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tensile value of bars is in excess of stregs to be provided for. Itisalso
necessary that the bent bars be properly distributed and since shear
is nearly uniform between the supports and the intersection of the
beam, the inclined bars should bespaced at points a, b, ¢.

These points were found by dividing the distance on the center line A B
into equal parts. They should be laid off on the neutral axis, but
since the neutral axis changes for the positive and negative moment,
the center line, as lying between the two neutral axes, was selected.
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PLAN OF BARS WHICH ARE NOT BENT

Fia. .149.—Reinf0rcement for Girder (See p. 474).

A study must be made to see whether the tensile stresses in the bottom
of the beam will permit this. In this case the girder is loaded by con-
centrated loads and the moment at the point where the beam inter-
sects the girder is nearly the maximum. Approximate figuring of
tensile stresses shows that the first two bars may be bent about 13
inches from the center of the intersection of the beam, while to resist
diagonal tension the bar to intersect the center line at a should be bent
ateas shown by the dotted line. To provide for the diagonal tension,
between point @ and the beam stirrups will be introduced. Using
3-inch rods for stirrups, the tensile value of which is 2 X .196 X 16000

6270 .
= 6 240 pounds, it is necessary to space them TOZ‘TS = 5.85 inches apart,

as shown in Fig. 149, the shear to be provided for in one inch of length
of beam being 1 065 pounds.

EXAMPLE OF BENT BARS AS REINFORCEMENT FOR DIAGONAL
TENSION

As indicated in the design for the girder in the example just given it is
possible to provide for the diagonal tension by bent bars without stirrups,
When the loading is uniformly distributed instead of concentrated, the
location of the bends in the different bars as well as the size of the bars to
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use should be governed by the distribution of the shear. Thisisillustrated
in the example which follows.

&

CENTER OF SUPPO‘HT

Fic. 150.—5pacing of Bent Bars. (See p. 475.)

Example ;—Suppose the 18-foot girder in previous example is loaded uni-
formly with 4 600 pounds per foot of length, find the locations of the points to
bend up the bars to resist diagonal tension.

Solution—The load selected will require a beam of same section and ten-
sion reinforcement as the girder in previous example, where breadth of stem,
i 5 14,‘depth to steel, d = 26.5, and depth from center of compression to
tension, jd = 24.6. Then V = 41 400 pounds and from page 447, the unit
E 41 400
shear b/ = - = ——

1d 24.6
thirds of this amount or ;1 120 pounds per one inch of length of beam
h?,s to be provided for by diagonal tension reinforcement. The
distance from the support of the limiting point where shear can be taken
40 X I4 X 24.6

4 600

From this point to the right the shear increases from zero to its maximum
value of 1 120 pounds at the support, and may be represented by the triangle
A B C, Fig. 150. This triangle may be drawn in the following manner: From
point A at the neutral axis draw a line A B at 45 degrees, and from point D
a perpendicular toline A B through point of intersection B. Lay out the max-
imum shear B C. Now,suppose we intend to bend four bars, all of the same
diameter, to take the diagonal tension, then each of them will take an equal
part. Divide the area of the triangle into three equal parts, find centers
of gravity of each part, and from these centers of gravity draw lines to rep-
resent the location of peints to bend up the bars in the girder. The method
of division of the triangle into an equal number of parts is clearly shown in
the drawing where the line A B is divided into equal parts and dotted arcs
of cricles are drawn with centers at A.

= 1 680 pounds per inch of length of beam. Two-

by concrete itself is %, = ¢ = 6 feet, formula (38), page 451
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MISCELLANEOUS EXAMPLES OF BEAM AND SLAB DESIGN.

Example 8: What is the value of Cand the ratio of steel if pressure in
concrete is limited to 400 pounds per square inch and pull in steel to
12 000 pounds per square inch, the ratio of moduli of elasticity being 157

Selution: Approximate values, which are sufficiently exact, may be ob-
tained from the Table 11, page 519, by exterpolation above item (1), from
which C equals o.123, and ratio of steel, p = .c053. :

Example 9. What is the value of C for a beam in which the pressure in
the concrete is 650 pounds per square inch, the pull in the steel 16 ooo
pounds, and the area of steel 1.2%,, the ratioof moduli of elasticity being15?

Solution: The requirements in the example are impossible. With the
pressure in the concrete limited to 650 pounds per square inch, the pull in
the steel, if 1.29 is used, cannot be as high as 16 oco pounds. From Table
11, page 520, when p = o.orz and fe = 650, C = 0.090 and the pull in the
steel is 12 roo pounds.. Furthermore, comparing this item with the line for
0.008 steel in the same table, it is evident that an increase of 50%, in the area
of the steel, 4.¢., from ratio o.008 to ratio o.o12, decreases the value C, and
therefore the depth of beam, scarcely 7%.

Example 10: What safe load per square foot can be supported by a slab
5 inches thick and ro-foot span reinforced with 3-inch round bars placed
8 inches apart? :

Solution. From slab table, page 514, since the given reinforcement from
page 507 is equivalent to 0.196 X 1} = 0.294 square inches for one foot of
width, we find by inspection that for a 5-inch slab the nearest area of steel
in column (18) is 0.288. Hence, the total safe load for a ro-foot span is
slightly more than 136 pounds, say, 140 pounds per square foot; and deduct-
ing the weight per square foot of the slab, column (15), gives 140 — 64 = 76
pounds per square foot safe live load. If slab is square, continuous a._nd
reinforced in two directions, the safe load of 140 pounds may be multiplied
by 2. Deducting the dead load of 64 pounds, the live load will be 280 — 64
= 216 pounds per square foot.

Example 11: What safe load per square foot can be placed upon an 8-
inch slab, 16 foot span, having steel reinforcement of o.007?

Solution: Since by Rule 3,on page 513, total loads are inversely propor-
tional to the squares of the span, the load for a r6-foot slab is 1 the load
for an 8-foot slab. For the total safe load of an 8-foot slab, we must inter-
polate between steel ratios of 0.006 and ¢.008, thus obtaining

849 + 831
2
= 740 pounds per square foot. For the 16-foot slab the total safe load

is therefor 7—12 ~ 185 pounds, and deducting the weight of the slab from

column (15) gives a net live load of 185 — 103 = Sz pounds per square foot.

Example 12: Using Table 4 of rectangular beams, page 510, what
should be the dimensions and reinforcements for a beam 12 feet span, con-
tinuous.and loaded uniformly with 1000 pounds per foot of length?

Solution: The assumed stresses are the same as those adopted in the
Beam Table. Assuming a width of beam 12 inches, a total load per inch of

width of 1—2? = 84 pounds per running foot. Referring directly to the

Beam Table, we find that the total depth corresponding to a r2-foot beam
with this load is about 12z inches. The reinforcement from column (25) is
0.083 X 12 = I.oo square inch.

Fllimires
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Example 13: What total load per foot of length can be carried by a 12-
foot simply supported beam 12 inches wide and 23 inches deep?

Solution: There is no value in the Table 4, page sr1, for a beam whose
total depth is 25 inches, but since, from rule 4, loads are proportional to the
square of the depth of the steel, we may calculate the load in this case from
the load for a 26-inch beam 12 inches wide. Assuming in both cases
that the depth to steel, d, is 2 inches less than the total .depth, we have

2722
364 X 2—;’2 X 12 = 4 ooo pounds per runningfoot of beam. Since thetable is

w2
based on M = = for simply supported beams, deduct 20%, from the above
amount. Hence the safe load is 4000 — 8oo = 3200 pounds.

EXPERIMENTS UPON REINFORCED BEAMS

Tests upon reinforced concrete beams have been conducted at various
universities in the United States, and by leading scientists in Europe.
Valuable data with reference to the location of the neutral axis, the defor-
mation and the ultimate loads with various percentages and classes of steel
have been recorded* in the United States by Professors Hatt, Howe, Lanza,
Marburg, Talbot, and Turneaure, and in Europe by Messrs. Considére,
von Emperger, Feret, Rabut, Ramisch, Ribera and Sanders. An extensive
series of tests has been carried on at the United States Government Struct-
ural Materials Testing Laboratories at St. Louis, using different materials,
different methods of manufacture, and different types of reinforcement.

Special results of many of these tests have been mentioned in the preced-
ing pages.

Tests of Prof. Arthur N. Talbot. At the University of Illinois, Prof.
Talbot has made several valuable series of tests to investigate the laws of
reinforced concrete, which cover an exceedingly wide range of percentages
of steel and types of reinforcement. These are described in detail in
various bulletins of the University.}

The fundamental principles of rectangular beams are illustrated in some
of the earlier experiments which are summarized in the following table.
Although a leaner mixture of concrete was used in these than in hislater
tests which, therefore, correspond more nearly to practical construction, the
principles are not affected. The proportions in these beams were 1:3:6
based on loose measure of cement, or about 1 : 34 : 7 based on a unit of
100 pounds cement per cubic foot. The beanis were 15 feet 4 inches long,
12 inches wide, 13% inches deep, with the reinforcement 1z inches below

# See also References, Chapter XXXI.
+ Bulletin No. 1, Sept. 1, 1904; Bulletin No. 4, April 15, 1906; Bullefin No. 12, Feb. 1, 1907;
Bulletin No. 29, Jan. 4, 1909.
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the upper surface. These were tested on a span of 14 feet by two loads
which divided the span into three equal parts. The exact proportions of
the concrete were g6 pounds Portland cement to 3¢ cubic feet sand to 63
cubic feet broken stone. The sand was well graded in size of grains and
weighed 115 pounds per cubic foot loose and dry. The stone was Illinois
limestone, with particles smaller than § inch and coarser than 1} inches
screened out. The consistency was such that the water flushed to the
surface under light ramming. The crushing strength of 6-inch cubes at
the age of 60 days averaged 2030 pounds per square inch.

Typical deform tion and deflection curves are given in Fig. 130, page 480.

Prof. Talbot gives the following description of the manner of failure of
each beam except those numbered 27, 22, and 28, which crushed at the
top at maximum load:

Tests of Reinforced Concrete Beams.,

By Artaur N. Tarsor. (See p.479.)
|

Ratio of depth of
steel to depthof
neutral axis

k

Moment of Resistance

Steel.
formula
(9) or (8), p. 420.

calculated from

Calculated by

Area of E%Fcel.
beam above steel.
Maximum Load.
Load Considered
Estimated Total*
Bending Moment.

No. of Rods
Size of Rods.
Ratio of area of steel to

Ta'l‘t;ot’s
formula. ($ 479)

©lo|®]| ol oy Jce | o \ (19)

0.0041| 9ooo| 8 ooolo.00650.34 10:33 (0:33 [261 coof226 Bgob| 2-bars turned up

0.0041| g 200| 0 2ooic‘o7; 510:30 |9.33 [0-33 |204 600|226 Bgob| 2 bars turned up

7510.0052| 0 0ol g goole.ohs l0.37 [0.36 [0.35 |313 200|284 700b| 2 barsturned up

0.0052|10 000! 0'500{0.050 [0.37 [0:36 |0.35 |302 000|284 joob| 2 bars turned up

0.01506(26 0oo|25 aooo.066 [0.53 |0.54 [(0.54 |725 500774 ocoe| 2 bars turned up
< |
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As Measured.
formula. (#.420)
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w

|
1.2o.c.m83|18 40015 So0l0.0715/0.41 [0.43 [0.41 [466 000l443 300b! 2 bars turned up

1.20 0‘0083| 16 60014 500/0.005 [6.43 |0.43 [0.41 |438 000|443 300b| 2 bars turned up
|

W

2.40{0.0167|24 40022 000 /0,064 |0:57 |0.55 |0.56 641 000|786 200a| Bars sheared up
2.00|0.0130|23 00|21 000|0.060 [0.47 (0.52 l0.51 |615 cool714 Boob| Bars sheared up
1.60|0.0111|17 200/ 17 000/0.062 [0.46 |0.48 |0.46 |50% 500580 400b| Bars sheared up
1.20|0:0083| 15 000| 13 000[0.0625/0.42 [0.43 |0-41 |306 cool443 200b| Bars sheared up
2.19{0.01 52|34 300'31 ooolo.101 |0.53 [0.53 |0.53 |Bo3 500|768 jo0a| 4 bars turned up
1.40}0.0007| 29 000/ 27 500/0.111 [0.45 |0.46 10.43 {Boo 500(681 gooa! 4 bars turned up
1.00|0.0069| 20 gao| 20 000|0.132 (044 |0.41 [0-30 |503 500|615 Gooa| 3 bars turned up
1.00/0.0060)| 20 600| 19 000/0.11¢ [0.30 [0.41 (030 |565 500/615 6ooa| Horizontal bars
0.60;0.0042 14 000/ 13 000|0.1175]0.32 [0:33 [0:33 [401 000|384 4cor Horizontal bars
0.60{0.0042| 14 000 12 c0Olc Tob5l0.31 |0.33 [0.33 |373 000|384 4006| 2 bars turned up
| | Averagelo.418i0 422[0.411|500 006507 388 ‘
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Nore: — Columns (6) (11) (12) and (14) have been added by the authors. :

*Ag calculated by Prof. Talbot. Based on “Load Considered ” column (8). i

. Based on crushing strength of concrete of 2 030 1b. per square inch because the moment thus obtained
is lower than the moment based on yield point of steel.

b. Based on vield point of steel as 36 coo Ib. per square inch.

c. Based on yield point of steel as 60,000 Ib. per square inch.

1Net areas of steel in Kahn bars at load points are lower than gross areas given, so that

moments of beams, 4, 14, and §, by corrected computation are much higher than shown in col. 13
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A portion of the data resulting from the experiments is tabulated above.
Column (10) is.taken from a separate table of Prof. Talbot’s* and
columns (11), (12) and (14) are added by the authors to compare the
actual tests and the theory adopted in this treatise.

Prof. Talbot suggests an empirical straight line formulaf for the location
of the neutral axis with different percentages of steel, which avoids the more
intricate calculations necessary with the usual theoretical formulas involv-
ing the modulus of elasticity. Adopting the same notation employed through-
out this treatise (see p. 420), le: =

k = ratio of depth of neutral axis to depth of center of gravity of steel.
P = ratio of area of section of steel to area of section of beam above center
of gravity of steel.

Then with a slight change to conform to the use of & ratio of 15
k =o0.24 4+ 18 p (58)

Column (12) gives valuesof k calculated from this formula, using ©.26
for this concrete insiead .of o.24 The formula is adapted to concrete
beams with percentages of steel ranging from 0.006 to o.o12.

One of the most important conclusions in the authors’ opinion, which,
may be drawn from Prof. Talbot’s tests, is the fact that computations made
by the ordinary theory adopted in this treatise produce values for the
neutral axis, and also for the ultimate moment of resistance, which are
so near to the experimental results that these theoretical formulas (see
p. 420) may be employed with confidence.

Calculating the location of the neutral axis by formula (6), page 420, and
employing a ratio of the moduli of elasticity of steel to concrete of 20,—
which Prof. Talbot’s tests§ of elasticity show to be an average value between
loads of 1 ooo and 1 700 pounds per square inch (stresses which correspond
to the compression in the beam when the neutral axis is as given), the
theoretical distances given in column (11) agree almost exactly with the
actual measurements in column (10). The moments of resistance calculated
in column (14) also agree closely with the total bending moments in column
(23).

T-Beam Tests by Prof. Frank P. McKibben. The T-beams tested
at the Massachusetts Institute of Technology were made of concrete

* University of Illinois, Bulletin No. 1, September, 1904.

1 Prof. Talbot gives the derivation of this formula and a theoretical discussion of his tests in
Journal Western Society of Engineers, August, 1904.

1 The constant in Prof. Talbot’s original formula was 0.26.

§ Journal Western Society of Engineers, August, 1904.
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mixed in proportion 1 : 2 : 4 by volume based on a unit of roo pounds
cement per cubic foot. The stone used was crushed conglomerate well
graded, the range of sizes-of particles being from 1 to 1 inch, while the
sand was a mixture of coarse and fine sands in equal parts. The steel
reinforcement consisted of plain round bars ranging in size from f to 1
inch in diameter. The age of beams when tested was about 3o days.
Their dimensions were as follows: span 12 feet, total depth 11 inches, depth
to steel 9.5 inches, thickness of flange 3 inches, breadth of stem 8 inches,
breadth of flange 2 feet. The percentage of reinforcement varied from 2.22
to 3.12 per cent based on the width of the stem, or from o0.74 to 0.104
per cent based on the width of the flange, using in both cases the depth
to steel in computing the area of conciete. The following table gives the
results of the tests.

Tests of Reinforced Concrete T-Beams
By Franx P, McKingen. (See p. 479.)
Massachusetts Institute of Technology.

| |
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Computed Moment of Resist-

> | No. of Beams:
No. of Round Rods.
Percentage of Steel.
Maximum Load.
Load at Last Measurement.
From Deformations. |
Computed,
Bending Moment at Last Meas-

Computed Stress in Concrete.

Size of Rods.

‘ Measured.

—
=
o

pady

O ® 6 @] 6

220003110, 34500 37460/ 037 0.38 528000

g

220008230| 33300 36000 0.44 c>.38i 5:8000!
| |
il.go 2502436522000 6440| 38100 33400 0.37 0.39 Szﬂoooi 636000a

# |ziog 2.735171:53+oooi5+oo‘ 21600 43500 0.43 0.41 576000 671000b

5030004

J;I.z.g'y 3.1:,;3094.0 2809017,04.0} 29600 34400 ©.47 0.44| 672000 6710006‘
} | I
: | | \

a Based on stress in steel obtained from last measurement.

b Based on crushing strength of concrete, since beam failed by compression.

Note: In figuring the moment of resistance the computed depth of neutral axis forn = 15 was used,
Percentage of steel in terms of width of flange is % of the values in col. (5)-

The tests compare well with the results obtained from the formulas given
on page 420. The stresses insteel,determined by measurements of stretch,
do not vary appreciably from those obtained from the formulas. Beams
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No. 4 and 5 failed by compression in the concrete, and the compressive
stress in beam near to failure agrees quite closely with the strength of the
prisms made of the same mix of concrete. A difference in deflection of the
stem and the flange was detected by the tests, which indicates that the com-
pressive stresses are not uniform throughout the whole width of the flange.
This, however, in practice is undoubtedly more than balanced by assuming
a width of flange smaller than the width of slab that actually assists in taking
the compression. First cracks occur, as evident, at very low stresses, but
they are very minute and almost invisible and their presence is not dan-
gerous. )

Tests of Repetitive Loading of Reinforced Concrete Beams by Prof.
H. C. Berry. Fatigue tests of reinforced concrete beams made by Prof.

Fatigue Tests of Reinforced Concrete Beams. Size of Beams: 8" X 11”.
Span: 13 Jt. Age: 6 Weeks

By H. C. Berry

Unaversity of Pennsylvania. (See p. 481)

4 NUMBER WORKING STRESS
REINFORCEMENT OF e el T s BREAKING i

REPETITIONS . = LOAD DEFLECTION
+ inSteel | in Concrete |

Ib. per sq. in. ' 1b, per sq. in. | o in.
4, %" round rods . . I , .56

4,3%" round rods. .| 297 ooo | 18 300 785 ' .48
2, 8" square bars. .| 395 ooo : I5 200 628 ; .46
2, 3" diamond bars 2 : a .62

| 718 000 | 14 300 | 8%
2, §” diamond bars| then
422 000 I7 100 | Q40 g .78
3, 3" corr. bars. . .. ) 000 0.66

3, 3" corr. bars . ... 295 ooo | 10 800 940 700 0. 58

H. C. Berry* at the University of Pennsylvania in 1908 indicate that as
many as one million repetitions of high working stresses do not materially affect
the ultimate strength of a reinforced concrete beam, its maximum deflection,
or the position of its neutral axis. Duplicate beams were made of concrete
mixed in the proportions of 1 part cement, 1% parts bar sand and 4} parts
4-inch crushed granite and were reinforced with plain and deformed bars.
These beams were tested when 6 weeks old, one being subjected to a repe-
titive loading sufficient to cause higher stresses than ordinarily allowed in

* Eng. Record, July 25, 1908, p. g0,




482 A TREATISE ON CONCRETE

good practice, and then tested to failure, while the other was broken in the
ordinary manner.

Tt was evident that the greater part of the set in the deformation in the
plane of the steel occurred in the first few thousand applications of the load
and that the set in the deformation on the compressive side of the beam
was also relatively large for the first few thousand repetitions and increased
with the stress applied and the number of repetitions.

The stresses realized and the deflections resulting from the repetitive
loadings are shown in the accompanying table on page 431. The breaking
strength of the beams sustaining the repetitive loading is substantially th-e
same in every case as the corresponding beam with no appreciable repeti-
tions,

.'"“% -

909k
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0 4000 8000 12000 1600 24000 28000 32000
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Fic. 151. Fatigue of Reinforced Concrete Beams. (See p. 482.)
By Prof. J. L. Van Ornum.

Compression tests by Prof. J. L. Van Ornum* at Washington University
made in 1go7 agree with the above tests for repetitive loadings under 50 per
cent of the maximum strength of the concrete, but for repeated loads greater
than this he found that beams will be subject to failure. He concluded
that the number of repetitions required to cause this failure depended
essentially upon the ratio of the test load to the ultimate strength of the
concrete. In these tests, as will be seen from the curve in Fig. 151, which
summarizes graphically the results of these experiments, the influence of

¥ Transactions American Society Civil Engineers, 1907, LVIIL, p. 294.
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the fatigue of concrete is limited to an intensity of about 5o per cent of the
ordinary ultimate strength of the concrete.

Tests at Illinois University, at St. Louis,* and elsewhere confirm the
principle illustrated and show that thereisa fatigue limit to concrete corre-
sponding in a general wayto the elastic limit of metals. This varies with

. the character of the concrete from } to § the ultimate strength. Prof. Talbot

finds in columns the deformation to be a measure of this fatigue limit, the
latter usually occurring at about 4 the ultimate deformation.

This fatigue limit of concrete, while it does not influence the practice of
conservative design, is a warning against the use of too high working stresses.

FLAT SLABS

Besides the usual systems for floors, using a combination of slabs, beams -
and girders, a floor system of a type of an entirely different design is some-
times employed, which consists of a flat unribbed slab continuous over the
whole floor and supported by columns only. The type originally introduced
by Mzr. C. A. P. Turner of Minneapolis is sometimes termed the Mushroom
System.

The reinforcement of the slab consists of bars running in four directions
radially from the column, and the head of the column is usually enlarged
in order to diminish the bending moment and increase the shearing resist-
ance. The vertical steel in the column reinforcement or a portion of it
may be bentand carried into the slab to add to the rigidity of the connection.

The moments and stresses in this system arestatically indeterminate, but
in order to make an application of the theory of flexure possible, the whole
floor is considered as a seties of flat circular slabs concentric with the
columns and firmly clamped to them, supporting the rest of the floor. Thus
the analysis of the whole floor is reduced to that of circular plates clamped
to the columns, and flat slabs supported on all edges by these circular plates.

Let Fig. 152 represent a floor of this system, and consider the strip ab as
separated from the rest of the floor. This strip when loaded will act as a
fixed beam. The points of inflexion will be distant approximately one-fifth
of the span from the circumference of the enlarged head of the column.
The points of inflexion of the floor will thus be located on the dotted curve

. shown on the drawing. Instead of this curve we may assume the points to

be on a circle, represented on the drawing by dash lines, and consider the
area within this circle as a round plate, loaded with a uniform load over its
area and in addition loaded around its circumference with a load which per

* See page 478,
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th is equal to the remaining load of the panel divided by the cir-

unit of leng

cumference of the circle.
The part of the slab between the column and the points of inflexion will

deflect downwards, while the rest of the slab will deflect as an ordinary
supported beam.

The authors have adopted Prof. Eddy’s analysis of stresses* in a homo-
geneous circular plate, and deduced from his general formulas, formulas
applying to circular slabs free on their outer edge and clamped round the
column. In this analysis the effect of lateral stresses has been taken into
account, this being expressed by Poisson’s ratio, which is the ratio of the

COLUMN HEAD |

\ /'t THEORETIOAL

h ]

\ / / CIRCLE OF INFLECTION LY

W . e N
e r‘:_ A e
ASSUMED CIRCLE
OF INFLECTION

Fic. 152. Flat Slab. (See p. 483.)

lateral deformation to that in the direction of stress. Very few tests have
been made to determine the value of Poisson’s ratio, and the results obtained
vary considerably. Many of the earlier tests give as high as 0.2, but since
some of the best experiments in our American colleges indicate a value
ranging, with concrete of different proportions and strength, from o.05 to
0.15, the ratio of 0.10 is recommended for use with concrete where the correct
value is unknown, as being undoubtedly safe for concrete of 1:2:4 pro-

It must be noted. that the increase of Poisson’s ratio tends to

portions.
A high Poisson’s

diminish the deflection and thus decrease the stress.
ratio therefore means a thinner slab and less steel.

* Engineers’ Society, University of Minnesota, 1899.
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The meaning of Poisson’s ratio as applied to a loaded column is th
l:fltera] defOfmation per unit of width divided by the longitudinal def(;rmae
tion per unit of length. For example, if a certain loa(f causes a Io-incf;
colum-n to E)E?and laterally 0.0003 inches, while at the same time it shortens
0.03 inches i1 a gaged length of 100 inches, Poisson’s ratio for that load-

. . 0.0003 X I00
ing is S g ok
TR o.1. In a slab supported on columns there is a

simi iti i

Othllarcolndmon of deformations caused by stresses at right angles to each
: er Wth.h a}'e taken into account in the mathematical work involved
in the derivation of the formulas.

Let
= uniform distributed load along th i
e edge of the pl:
% ey g g e plate in pounds per
= uniform distributed loz : i
g stributed load on surface of the plate ia pounds per square
= radius of enlarged column in feet.
= outer radius of assumed plate in feet.
= any radius in feet.
= Poisson’s ratio.
Cé, C,, C, = constants to use in formula (52) (54) (55). Table g, p. 518
w Co Cg4 = constants to use in formula (53) (56) (57)- Table :
p. 518. 9,
[ for loading u.iformly
distributed over the
plate.

M, = moment causing circumferential fiber stress l’ for loading  distrib-

M, = moment causing radial fiber stress 3 {nitted RO TS
[ of the plate.

= moment causing circumferential fiber stress
= moment causing radial fiber stress

Ihell 0! he m -
X W 11 11 C
{ rt aximum moment, 1C OCccurs at thL (lICUllL‘[eIEIlCC ()f

. .
Following formulas may be used for finding of moments at any point of plate

o=y Lo () -0 (2) eums () ]
e z{ e (—r—:;)i SN ,(-'ri)z) 05 log, (,ro)
Ma‘=¢1’a{ _Ca( )Z_Cflog(r ) +C‘f}

=
o
2

M, = i a r

1y ?"o{ca(:) —Lclog( )+Cb}

r
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