CHAPTER XXII

THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF
QUADRATIC FORMS

101. Two Theorems in the Theory of Matrices. In order to jus-
tify the applications we wish to make of the theory of elementary
divisors to the subject of quadratic forms, it will be necessary for us
to turn back for a moment to the general theory of matrices,

DeriNtrioN.  If ¢(z) 48 a polynomial :
H(2)= a2 + a2 1+ oo ta, T+ am,.
then X"+ x4 o @, X +a,l
18 called a polynomial in the matriz x and is denoted by ¢(x).*

We come now to one of the most fundamental theorems in the
whole theory of matrices:

TaeorEM 1. If a is a matriz, and ¢()) its characteristic fune-
tion, then #a) = 0.
This equation is called the Hamilton-Cayley equation.
Let ¢ be the characteristic matrix of a:
c=4a— AL
This being a A-matrix of the first degree, its adjoint C will be a
A-matrix of degree not higher than n—1, if  is the order of the matrix a:
(1) C=C, A1 +C A" 24 . +C.
We may also write
(2) P =N+ B 2L e 4 K
Now referring to formula (5), § 25, we see that
aC — AC = ¢(M)I.
*1It should be noticed that, according to this definition, the coefficients of a poly-
nomial in x are scalars. Contrast this with a A-matrix, in which the coefficients are

matrices and the variable a scalar, Both of these conceptions would be included in
expressions of the form ;

ax™bo + a1x™~Thy + oo + ApgXby-g + a5
206
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Substituting here from (1) and (2), we have, on equating corres

sponding powers of A, aC, i

aC, — Cy=#k]1,

aC, — C; =k,

aC,-y — Cog = Ky I,
-C =k,

Tf we multiply these equations in succession by I, a, a3 .- &%
and add, the first members cancel out, and we get

kUI + kla + ]C28.2 + A + knaﬂ == 0‘

This is precisely the equatior
$(a)=0

which we wished to establish. /
As a means of deducing our second theorem, we next establish a

lemma which relates merely to scalar quantities.

LemMA. If (z)is a polynomial of the nth degree (n>>0) whose
constant term is not zero, there exists a polynomial x(x) of degree less
than n such that )
i8 divistble by Y(z).

Let #—a, z—b, z—e¢, +- be the distinct linear factors of y(z),
g0 that we may write

Wz)=kz—a)y(z— bz —c) -~ (e +B+y+ = =n)

None of the constants a, b, ¢, --- are zero, since, by hypothesis, the
constant term of 4 is not zero. Let us, further, denote by Yry(z) the
polynomial obtained from 4 by omitting th_e factor (z—a)’, by
() the polynomial obtained irom yr by omitting the factqr (z—0)p,
etc., and finally let us form, with undetermined coefficients, the
polynomials

Alz)= A, + A(z—a)+ Afz — a4 o +4,(z— a)d,

Bw)= B, + Bila—b)+ B —Vf+ = +Bs(o—bF

Oz)= 0, + Cz—c)+ Ofz—cf+ - + C(m—c)y

() . L
. . - . -
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From these pcﬂynomials we now form the polynomial
x(2) = A(zny(@) + Blapprdz) + Hzpp(e) + -

whose degree can obviously not exceed n—1. We wish to show
that the coefficients A;, B, -+ can be so determined that this poly-
nomial X(z) satisfies the conditions of our lemma.

Since Yy, Vg --- are all divisible by (z—a)?, a necessary and
sufficient condition that (y(z)? —z be divisible by this factor is that

the polynomial 4() = (A)H(2)P —
be divisible by (z—a)*. We have
¢(a) oy Agkz(_a A 5)25(4 e 0)27 =
In order that ¢(z) be divisible by = — a it is therefore necessary and
sufticient that “
(3) Aﬁ:;}(a_b)zﬁ(w_.c)zv

Neither numerator nor denominator here being zero, we thus
obtain two distinet values for A, both different from zero. If we
give to A, one of these values, ¢(z) is divisible by # —a. A neces-
sary and sufficient condition that it be also divisible by (z—af is
that ¢/(a) = 0, accents here, and in what follows, denoting differentia-
tion. We shall see in a moment that this condition can be imposed
in one, and only one, way by a suitable choice of 4;. The condi-
tion that ¢(z) be divisible by (z — )’ is then simply ¢'/(2)=0. We
wish to show that this process can be continued until we have finally
imposed the condition that ¢(z) be divisible by (# —a)*. For this
purpose we use the method of mathematical induction, and assume
that A, - 4, ; have been so determined that ¢(a)=¢'(a)= -
= ¢ (a)=0. It remains then merely to show that A4, can be so
determined that ¢U(a)=0. For this purpose we notice that

) $¥l(z) = 24M(2)A()(¥4(2)) + Bi(2)

where R,(z) is an integral rational function with numerical coeffi-
cients of Yy, Y, -+ ¥, 4, 4', -« A1 Since

A(a)= Ay, A'(a)=A,, A"(a)=24,, - A" Ya)=(s—1)I4, ;

it follows that R(a) is a known constant, that is, that it does not
depend on any of the still undetermined constants 4, 4,4, -+ Aay
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nor on the B's, (s, ete. Consequently we see from (4) that a neces-
sary and sufficient condition that ¢¥I(a)=0 is that A, have the value

e h R_,(ﬂ:)
A=—"52"7_,
2sldy (Py())?

Determining the coefficients A;, 4;, -+ A,_; in succession by means
of this formula, we finally determine the polynomial A(z) in such a
way that ¢(z) is divisible by (#—a)*. For this determination,
(x(x) — 2 will, as we saw above, be divisible by (z — a).

In the same way we can now determine the coefficients of B(z) so
that (x(z)) — 2 is divisible by (z— b); then we determine the coeffi-
cients of ((z) so that (y(2))? — z is divisible by (z—e)*; ete. When
all the polynomials A, B, €, - are thus determined, (X(z))* — = i
divisible by 4(z), and our lemma is proved.

)

TarEOREM 2. If a 18 a non-singular matriz of order n, there exist ma-
trices b of order n (necessarily non-singular) with the following properties:

=g,
b is a polynomial in a of degree less than n.

Since a is non-singular, its characteristic function ¢(1) is a poly-
nomial of the nth degree whose constant term is not zero. Hence, by
the preceding lemma, a polynomial x(X) of degree less than u can be

determined such that (V) = X = () FON)

where f() is also a polynomial. From this identity it follows that
(x(2)) —a=¢(a)f(a).
Since, by Theorem 1, ¢(a) = 0, the last equation may be written
(x(a)) =2,

so that b= y(a) is a matrix satisfying the conditions of our theorem,
which is thus proved.

102. Symmetric Matrices. The application of the theory of ele-
mentary divisors to the subject of quadratic forms rests on the fol-

lowing proposition:
TaroreM 1. If a, and a, are symmetric matrices and ¢ there
exist two non-singular matrices p and q such that

) 8,= D8,
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then there also exists a non-singular matriz P such that
(2) a,=PaP
where P' 18 the conjugate of P.*

.

Let us denote by p’ and q’ the conjugates of p and q respectively
Taking the conjugates of both sides of (1), and remembering that
a; and a, being symmetric, are their own conjugates, we get, by
Theorem 6, § 22,

L&) 8, =q'ap/.

By equating the values of a, in (1) and (3), we readily deduce the
further relation

4) (a')'pa; = a1P"1'1-.

For bfevity we will let

©) U=(q')"'p, U'=p'q

and note that U’ is the conjugate of U ; cf. Exercise 6, § 26. Equa-

tion (4) may then be written

From this equation we infer at once the following further ones :
U%a, =Ua U’ = a,U"

(M R

k~ k
Ukal = Ua]_U’ 1= a].U! .

Let us now multiply the equations (6) and (7) and also the equa-
tion &, =a, by any set of scalar constants and add them together.
We see in this way that if y (U) is any polynomial in U,

(8) : x(U)a, = ayy(U').

* A proof of this theorem much simpler than that given in the text 1s the following :
" From (1) we infer at once that a; and a; have the same tank. Hence the quad-
ratic forms of which a; and a, are the matrices are equivalent to each other by Theorem
4, § 46, Ii we denote by P the matrix of the linear transformation which carries over
the quadratic form a; into the form a, we see, from Theorem 1, § 43, that equation (2)
holds. .
This proof would not enable us to infer thatP can be expressed in terms of pand g
alone. and this s egsential for our purposes,

so that V is non-singular and
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We will choose the polynomial
V=x(0)

Y=,

as is seen to be possible by Theorem 2, § 101. Denoting by V' the
conjugate of V, we evidently have

V' =x(U),

go that we may write (8) in the form
Va,=a,V/,

or ' & =""1a,Y.

We now substitute this value in (1) and get
(9 a,=pV1a, Vg

From the first equation (5) we infer the formula
pVi=4q'V.

Consequently pV-1 is the conjugate of V'q, so that if we let
' P=Vg,

uation (9) may be written
eq (9) may a,=P'a.P,
and our theorem is proved.
The proof just given enables us to add the

COROLLARY. As the matriz P of the foregoing theorem may be
taken the matriz V'q where V' is the conjugate of any one of the square
roots, determined by Theorem 2, § 101, of (q)p.

In particular it will be seen that P depends on p and g but not on
a, or 4, Hence if a;, a, by, b, are symmetric matrices, and the.re
exist two non-singular matrices p and q such that

a, = pa,q, b, = pb,gq,

then there exists a non-singular matrix P such that

32 — P!a].P’ b2 = P’blpn
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From this and Theorem 2, § 96, we infer

TupoREM 2. If ), a5, by, by, are symmetric matrices of which bv b,
are non singular, a necessary and sufficient condition that a non- -Singus
lar matriz P exist such that

(10) a,=P'a,P, b, = P'b,P,

where P' i3 the conjugate of P, is that the matrices
a; — Ab;, a, — Ab,
have the same invariant fuactors,— or, if we prefer, the same elementary
divisors.
If, in particular, b= b, =1, where I is the unit matrix, we have,
from the second equation (10), the formula
1=2P.

Such a matrix P we call an orthogonal matriz according to the defini-
tion, which will readily be seen to be equivalent to the one given in
the first footnote on page 154 :

DerFINITION. By an orthogonal matriz we understand a non-singu-
lar matriz whose inverse is equal to its conjugate,

Inthe special case just referred to, Theorem 2 may be stated in the
following form:

THEOREM 3. If a; and a, are two symmetric matrices, a necessary
and sufficient condition that an orthogonal matriz P exist such that

a2 = Pralp
i8 that the characteristic matrices of a, and a, have the same invariant
JSactors,— or, if we prefer, the same elementary divisors.
If this theorem is compared with Theorem 8, § 96, it will be seen
that it differs from it only in two respects, first that a, and a, are

assumed to be symmetric, and secondly that P is required to be
orthogonal.

* 103. The Equivalence of Pairs of Quadratic Forms. Let us con-
sider the two pairs of quadratic forms

¢1_Ea s 1!/‘1___5'3:,3}",,,

¢2 = % a:-;x"xj, 1;’2 = Eb”ﬂ}' m_.”
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of which the two forms 4, and v, are assumed to be non-singular.
We will inquire under what conditions these two pairs of forms are
equivalent ; that is, under what conditions a linear transformation

31 = 6'115"1 '|‘ cIn

! !
Ty =Cy#y + v T Oty

exists which carries over ¢, into ¢, and, at the same time, v, into yr,.
If we denote the conjugate of the matrix ¢ by ¢/, and the ma-

- trices of the forms ¢y, Y, ¢y Yy by a;, by, a5, b, respectively, we

know, by Theorem 1, § 43, that the transformation ¢ carries over ¢,
and 4, into forms with the matrices
c'a;c, c¢'bye

respectively; so that, if these are the forms ¢, and v, we have
(1 dy = £'a,0, b, =¢byc.

Consequently, by Theorem 2, § 102, the two A-matrices
a; — Aby, a, — Ab,

have the same invariant factors and elementary divisors.

Conversely, by the same theorem, if these two A-matrices have
the same invariant factors (or elementary divisors), a matrix ¢, inde-
pendent of A, exists which satisfies both equations (1); and hence
the two pairs of quadratic forms are equivalent. Thus we have
proved

TuroreM 1. If ¢, ¥y and ¢y Ay are two pairs of quadratic
Sforms in n variables, in which \r; and Ay are non singular, a necessary
and sufficient condition that these two pairs of forms be equivalent 18
that the matrices of the two pencils

1 — Ay, R
have the same invariant factors, — or, if we prefer, the same elemen-
tary divisors.*
A special case of this theorem which is of censiderable impor-
tance is that in which both of the forms ; and +r, reduce to

af + 2§+ o + 42
*For brevity, we shall speak of these invariant factors and elementary divisors as

the invariant factors and elementary divisors of the pairs of forms ¢1, ¥1and ¢z, ¥a
respectively.
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In this case we have to deal with orthogonal transformations (cf. the

Definition in Exercise 1, § 52), and our theorem may be stated in
the form *

Tarorem 2. If a, and a, are the matrices of two quadratic forms,
a necessary and sufficient condition that there exist an orthogonal trans-
Jormation which carries over one of these forms into the other is that the
characteristic matrices of a; and a, have the same invariant factors,
— or, if we prefer, the same elementary divisors.

To illustrate the meaning of the theorems of this section, let us
consider again briefly the problem of the simultaneous reduction of
two quadratic forms to sums of squares. In Chapter XIIT we be-
came acquainted with two cases in which this reduction is possible ;
cf. Theorem 2, § 58. and Theorem 2,§ 59. We are in a position now

sto state a necessary and sufficient condition for the possibility of
this reduction, provided that one of the two forms is non-singular,

For this purpose, consider the two quadratic forms

b=k} + b+ o + ka2,
=e2f 4 cd + -0 + 022,
where we assume, in order that the second form may be non-singular,
that none of the ¢'s vanish. The matrix of the pencil ¢ — Ay is

B e gy g
AR R ORI

0 B e, o

and the elementary divisors of this matrix are
o By
¥

all of the first degree. Consequently, any pair of quadratic forms

equivalent to the pair just considered must have a A-matrix whose '

elementary divisors are all of the first degree.

Cf)nversely, if we have a pair of quadratic:forms, of which the
first is non-singular, whose A-matrix has elementary divisors all of

* This theorem is, of coursg, essentially equivalent to Theorem 5, § 102, of which it
may be regarded as an immediate consequence.
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the first degree, we can obviously choose the constants & and e
in such a way that the A-matrix of the forms ¢ and 4 just con-
sidered has these same elementary divisors, and therefore the given
forms are equivalent to these special forms ¢ and y». Thus we have
proved the theorem :

TrEOREM 8. If ¢ and - are quadratic forms and +r is non-singu-
lar, a necessary and sufficient condition that it be possible to reduce ¢
and v simultancously by a non-singular linear transformation to forms
into which only the square terms enter is that all the elementary divisors
of the pair of forms be of the first degree.

This theorem obviously includes as.a special case Theorem 2 of
§ 58, since the elementary divisors are necessarily of the first degree
when the A-equation has no multiple roots.

Comparing the theorem just proved with Theorem 2, § 59, we see:
that under the conditions of that theorem the elementary divisors
must be of the first degree. Hence

THEOREM 4. If r is a non-singular, definite, quadratic form, and
¢ s a real quadratic form, all the elementary divisors of this pair of
forms are necessarily of the first degree. :

104. Classification of Pairs of Quadratic Forms. We consider

the pair of quadratic forms

1 o=3ogay  ¥=3haa

and assume, as before, that 4 is non-singular. We denote the ele-
mentary divisors of these forms, as in § 99, by

(A=A (AN =2g) - (A=A (e, + eg+ -+ ,=n).

The symbol [e; e, ---¢,] we call the characteristic of the pair of
quadratic forms; and all pairs of quadratic forms which have the
same characteristic we speak of as forming a category.*

We have here, precisely as in the case of bilinear forms, the
theorem:

TaEOREM. If M, Ny «-; N are any constants, equal or unequal,
and ey, €, -+ ¢, are any positive integers whose sum i n, there exist pairs

* Thus, forinstance, all pairs of forms of which the second is non-singular and which
admit of simultaneous reduction to sums of squares, form a category whose character
isticis [11...1]. Cf. Theorem 8, § 103,

x
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of quadratic forms tn n variables, the second form in each pair being
non-singular, which have the elementary divisors '

(2) =2 (A=)

The proof of this theorem consists in considering the following
pair of quadratic forms, analogous to the normal form (3") of § 99:

[ e, e te—1 \

& &1
¢= (lleclxixﬁ_,ﬂ +Zdre, ) 4 ( 2 X ool iae sopivy + = BTy, st
1

&+l e+1

n—1 n—1
+ e +( 2 )A.ﬁ";l..’r'.'rzn“[,k_f+! + E dk?:,-xgn_%_,-),

'i—t’k+l ﬂ—ek+1

61 €l+E! 5’1+F.‘!+I’R
= 5 s

Y= zclmtxe,—w:[ + 2 T oo 111+ 2 CFTneigmterri

1 e+l ooyl

n
ade > ;
I + = O T on—e—it1’

L n—ept1

where ¢;, -+ ¢, dj, -+ d;, are constants which may be chosen at pleas-
ure, provided none of them are zero.

The A-matrix of this pair of forms is the same as the A-matrix of
the pair of bilinear forms (3') of § 99, and therefore has the desired
elementary divisors.

A reference to Theorem 1, § 103, shows that formula (3) yields a
normal form to which every pair of quadratic forms, of which the
second is non-singular and whose elementary divisors are given by
(2), can be reduced.

The eategories, of which we have so far spoken, may be divided
into classes by the same methods we used in § 99 in the case of
bilinear forms. This may be done, as before, either by simply noting
which of the A/s are equal to each other, or by further distinguishing
between the cases where some of the A;s are zero.

We are now in a position to see exactly in what way our elemen-
tary divisors give us a more powerful instrument than we had in the
invariants @, of § 57. These invariants 8, being the coefficients of
the A-equation of our pair of forms, determine the constants A, which
are the roots of this equation, as well as the multiplicities of these
roots. They do mot determine the degrees e, of the elementary di-
visors, and the use of the ©/s alone does not, in all cases, enable us
to determine whether two pairs of forms are equivalent or not.
Thus, for instance, we may have two pairs of forms with exactly the
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same invariants ©; but with characteristics [(11)11 . 1] and
[211 ... 1] respectively.* It will be seen, therefore, that the @,’s
form in only a very technical sense a complete system of invariants.

EXERCISES

1. Form a numerical example in the case n.=3 to illustrate the statement
made in the next to the last sentence of this section,

2. Prove that if two equivalent pairs of quadratic forms have two elementary
divisors of the first degree which correspond to the same linear factor, there exist
an infinite number of linear transformations which cairy over one pair of forms
into the other. ;

3. Prove the general theorem, of which Exercise 2 is a special case, namely,
that if two equivalent pairs of quadratic forms have a characteristic in which one
or more parentheses appear, there exist an infinite number of linear transforma-
tions which carry over cne pair of forms into the other.

4. Prove that if two equivalent pairs of quadratic forms have a characteristic
in which no parentheéses appear, only a finite number of linear transformations
exist which carry over one pair of forms into the other.t

How are these transformations related to each other?

105. Pairs of Quadratic Equations, and Pencils of Forms or Equa-
tions. In dealing with quadratic forms, the questions of equiva-
lence and classification do not always present themselves to us in
precisely the form in which we have considered them in the last two
sections. We frequently have to deal not with the quadratic forms
themselves but with the equations obtained by setting the forms
equal to zero. Two such pairs of equations we shall regard as
equivalent, not merely if the forms in them are equivalent, but also
if one pair of forms can be obtained from the other by multiplication
by eonstants different from zero.

Let us consider two quadratic forms ¢, v, of which we assume,
as before, that the second is non-singular, and inquire what the
effect on the elementary divisors

(1) (A=) (A =y, (A — Ny ye

* We may, in the case n =3, put the same thing geometrically (cf. the next sec.
tion) by saying thatitis impossible to distinguish between the case of two conics having
double contact and that of two conics baving simple contact at a single point by the use
of the invariants ©; alone, whereas these two cases are at once distinguished by the use
of elementary divisors,

t The exercise in § 58 is practically a special case of this.

1 Questions similar to those treated in this section might have been taken up in
the last chapter for the case of bilinear forms.
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of these forms will be if the forms are multiplied respectively by the
constants p, ¢ which are both assumed to be different from zero,
Let us write

1 =pdh Vi =9y
Then

2 ¢ =M =p($—2Y)
where 3= 2%,
j’)

Let A — @ be any one of the linear factors of the matrix of ¢ — s,
so that ¢ is any one of the constants A;, A,, =+ A ; and let us denote,
as in the footnote to Definition 3, § 92, by I, the exponent of the
highest power of A — « which is a factor of all the i-rowed deter-
minants of this matrix. Then it is clear, from (2), that 7 is the
exponent of the highest power of M — « which is a factor of all the
t-rowed determinants of the matrix of ¢; —Ayr;. In other words,

-5

18 the highest power of the linear factor A — pa/g which is a factor
of all the ¢-rowed determinants of the matrix of ¢, — Ay, Turning
now to the definition of elementary divisors as given in the footnote
to Definition 3, § 92, we see that the elementary divisors of the matrix
of ¢; — Ay, differ from those of the matrix of ¢ — Ay only in having
the constants A, replaced by the constants pA,/g. We thus have the
result :

THEOREM 1. If the pair of quadratic forms ¢, v, of which the
second 8 assumed to be mom-singular, has the elementary divisors

A=A (A=2g)

and if p, g are constants different from zero, then the pair of quadratie
forms pp, qyr has the elementary divisors
=My (=M e (=D

P
=N
g™

In particular, it will be seen that these two pairs of forms have
the same characteristic, even when the conception of the character
istic is refined not merely by inserting parentheses but also by tk
use of the small zeros.

where A=
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The theorem just proved shows that pairs of homogeneous
quadratic equations, of which the second equation in each pair is
non-singular, may be classified by the use of their characteristics
precisely as was done in the last section for pairs of quadratic forms.
We proceed to illustrate this in the case n =3, where we may con-
sider that we have to deal with the classification of pairs of conics
in a plane, one of the conics being non-singular.

We have here three categories represented by the following
normal forms:*
I [111] { el ialki

Y= 23423 — 2§

¢ =20 7,2,+ 27 + My
Y= 22,2, + 23

I [21) {
(1L [3] {ﬁf’ =2N 2,2+ M7} + 2,

iy @ 2
Y= 2z7+ 23

We next subdivide these categories into classes, and, by an ex-
amination of the normal form in each case, we are enabled at once to
characterize each class by certain projective properties which it has, .
and which are shared by no other class.t Since the conic Y is non-
singular in all cases, this fact need not be explicitly stated.

[111] ¢ and ¥ intersect in four distinct points.

[(11)1] ¢ and 4 have double contact.

[(111)] ¢ and » coincide.

[21] ¢ and 4 meet in three distinet points at one of which
they touch.

[(21)] ¢ and 4 have contact of the third order.

[3] ¢ and 4 have contact of the second order.

In all of the above cases ¢, as well as 4, is non-singular.

In the next five cases, ¢ consists of a pair of distinet straight
lines.

* We assign to the constants ¢; and %;, in formula (8) of the last section, values so
chosen that the loci ¢ =0, ¢ =0 are real when the constants \; are real. This is, of
course, not essential, since we are not concerned with questions of reality.

t In order to verify the statements made below, the reader should have some
knowledge of the theory of the contact of conics; cf. for instance Salmon’s Conis
Sections, Chapter XIV., pages 232-238.
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0
[11 I:([} ¢ and y intersect in four distinet points.
[(101) 1] Both of the lines of which ¢ consists touch .

[21] One of the lines of which ¢ consists touches v, while
the other cuts it in two points distinet from the point
of contact of the first.

0 :
[21]  The two lines of which ¢ consists interseet on +, and
neither of them touches .

0
[3] The two lines of which ¢ consists intersect on , and
one of them touches yr.

In the next two cases, ¢ consists of a single line.
00

[(% %) 1] The line ¢ meets 4 in two distinet points.

[(21)] The line ¢ touches .

Finally we have the case:

000 ,
[(R111]) Here $=0, and we have no conic other than .

Suppose finally that we wish to classify not pairs of quadratic forms
or eq_uatmns but pencils of quadratic forms or equations. Consider the
pencil of quadratic forms b=

where ¢ and yr are quadratic forms, and + is non-singular, and
suppose that the elementary divisors of the pair of forms ¢, ¥» are

given by formula (1) above. The question presents itself whether,.

if, in place of the forms ¢, ¢, we take any other two forms of the
pencil o

b= — py Vi=¢—ri,
t¥1e. constants u, » being so chosen that w#» and that +, is non-
s1‘ngular, the pair of forms ¢, Y, will have these same elementary
divisors (1). If this were the case, we could properly speak of (1)
as the elementary divisors of the pencil. This, however, is not the

case, and the pencil of quadratic forms cannot properly be said to have
elementary divisors.*

* We here regard the pencil as merely an aggregate of an infinite number of
guadratic forms, namely, all*the forms which can be obtained from the expression
¢_— Ay by giving to A different values. In this sense we cannot speak of the elementary
divisors of the pencil. If, however, we wish to regard the polynomial in the #’s and 7;,
@ — M, as the pencil, we may speak of its elementary divisors, meaning thereby simply
what we have called the elementary divisors of the pair of forms ¢, .
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There is, however, a simple relation between the elementary
divisors of two pairs of forms taken from the same pencil. In order
to show this, let us determine the elementary divisors of the pair of
forms ¢, ¥y, above. For this purpose consider the expression
& — My, which, when A == 1, may be written
(3) ¢ =My =(1-2) [¢—2]

@—vA
=T
Now suppose, as above, that X — « is any one of the linear factors of
the matrix of ¢ — Xy, and that J; is the exponent of the highest
power of A — & which is a factor of all the i-rowed determinants of
this matrix. Then any one of the {-rowed determinants of the ma-
trix of ¢ —\'Yr may, when A+ 1; be written in the form

(N — )V

where fis a polynomial in N of degree not greater than ¢ —1I.
Accordingly, by (3), the corresponding ¢-rowed determinant of the
matrix of ¢, — A, may be written

[ = = a(1=M)]Hf(A)

where f, is a polynomial in A. Thus we see that

— ———u i l" i
: “—v
is a factor of every i-rowed determinant of the matrix of ¢; — M.
Similar reasoning, carried through in the reverse order, shows that
this is the highest power of «—p
[ 4ol 4
which is a factor of all these i-rowed determinants. - Hence
TrsoreM 2. If the pair of quadratic forms ¢, ¥, of which the
second i3 non-singular, have the elementary divisors
A=rpn (A=) (X =)
and if p, v are any two eonstants distinet from each other and such
that v is distinct from all the constants Ay, Ny, ++ Ny, then the two forms
pr=¢—pd,  Y1=¢—vhy

of which the second will then be non-singular, will have the elementary
divisors =Ny (A=A, (A=2L)E

where : A= :-:E-: (i=1,2, - k)

where P

A
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In particular, it will be seen that the two pairs of forms ¢, yr and
¢y, ¥, have the same characteristic [e; e, -+ ¢;] even if we put in
parentheses to indicate which of the e’s correspond to equal A/s.
The characteristics will not, however, necessarily be the same if we
put in small zeros to indicate which of the ¢’s correspond to vanish-
ing As, since A; and A} do not usually vanish together. Accord-
ingly, in classifying pencils of quadratic forms, we may use the
characteristic of any pair of distinct forms of the pencil, the second
of which is non-singular, but we must not introduce the small zeros
into these characteristics. This classification, of course, applies only
to what may be called non-singular pencils, that is, pencils whose
forms are not all singular. !

It will readily be seen that what has just been said applies with-
out essential change to the case of pencils of homogeneous quadratic
equations, We may therefore illustrate it by the classification of
non-singular pencils of conics.* We have here six classes of pencils
which we characterize as follows:

[111]  The conics all pass through four distinct points.

[(11)1] The conics all pass through two points at which they
have double contact with each other.

[(111)] The conies all coincide.

[21] The conics all pass through three points at- one of
which they touch one another. '

[(21)]  The conics all pass through one point at which they
have contact of the third order.

(3] The conics all pass through two points, at one of
which they have contact of the second order.

EXERCISES

1.‘ Detel:mine, by the use of elementary divisors, the nature of each of the
following pairs of conies:
(@ {3x'1‘+73:§ +8rixe— 1022w 42125 =0
223 +8af -2 +dmae— Bapzs+ 6zyap=0.

® {39:?—z‘ﬁ—3x§—3x1x2+3z2x3+x1x3=0
Exf-l-x%— x§—2z1$2—2z2z3+21:1xa"—-0.

2._ Give a classification of pairs of binary quadratic equations, the second
equation of each pair being non-singular, and interpret the work geometrically.

* For a similar classification of pencils of quadrics we refer to p. 46 of Bromwich’s
book : Quadratic Forms and their Classification by Means of Invariant Factors.
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106. Conclusion. We wish, in this section, to point out some
of the important questions connected with the subject of elementary
divisors, which, in order to keep our treatment within proper limits,
we have been obliged to leave out of consideration.

If ¢, ¥, and ¢, Y, are two pairs of bilinear or quadratic
forms of which +r, v, are non-singular, we have found a method
of determining whether these two pairs of forms are equiva-
lent or not. If we use the invariant factors instead of the ele-
mentary divisors, our method involves only the use of the rational
operations (addition, subtraction, multiplication, and division),
and can, therefore, be actually carried through in any concrete
case. In fact we have explained in § 93 some really practical
methods of determining the invariant factors of a M-matrix, so
that the problem of determining whether or not two pairs of
bilinear or quadratic forms; the second form in each pair being
non-singular, are equivalent, may be regarded as solved, not
merely from the theoretical, but also from the practical point of
view.

There is, however, another question here, which we have not
treated, namely, if the two pairs of forms turn out to be equiva-
lent, to find a linear transformation which carries over one into
the other. This problem, too, we may consider that we have
solved from a theoretical point of view; for the proof we have
given that if two pairs of forms have the same elementary
divisors there exists a linear transformation which carries over
one pair of forms into the other, consisted, as will be seen on
examination, in actually giving a method whereby such a linear
transformation could be determined. In fact, in the case of bilinear
forms, the processes involved are, here again, merely the rational
processes; so that, given two equivalent pairs of bilinear forms, the
second form of each pair being non-singular, we are in a position to
find, in any concrete case, linear transformations of the 2’s and y's
which carry over one pair of forms into the other. Even here the
arrangement of the work in a practical manner might require
further consideration.

In the case of quadratic forms the problem becomes a much more
difficult one, inasmuch as the processes involved in the determination
of the required linear transformation are no longer rational ; cf. the
Lemma of § 101. That this is not merely a defeet of the method we
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have used, but is inherent in the problem itself, will be seen by a con-
sideration of simple numerical examples. Let, for instance,

¢, =223 + 323,

V= 21+ 23

oy =223 — 823,
Vo= 2f— 23
Here the pairs of forms ¢, ¥, and ¢, ¥, both have the elementary
divisors 3.0 50 '

and are therefore equivalent. The linear transformation which
carries over one pair of forms into the other cannot, however, be
real (and therefore its coefficients cannot be determined rationally
from the coefficients of the given forms) since ¢, and ¥, are definite,
¢, and +, indefinite.

We have, therefore, here the problem of devising a practical
method of determining a linear transformation which carries over a
first pair of quadratic forms into a second given equivalent pair. A
method of this sort, which is a practical one when once the elemen-
tary divisors have been determined, will be found in Bromwich’s
book on quadratic forms referred to in the footnote on p. 312,

Another point at which our treatment is incomplete is in the
restriction we have always made in assuming that, in the pair of
bilinear or quadratic forms ¢, y», the form ¥ is non-singular. Al-
though this is the case in many of the most important problems to
which one wishes to apply the method of elementary divisors, it is still
a restriction which it is desirable to remove. This may be done in
part by making use not, as we have done, of the pencil ¢—xr, but
of the more general pencil ud — Ay, g and A being variable param-
eters. The determinants of the matrix of this pencil are binary
forms in (, M),and the whole subject of elementary divisors admits
an easy extension to this case, the elementary divisors being now
integral powers of linear binary forms. The only case which can-
not be treated in this way is that in which not only ¢ and 4 are
both singular, but every form of the pencil ud —A+y is singular,
This singular case, which was explicitly excluded by Weierstrass in
his original paper, requires a special treatment which has been given
by Kronecker. Of., for the case of quadratic forms, the book of
Bromwich already referred to. -

Still anothet question is the application of the method of ele-
mentary divisors to the case in which the two forms ¢, Y are real,
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and only real linear transformations are admitted. In the case of

bilinear forms, this question presents no serious difficulty; cf. the
exercises of §§ 97, 99. In the case of quadratic forms, however, the
irrational processes involved in the proof of the Lemma of § 101
introduce an essential difficulty, since they are capable of introduc-
ing imaginary quantities,. Moreover, this difficulty does not lie
merely in the method of treatment. The theorems themselves
which we have established do not remain true, as is seen by a refer-
¢nce to the numerical example given earlier in this section for an-
other purpose, where we have two pairs of real quadratic forms
which, although they have the same elementary divisors, are not
equivalent with regard to real linear transformations. 3

We must content ourselves with merely mentioning this impor-
tant subject, and referring, for one of the fundamental theorems, to
p- 69 of the book of Bromwich.

For further information concerning the subject of elementary
divisors the reader is referred to Muth’s Theorie und Anwendung der
Elementartheiler, Leipzig, Teubner, 1899. In English, the boo_k_ of
Bromwich already referred to and some sections in Mathews’ revision
of Scott’s Determinants will be found useful.
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