths of Neutral Axis for Different Eccentricities. Based on $n=15$ and $2 a=\frac{4}{5} h$. (See p. 574.)

Fig. 180.-Diagram for Determining Constants C_{a} to be used in Formula (59). Based on $n=15$ and $2 a=\frac{4}{5} h$. (See p. 571 .)
and k may be obtained from this equation if the size of section, percentage of steel and eccentricity are known.
By solving this formula for $\frac{e}{h}$, using $n=15$ and $2 a=\frac{4}{5} h$, we have

$$
\begin{equation*}
\frac{e}{h}=\frac{-k^{3}+\frac{3}{2} k^{2}+14.4 p}{3 k^{2}+90 p k-45 p} \tag{6I}
\end{equation*}
$$

from which equation, curves for $\frac{e}{h}$ are readily drawn for different percentages of steel. In Fig. 179, page 572, curves are plotted by this formula, using $n=15$ and $2 a=\frac{4}{5} h$, and from these the depth of the neutral axis k, may be found.* This is illustrated in the example, page 580.
In finding the unit compressive stress in the concrete for a given section having an eccentricity greater than e_{0} (see page 567) and containing a known quant.ty of steel, he following quantities would be known: breadth, b; depth, h; ratio of steel, p; ratio of elasticity, n; eccentricity, e; and moment, M. The method of procedure of finding f_{c}, the maximum compression in the concrete, may then be as follows.
Determine $\frac{e}{h}$. Enter the bottom of Fig. 179 , page 572 , with this value of $\frac{e}{h}$ and find the k corresponding for the given percentage of steel. Then with this value of k enter Fig. 180, page 573, and find C_{a}. Apply formula (59), page 57 I , where $f_{c}=\frac{M}{C_{a} b h^{2}}$.
Having found the unit stress in the concrete, the unit stresses in the steel may be determined from formulas (53) and (54), page 570 .

METHOD OF PROCEDURE FOR THE DESIGN OF AN ARCH.

The design of an arch is a trial process; the design being selected and then investigated to see if the sections are of sufficient strength. If the arch
*If the value of k must be determined directly, substitute $k=z-\left(\frac{e}{h}-\frac{1}{2}\right)$ when equation (60) takes the form $z^{3}+p z+q=0$, and since by Cardan's formula,
the value of k may be computed. This follows the method suggested by Professor Mörsh in "Der
Eisenbetonbau," 1906, p. III. . Eisenbetonbau," 1906, p. 111 .
$h=$ height. $e=$ eccentricity. $p=$ ratio of steel. $k=$ ratio depth neutral axis.
first chosen is too large or too small it must be revised and the process repeated.
Since the location of the line of pressure and also the stresses are affected by the loading, it is customary either to compute the arch for the dead load plus concentrated loads located at the most unfavorable positions, or else to compute it for the dead load plus a uniform live load covering one-half the arch and also covering the entire arch, to see that the working stresses are not exceeded.

The following steps indicate the method of procedure for the design of a highway bridge shown in folding Fig. 18r, opposite page 58 r . The computations are for the live load over one-half the span. The procedure is similar when the entire span is loaded.
I. Lay out on a drawing the preliminary curve assumed for the intrados. (See p. 540).
2. Assume a crown thickness in accordance with the formula on page 54 I.
3. Lay out the curve of the extrados and the surface of the roadway. The extrados may be a 3 -centered curve, but it is better to use an arc of a circle if possible. It should be so placed as to give a ring thickness at the quarter points of the span of $\mathrm{I}_{\frac{1}{4}}$ to $\mathrm{I}_{\frac{1}{3}}$ times the crown thickness, and a ring thickness at the springings of 2 or 3 times the crown thickness in this first trial.
4 Draw the arch axis midway between the extrados and the intrados.
5. Divide the arch axis into distances such that the ratio of each distance to the moment of inertia of the cross-section of the ring at the center of the distance is a constant; that is, $\frac{s}{I}$ is a constant. This can be done by trial by beginning at the crown and-working towards the springings or by the method described on page 554. The moment of inertia is of the combined section of concrete and steel about the gravity axis, hence the size and position of the steel rods must be first assumed, when I may be computed by the formula on page 565 . The ratio of area of steel to total area-of section at crown may be arbitrarily taken in the first place from 0.007 to 0.0125 , that isfrom 0.7% to $1 \frac{1}{4} \%$. The divisions are separated by vertical sections.
In the problem here solved the distance, s, next to the crown is 1.14 ft ., and that next to the springing is 7.82 ft . The constant ratio, $\frac{s}{I}$ for this arch is II.4* On folding Fig. 18I the centers of the divisions are shown by circles and are numbered $\mathrm{I}, 2,3$, etc. All distances are in feet and all quantities
*Greater accuracy may be obtained by using a larger number of divisions than here choseñ, and also by subdividing loads P_{1} and P_{20}.
involving distance are in foot units. A section of the arch I foot wide transversely is considered.
6. Compute the dead and live loads and enter these loads as indicated by $P_{1} P_{2}$, etc., at the center of gravity of each division. In the accompanying design, a live load of 100 pounds per square foot covers the right half span, while on the left is the dead load alone of the masonry taken at 150 pounds per cubic foot plus the earth fill taken at 100 pounds per cubic foot.

Points	x	y	x^{2}	y^{2}	M_{L}	M_{R}	$M_{L^{x}}$	$M_{R^{x}}$	$M_{L}{ }^{y}$	$M_{R^{\prime}}$
10 and 11	0.56	0.01	0.3	0.00	∞	∞	∞	∞	∞	\bigcirc
9 and 12	1.71	0.04	2.9	0.00	391	521	668	891	16	21
8 and 13	2.88	0.11	8.3	0.01	1205	1603	3470	4616	132	176
7 and 14	4.11	0.23	16.9	0.05	2520	3346	10357	13752	580	770
6 and 15	5.43	0.39	29.5	0.15	$44{ }^{11}$	5923	24277	3^{3162}	1743	2310
5 and 16	6.89	0.63	47.5	0.40	7327	9672	50483	66640	4616	6093
4 and 17	8.57	0.97	73.5	0.94	1158	15216	99275	130401	11237	14759
3 and 18	10.59	1. 50	112.2	2.25	18242	23791	193183	251947	${ }^{27} 363$	35686
2 and 19	13.17	2.39	173.5	5.71	29480	38045	388252	501053	70457	90928
1 and 20	17.94	5.14	321.8	26.41	5853	74192	1052235	1331004	301476	$3^{881} 347$
Σ	71.85	11.41	786.4	35.92	133873	172309	1822200	${ }^{2} 33246$	417620	532090

All distances in foot-units; all moments in foot-pounds

Values of H_{c}, V_{c} and M_{c} at crown for Live and Dead Loads.

$$
H_{c}=\frac{10(417620+532090)-11.41(133873+172309)}{2\left[10 \times 35.92-(11.41)^{2}\right]}+13,107 \mathrm{lb} .
$$

$$
V_{c}=\frac{1822200-2332466}{1573}=-324 \mathrm{lb} .
$$

$$
M_{c}=\frac{172309+133873-2 \times 13,107 \times 11.41}{20}=+354 \mathrm{ft} . \mathrm{lb} .
$$

Values of H_{c} and M_{c} at crown for Rise in Temperature.

$$
H_{c}=\frac{1}{11.4} \frac{.0000055 \times 20 \times 41.88 \times 10 \times 2000000 \times 144}{2\left[10 \times 35.92-(11.4)^{2}\right]}=2545 \mathrm{lb} .
$$

$$
M_{c}=\frac{-2545 \times 11.41}{10}=-2900 \mathrm{ft} . \mathrm{lb} .
$$

Values of H_{c} and M_{c} at crown for Rib Shortening.

$$
\begin{aligned}
& H_{c}=-\frac{1}{11.4} \frac{66 \times 41.88 \times 10 \times 144}{2\left[10 \times 35.92-(11.41)^{2}\right]}=-760 \mathrm{lb} . \\
& M_{c}=-\frac{-760 \times 11.41}{10}=+870 \mathrm{ft} . \mathrm{lb}
\end{aligned}
$$

The horizontal components of the earth pressure are so small that they are neglected, except that, for purposes of illustration, they are shown in the case of the load adjoining each springing, where the horizontal components are computed by formulas for earth pressure on page 666. The point of application of the horizontal and vertical components, as shown for P_{1}, is taken at the arch axis. In practice, earth pressure is negligible
in the design of flat arch rings of the type here selected, and all loads may be taken as vertical. Only where the ratio of rise to span is large need the horizontal components of the earth pressure be considered.
7. Make a table similar to Table 1 , page 576 . The values of x and y are scaled from the drawing, and are the coordinates of the center points of the divisions of the arch axis. The crown point of arch axis is here taken as the origin of coordinates. The values of M_{L} and M_{R} are computed. M_{L} represents the moment at each of the center points i to Io inclusive of all loads lying between the point in question and the crown. Thus M_{L} for point Io is o; for point $9, M_{L}=340 \times 1.15=39 \mathrm{It}$. lb.; for point $8, M_{L}=$ $391+696 \times 1.17=1205 \mathrm{ft} . \mathrm{lb}$., and so on. The moment at each "center" point being obtained from that at each preceding "center" point. M_{R} of course represents the moment at each of the center points II to 20 inclusive of all loads lying between the point in question and the crown. For a symmetrical loading M_{L} would equal M_{R} for each pair of center points, such as I and 20 .
8. Compute $H_{c,} V_{c,} M_{c}$, that is, the thrust, shear and moment at the crown, as on page 576 , by using equations (16), (17), and (I8), page 553. If the sign of V_{c} is plus the line of pressure (equilibrium polygon) at the crown slopes upward towards the left; if minus, as in the present case, upwards toward the right. A p us sign for M_{c} indicates a positive moment; a minus sign, a negative moment at the crown. For the arch in folding Fig. 181, the crown thrust $H_{c}=13107$ pounds, $V_{c}=-324$ pounds and $M_{c}=+354 \mathrm{ft}$. pounds.
9. Draw a force polygon as shown in folding Fig. I8I by laying off to scale the loads P_{1}, P_{2}, etc., as $0-\mathrm{I}, \mathrm{I}-2$, etc. Find the pole by laying off V_{c} downward (because negative) from the crown point, 10, and then laying off H_{c} horizontal. The hypothenuse of the triangle having H_{c} and V_{c} for sides thus slopes upward to left or upward to right, according as V_{c} is + or - .
10. Draw the equilibrium polygon as shown on the arch of folding Fig. 181. The resultant pressure acts above the axis at the crown a distance, $\frac{M_{c}}{H_{c}}=e$ if M_{c} is plus, and below by the same amount if M_{c} is minus Since here, as is shown later, $e=+0.028$ feet, this distance is laid off vertically above the axis at the crown and through this point the resultant pressure is drawn paralle to the ray O_{10} of the force polygon and so on. It is not really necessary to draw the equilibrium polygon if the moments and eccentricities are computed for the various sections as outlined under item in, but the polygon, which is the line of pressure, affords a good check on the algebraic work.

Determine the moment，thrust，and eccentricity，and if desired the shear at the center points， $\mathrm{I}, 2,3$ ，etc．，of the divisions，and enter in a table as shown below．The moment is computed from formulas（19）and（20） on page 554 ，the values of whose terms have already been found by items 7 and 8．The thrust and shear may be scaled from the force polygon．For example，at section I on folding Fig．18I the thrust line is drawn parallel to the tangent to the axis at I ，and the shear line at right angles to the thrust line．The eccentricities，e ，of the sections $\mathrm{I}, 2,3$ ，etc．，are computed by 6．We cection（see page 56 I ）by the thrust for that dividing the moment on section just scalrost lies above the arch axis．
e ，the line of thrust lies above the arch and at the crown due to variation in
12．Compute the thrust and（26），page 556 ，the moments on the temperature by formulas（25）and（26），page S5

LIve and dead						temperature		Rib shortening	
						Mom．	Thrust	Mom．	Thrust
Point	$H_{c}{ }^{y}$	$V_{c}{ }^{x}$	Mom．	Thrust	Ecc．				
					＋0．23	± 10180	± 1970 +2310	$\begin{array}{r} -3030 \\ -950 \end{array}$	－700
1	67370 31325	$\begin{aligned} & -5^{812} \\ & -4^{267} \end{aligned}$	$\begin{aligned} & +3259 \\ & -2068 \end{aligned}$	$+14000$	－0．15	± 3180 ± 910	$\begin{aligned} & \pm 2310 \\ & \pm 2433^{\circ} \end{aligned}$	－ 270	－730
2	31325 19660	－4267	－1659	+13920 +13600	-0.12 -0.10	± 910 $\pm 4{ }^{\text {a }}$	\pm	＋ 130	－740
3	12713	－2777	-1293 -483	+13600 +13240	－0．10	干 2320	$\pm 253^{\circ}$	＋690	－760
7	3014	－1331	-483 -67	＋13160	－0．005	干 2800	± 2545	+840 +840	－760
12	524 524	-554 -554	＋911	＋13120	＋0．07	F2800	\pm	＋ +690	－760
12 14	524 3014 304		＋1353	＋13200	+0.10 +0.05	F 2320 ± 440	\pm	＋ 130	－740
14	3014 12713	－ 2777	＋627	$+13^{640}$	＋0．05	士 440	$\pm 243^{\circ}$	－ 270	-73°
178	12713 19660	$-343{ }^{1}$	－346	＋14040	-0.03 -0.15	\pm ± 3180	± 2310	－ 950	－700
18	19660 31325	－4267	－2099	+14200 +14840	-0.15 -0.04	± 10180 ± 1080	± 1970	-303°	－610
20	67370	－5812	65^{6}	＋14840					

Thrusts in lb ．Moments in ft ． lb ．Shear in arch lag is smal ． various sections by formula（27），page 557，and the components，as shown resolving the crown thrust into tangental
in the small force polygon in the diagram．
A rise in temperature of 20 degrees Fahr．，and United States for arches with is sufficient even
filled spandrels． For the arce is a tension of 2545 lbs ．，and a compression of equal amount． temperature，is a tensi M is +2900 ft ． lb ．and -2900 ft ． lb ．
The crown moment M_{c} is +200 I ． the thrust is comparatively slight． 13．The effect of rib shortening due to the thrust is（3）（32），page 55^{8} ．（See
Where necessary to col
p． 576 ．）problem here shown the thrusi at crown due to this cause is For the problem here sho is +870 ft ． lb ．
-760 lb ．，and the moment similar to Table 2，page 578 ，showing 14.
thrusts and moments on the various sections $\mathrm{I}, 2,3$ ，etc．，due to dead and live loads，temperature，and rib shortening，compute the maximum unit compression in the concrete and maximum unit tension，if any，in the steel by use of formulas on pages 565 to 574 ．

Table 2 shows thrusts and moments for only a few of the sections of this arch，since it is unnecessary to compute all of them．A selection of the more critical sections may be made by inspection of the equilibrium poly－ gon．The following shows the computation of the maximum unit stresses at the crown for the arch infolding Fig．18r，as outlined in items if to I_{3} ．

Live and Dead Loads and Rib Live and Dead Loads and Rib Shortening．

Shortening Plus Temper－ ature．

Moment	Thrust
$\begin{aligned} & +354 \\ & +880 \end{aligned}$	$\begin{array}{r} +13107 \\ -\quad 760 \end{array}$
＋1224ft．lb．+12347 lb ．	
	－ 1224

Consulting lower right hand part
of Fig．177，page 569 ，it is seen that
the value of $\frac{e_{0}}{h}$ for 0.92% is greater
than $\frac{e}{h}=0.1$ ．Hence there is com－
pression over the entire section．
From formula（42），page 565 ，max． compression in concrete，

$$
\begin{aligned}
& f_{c}=\frac{12347}{1 \times 1}\left[\frac{1}{1+15(.0092)}\right. \\
& \left.+\frac{6(\mathrm{I}) 0.1}{(\mathrm{I})^{2}+12(\mathrm{I} 5) .0022\left(\frac{1}{3}\right)^{2}}\right] \\
& =17100 \mathrm{lb} . \text { per sq. ft. }
\end{aligned}
$$

$$
=119 \mathrm{lb} \text {. per sq. in. }
$$

Stresses in steel need not be com－ puted．
The above may be more quickly solved by the use of the curves on the left part of Fig．177，page 569 ．pages 572 and 573 as shown below．
$f_{c}=$ compression in concrete．$e=$ eccentricity．$M=$ moment．$N=$ thrust．$h=$ height． $k=$ ratio depth neutral axis．$a=$ distance centre of gravity to steel．

The method of computation for other points in the arch is similar, and stresses should be determined at sections where they appear to be the maximum.
From table 2 it is evident that although at point 20 the moment due to dead and live load is very small, its combination with moments due to temperature and ribshortening makes it one of the critical points. The moment and thrust due to live and dead load and rib shortening is
$M=-656-3030=-3636 \mathrm{ft} . \mathrm{lb}$. and $N=14840-610=14230 \mathrm{lb}$.
Hence, $e_{0}=\frac{3686}{14230}=0.26 \mathrm{ft}$, for $h=1.97, \frac{e_{0}}{h}=0.13, p=0.0037$.
Inspecting the lower part of Fig. 177, page 569 , it is seen that the whole section is in compression. From the same diagram for $\frac{e}{h}=0.13$ and $p=$
$0.0037, C_{e}=1.65$. Using formula (52), page $568, f_{c}=\frac{14230 \times 1.65}{1.97 \times 12 \times 12}=$ 83 lb . per. sq. in.
Combine now the moment and thrust due to live and dead load with those due to temperature and obtain $M=-($ (10180 +3686$)=-13866$ $\mathrm{ft} . \mathrm{lb} ., N=-1970+14230=12260 \mathrm{lb} ., e=1.13 \mathrm{ft} \cdot \frac{e}{h}=0.57$. In Fig. 179, page $572, k=0.37$ corresponds to $\frac{e}{h}=0.57$. By locating this value of k in Fig. 180, the constant $C_{a}=0.094$ is obtained, which substituted in formula (59), page 571, gives $f_{c}=\frac{13866}{1.97 \times 1.44 \times 0.094}$ $=520 \mathrm{lb}$. per sq. in. The stress in steel from formula (54) is $f_{s}=15 \times 520$ $\frac{\mathrm{r} .67-0.37 \times \mathrm{I} .97}{0.37 \times \mathrm{I} .97}=10000 \mathrm{lb}$. per sq. in.
Similar computations should be made for all critical points and when the stresses are either too small or too large, the dimensions or even the shape of the arch must be changed. Small changes may be made without refiguring the whole arch. For larger changes, all computations should be re peated and a new line of pressure determined.

LOADINGS TO USE IN COMPUTATIONS

The usual practice is to make two sets of computations; in the first place, proportion the arch ring for a live load covering the entire span and then for one covering only one-half the span. These two loadings are approximations, more or less exact, to the true loadings which produce the maxi-

