
CHAPTER XXII 

THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF 
QUADRATIC FORMS 

101. Two Theorems in the Theory of Matrices. In order to jus­
tify the applications we wish to make of the theory of elementary 
divisors to the subject of quadratic forms, it will be necessary for us 
to turn back for a moment to the general theory of matrice~. 

DEFINITION. lf <f,(x) is a polynomial: 

4>(x)eea0 x"' + a¡x"'-1 + ··· + am_1x+ am, 
then a.xm + a¡xm-¡ + ... + ªm-¡X + ami 

is called a polynomial in the matrix x and is denoted by </>(x). • 

W e come now to one of the most fundamental theorems in the 
whole theory of matrices: 

THEOREM l. ]J' a is a matrix, and </>(A) its characteristic func-
tion, then </>(a) = O. 

This equation is called the Hamilton-Cayley equation. 
Let e be the characteristic matrix of a : 

c=a-u. 
This being a A-matrix of the first degree, its adjoint C will be a 

l.-matrix of degree not higher than n-1, if nis the order of the matrix a: 
(I) e= c,_1},_•-1 + c._2},_•-2 + + c

0
• 

We may also write 

(2) </>("-) es k."-" + k,_¡:>,•-1 + ... + k0• 

Now referring to formula (5), § 25, we see that 

aC - AC es </>("-)l. 

• It sbould be noticed that, according to tbis definition, the coefflcient,s of a poly­
nomial in x are scalars. Contra.st this with a ~-matrix, in which the coefflcients are 
matrices and the variable a sea.lar. Both of these conceptions would be included in 
axpressions of the !orm : 

aox"'bo + a1X--1b1 + ··· + a.-1xba-1 + 8m. 
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Substituting here from (1) and (2~ we have, on equating corre. 

sponding powers of },., aCo = kol, 

aC1 - C0 = k1I, 

aC2 - C1 = k21, 

aC •. 1 - C0 _ 2 = k,._1 I, 

-: C0 _ 1 = k0 I. 

lf we multiply these equations in succession by I, a, a1, •·· a•, 
and adcÍ, the first members cancel out, and we get 

kJ + k1a + k2a2 + .. · + k.a• = O, 

This is precisely the equatiou 
</>(a)= O 

which we wished to establish. 
As a means of deducing ouc second theorem, we next establish a 

lemma which relates merely to scalar quantities. 

LEMMA. Jf ,f,{_x) is a polynom.ial of the nth degree (n > O) whose 
constant term is not zero, there exists a polynomial xf_x) of degree leu 

tkan n such that ( xJ_ x) 'f- x 
is divisible by ,f,{x). 

Let x- a, x- b, x - e, •.. be the distinct linear factors of ,f,{x), 
so that we may write 

,f,{x)eek(x-a)'(x-b'f(x-c)> ··· (a+/:l+'Y+ •·· =n). 

None of the constants a, b, e, ... are zero, since, by hypothesis, the 
constant term of ,¡, is not zero. Let us, further, denote by fi(x) the 
polynomial obtained from ,¡, by omitting. t~e factor (x - a)•, by 
,¡,

2
(x) the polynomial obtained Zrom ,¡, by om1tbng the factor (x-b'f, 

etc., . and fiually Jet ns forro, with undeterm!Iled coeffic1ents, the 

polynomials 

A(x)ee A0 + A 1(x- a)+ A,(x- a)2 + 
B(x)eeB0 +B1(x- b)+ B2(~- b'f + 
C(x)ee 00 + Ci(x- e)+ C2(x- c'f + 

. . . . . . . . . . 

+A._i(x- a)•-1, 

+ B~_1(x- b'f-1, 

. . . . . . 
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From these polynomials we now forro the polynomial 

x(:v) eeeA(x),¡,¡(x) + B(x),¡,,(x) + O(x),¡,a(x) + •·· 
whose degree can obviously not exceed n-1. We wish to show 
that the coefficients A,, B;, ··· can be so determined that this poly­
nomial X(x) satisfies the conditions of our lemma. 

Since ,J,2, ,J,3, •·· are ali divisible by (x - a)•, a necessary and 
sufficient condition that (x(x))2 - x be divisible by this factor is that 
the polynomial 

be divisib'.e by (x- a)•. We have 

cj,(_a)=A~k'(a-b)21'(a-c)'' ... -a. 

In o,·Jer that cj,(_x) be divisible by x- a it is therefore necessary and 
sufficient that 
(3) A,_ a 

o - \2/l k'(a-b1 (a-c)2y ··· 

Neither numerator nor denominator here being zero, we thus 
obtain two distinct values for A0, both different from zero. If we 
give to A

0 
one of these values, cf,(x) is divisible by x - a. A neces­

sary and sufficient condition that it be also divisible by (x - a)' is 
that cf,'(a)= O, accents here, and in what follows, denoting differentia­
t.ion. We shall see in a moment that this condition can be imposed 
in one, and only one, way by a suitable choice of A,. The condi­
tion that cf,(x) be divisible by (x- a)8 is then simply cf,"(a)= O. We 
wish to show that this process can be continued until we have fiually 
imposed the condition that cj,(_x) be divisible by (x- a)•. For this 
purpose we use the method of mathematical induction, and assume 
that A 0, •·· A,_1 have been so determined that cj,(_a)=cf,'(a)= •·· 
= cf,lHl(a) = O. It remains then merely to show that A, can be so 
determined that cf,l•l( a)= O. For this purpose we notice that 

(4) cf,l•l(x)eee 2Al•l(x)A(xX,Jri(x))' + R,(x) 

where R,(x) is an integral rational fuuction with numerical coeffi­
cients of ,¡,-1, ,Jr\, ... ,¡,r¡1, A, A', ... AlHI. Since 

A(a) = A.
0
, A.'(a) = A.1, A"(a) = 2!A2, •·· A_[•· tl(a) = (s - l)!A.,_1, 

it follows that R(_a) is a known constant, that is, that it does not 
depend on any of the still undetermined constants A~ A,w •·· A.0 _ 1, 
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nor on the B's, O's, etc. Consequeutly we see from (4) that a neces­
sary and sufficient condition that cf,l•l( a)= O is that A, have the value 

(5) A, - R,(a) . 
2 s !A0 ( ,J,1( a))' 

Determining the coefficients A 1, A2, •·· A._1 in succession by means 
of this formula, we finally determine the polynomial A(x) in such a 
way that cf,(x) is divisible by (x- a)•. For this determination, 
(x(x)í' - x will, as we saw above, be divisible by (x- a)•. 

In the same way we can now determine the coefficients of B(x) so 
that (x(x))'-x is divisible hy (x- bf; then we determine the coeffi­
cierits of O(x) so that (x(x))2 -x is divisible by (x- e)'; etc. When 
all the pnlynomials A, B, O, ... are thus determined, (X(x))2 

- x is 
divisible by t(x), and our lemma is proved. 

THEOREM 2. JJ a is a non-singular matrix of order n, there exist ma­
trices b of order n ( necessarily non-singular) with thefollowing properties: 

b2 = a, 

b is a polynomial in a of degree less than n. 

Since a is non-singular, its characteristic fuuction cf,(r,,) is a poly­
nomial of the nth degree whose constant term is not zero. Hence, by 
the preceding lemma, a polynomial x(r,,) of degree less than n can be 

determined such that (x(r,, ))' _ ,,_ = cf,(r,,)f(r,,) 

wheref(r,,) is also a polynomial. From this identity it follows that 

(x(a))'- a= cj,(_a)f(a). 

Since, by Theorem 1, cj,(_ a) = O, the last equation may be written 

(x(a))' = a, 

so that b = x( a) is a matrix satisfying tbe conditions of our theorem, 
which is thus proved. 

102. Symmetric Matrices. The application of the theory of ele­
meutary divisors to the subject of quadratic forms rests on the fo). 

lowing proposition: 

THEOREM l. IJ a1 and a2 are symmetric matrices and if thera 
exist two non-singular matrices ·p and q such that 

(1) a,=Pa1q, 
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then there a/so ezists a non-singular matriz P sueh that 

(2) a,=P'a1P 
where P' is the eonjugate of P.• 

Let us denote by p' and q' the conjugates of p and q respectively 
Taking the conjugates of both sides of (1), and remembering that 
a1 and a,, being symmetric, are their own conjugates, we get, by 
Theorem 6, § 22, 
(3) 

By equating the values of a, in (1) and (3), we readily deduce thfl 
further relation · 

(4) (q'¡-'pa1 = ª1P'4-1· 

For brevity we will Jet 

(5) U= (q'¡-1p, 

and nute that U' is the conjugate of U; cf. Exercise 6, § 25. 
tion ( 4) may then be written 

(6) Ua1 =a1U'. 

Equa• 

From this equation we infer at once the following further ones : 

(7) 

U2a1 = Ua1 U'= a1U'2, 

U3a1 = Ua1 U'2 = a1 U'3, 

. . . . . 

U• u u1•-1 u1• ª1 = a, = ª1 · 

Let us now multiply the equations (6) and (7) and also the equa­
tion a1 = a1 by any set of scalar constants and add them together. 
We see in this w,;y that if X (U) is any polynomial in U, 

(8) 

• A proof of this theorem much simpler than tbat given in the text 1~ the following: 
From (1) we in fer at once that a1 and a2 have the same rank. Hence the quad .. 

ratic forms of which a1 and a2 are the matrices are equivalent to each other by Theorem 
4, § 46, If we denote by P the matrix of the linear transformation which carries over 
tbe quadratic form a1 into the form a2, we see, from Theorem 1, § 43, that equation (2) 
holds. 

This proof would not enable us to in fer that P can be expreased in terms of p and q 
alone. and this is es.sential for our purposes. 
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We will choose the polynomial 

V=x(U) 

so that V is non-singular and 
V2=U, 

301 

as is seen to be possible by Theorem 2, § 101. Denoting by V' the 
conjugate of V, we evidently have 

V1 =x(U'~ 

so that we may write (8) in the forro 

Va1 = a1V', 

or ª1 = v-1a1V'. 

We now substitnte this value in (1) and get 

(9) 

From the first equation (5) we infer the formula 

pv-1= q'V. 

Consequently pv-1 is the conjugate of V'q, so that if we let 

P=V'q, 

equation (9) may be written 
a,= P'a1P, 

and our theorem is proved. 
The proof just given enables us to add the 

CoROLLARY. As the matriz P of the foregoing thermm may be 
taken the matriz V'q where V' is the eonjugate of any one of the S'f'wre 
roots, determined by Theorem 2, § 101, of(q'J-1 p. 

In particular it will be seen that P depends _on p a~d q but not on 
a

1 
or a,. Hence if al' a,, bp b2 are symmetric matrices, and the;e 

exist two non-singular matrices p and q such that 

a,= Pª14, b2 = pb14, 

then there exists a non-singular matrix P such that 

a,= P'a1P, b2 = P'b1P. 
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From this and Theorem 2, § 96, we infer 

THEORElll 2. If a1, a,, b1, b2, are symmetric matrices o,f whích b b 
• • ¡, a 

are non singular, a nece,sary and sufficíent condítion that a non-sinqu• 
lar matrix P exíst such that • 

(10) 

where P' is the con}ugate of P, is tlwt tlie matrices 

have the same invariant factors, - or, if we prefer, the same elementary 
divisor s. 

If, in particular, b1 = b2 = 1, where I is the unit matrix, we have, 
from the second equation ( 10), the formula 

l=P'P. 

Such a mati'ÍK P we call an orthogonal mati·ix according to the defini­
tion, which will readi!y be seen to be eqnivalent to the one given in 
the first footnote on page 154 : 

DEFINITION. By an ortlio,qonal matrix we understand a non-singu• 
lar matrix whose inverse is equal to its con}ugate. 

In the special case just referred to, Theorem 2 may be stated in the 
following form: 

THEOltEM 3. If a1 and a, are two symmetric matrices, a necessary 
and sufficient condition that an orthogonal matrix P exist s,wh that 

a,= P'a1P 

is that the characteristic matrices of a1 and a, have tlie same ínvaríant 
factors, - or, if we prefer, the same elementary dívisors. 

If this theorem is compared with Theorem 3, § 96, it will be seen 
that it differs from it only in two respects, first that a1 and a, are 
assumed to be symmetric, and secondly that P is required to be 
orthogonal. 

• 103. The Equivalence of Pairs of Quadratic Forms. Let us con• 
sider the two pairs of quadratic forms 
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of which the two forms ,¡,1 and ,¡,2 are assumed to be non-singular. 
We will inquire under what conditions these two pairs of forms are 
equivalent; that is, under what conditions a linear transformation 

e {:: •
1:x\ :+ ... : + º:•x~ 

xn = c111 x; + · • · + c,mx~ 

exists which carries over cf,1 into cf,2 and, at the same time, ,¡,1 into ,¡,2• 

If we denote the conjngate of the rnatrix e by e', and the ma­
trices of the forms ,f,1, ,¡,1, cf,2, ,¡,, by a1, b1, a2, b2 respectively, we 
know, by Theorem 1, § 43, that the transformation e carries over cf,1 

and ,¡,1 into forms with the matriQes 

c1a1c, c'b1c 

respectively; so that, if these are the forms cf,2 and ,¡,2, we have 
(1) 

Consequently, by Theorem 2, § 102, the two ?..-matrices 

a1 - ?..b¡, a, - ?..b2 

have the same invariant factors and elementary divisors. 
Con versely, by the same theorem, if these two ?..-matrices have 

the same invariant factors (or elementary divisors), a matrix e, inde­
pendent of ?.., ex:ists which satisfies both equations (1) ; and hence 
the two pairs of quadratic forms are equivalent. T'ins we have 
proved 

THEOREM l. Jf cf,1, ,¡,1 and cf,2, ,¡,, are two pairs of quadratic 
forms in n variables, in which ,¡,-1 and ,¡,-2 are non-singular, a necessary 
and sufficient condition that these two paírs of forms be equivalent is 
that the matrices of th e two pencils 

e/>¡ - ?..y¡, e/>, - AY, 

have the same ínvariant factors, - or, if we prefer, the same elemen­
tary divisors. * 

A special case of this theorem which is of considerable impor• 
tance is that in which both of the forms y 1 and ,¡,, reduce to 

Xj + X~ + ... + x:, 
•For brevity, we shall speak of these invariant factors and elementary divisora aa 

the invariant factora and elementary divisors of the pajrs of forms <P1t 1/11 and ef,2, V/2 
reispectively. 
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In this case we have to deal with orthogonal transformations ( cf. the 
Definition in Exercise 1, § 52), and onr theorem may be stated in 
the form * 

THEOREM 2. If a1 and a2 are the matrices of two quadratic forms, 
a necessary and sujfident condition that there exist an orthogonal trans­
formation which carries over one of these forma into the other is th,t the 
characteristic matrices of a1 and a2 !,ave tl,e same invariant factora, 
- or, if we prejer, the same elementary divisors. 

To illustrate the meaning of the theorems of this section, Jet us 
consiuer again briefly tb_e problem of the simultaneous reduction of 
two q uadratic forms to surns of squares. In Chapter XIII we be­
carne acquainted with two cases in which this reduction is possible; 
cf. Theorem 2, § 58. and Theorem 2, § 59. W e are in a position now 

,to state a necessary and sufficient condition for the possibility of 
this reduction, provided that one of the two forma is non-singular. 

For this purpose, consider the two q uadratic forms 

q, = k1x¡ + k2x¡ + + k.xi, 

where we assume, in arder that the second form may be non-singular, 
that none of the c's vanish. The matrix of the pencil ,¡, - \,¡, is 

k1 -c1\ O O O 
0 k2 -c2\ O 0 

o o o 

and the elementary divisors of this matrix are 

ali of the first degree. Consequently, any pair of quadratic forms 
equivalent to the pair just considered rnust have a \-matrix whose 
elementary divisors are ali of the first degree. 

Conversely, if we have a pair of quadratic forms, of which the 
first is non-singular, whose \-matrix has elementary divisors ali of 

• This theorem is, of coursi., essentially equivalent to Theorem ,)
1 

§ 102, of which U 
may be regarded as an immediate consequence. 
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tbe first degree, we can obviously choose the constants k and e 
in such a way that the \-matrix of the forms ,¡, . and ,¡, just con­
sidered has these same elementary divisors, and therefore the given 
forms are equivalent to these special forms ,¡, and ,¡,. Thus we have 
proved the theorem : 

THEOREM 3. If q, and ,¡, are quadratic forms and ,¡, is non-singu­
lar, a necessary and su.fficient condition that it be possible to reduce q, 
and ,¡, simultaneously by a non-singular linear transformation to forma 
into which only the square terma enter is that ali the elem&ntary divisora 
of the pair of forma be of the first degree. 

This theorem obviously in eludes as. a special case Theorem 2 of 
§ 58, since the elementary divisora are necessarily of the first degree 
when the \-equation has no multiple roots. 

Comparing the theorem just proved with Theorem 2, § 59, we see· 
that under the conditions of that theorem the elementary divisors 
must be of the first degree. Hence 

THEOREM 4. If ,¡, is a non-singular, dejinite, quadratic form, and 
,¡, is a real quadratic form, ali the elementary divisor& of this pair of 
forma are necessarily of the jirst degree. ' 

104. ClassificatiQn of Pairs of Quadratic Forms. W e consider 
the pair of q uadratic forms 

• • 
(1) q> = T a;;X;X;, ,¡, = fb;¡X;X;, 

and assume, as befare, that ,¡, is non-singular. W e denote the ele­
mentary divisors of these forms, as in § 99, by 

(\- \ 1)\ (\-:1.2)", ... (\- \,)'• (e1 + e2+ •··+e,= n). 

The symbol [ e1 e2 •.• e,] we call the characteristic of the pair of 
quadratic forms; and ali pair~ of quadratic forms which have the 
same characteristic we speak of as forming a category. • 

We have here, precisely as in the case of bilinear forms, the 
theorem: 

THEOR~~!. ]J \ 1, \ 2, •.• \, are any constants, equal or unequal, 
and e1, e2, ••• e, are any positive integers whosé sum is n, there exist pairs 

• Thus: for instance, ali paírs of forros of which the second is non-aingular and which 
Admit of simulta.neous reduction to sums of squares, folllil a category whose character 
lstic is [J 1 ... 1). CI. Theorem 80 § 103. 

y 
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of quadratic forms in n variables, the second fvrm in each pair being 
non-singular, which have the elementary divisors 

(2) 

The proof of this theorem consists in considering the following 
pair of quadratic forms, aualogous to the normal form (3') of § 99: 

(3) 
t¡ t¡+e3 f'1 +'2+,..~ 

'f= Lc1X,Xe1-i+l + l C2X1x2t,+e,-i+1 + ~ C3X1X2e,+2e,+e3-1+1 
1 t1+l t 1H 2+1 

• + ... + L Ci.X¡X2Ji-t.1;-t+I' 
n-e¡,+1 

where c1, •·· e,, d¡, ... d, are constants which may be chosen at pleas­
ure, provided none of them are zero. 

The ;>..-matrix of this pair of forms is the same as the ;>..-matrix of 
the pair of bilinear forms (3') of § 99, and therefore has the desired 
elementary divisors. 

A reference to Theorem 1, § 103, shows that formula (3) yields a 
normal form to which every pair of quadratic forms, of ,vhich the 
second is non-singular and whose elementary divisors are given by 
(2), can be reduced. 

The categories, of which we have so far spoken, may be divided 
into classes by tbe same methods we used in § 99 in the case of 
bilinear forms. This may be done, as before, either by simply noting 
which of the ;>..?s are equal to each other, ar by further distinguishing 
between the cases where sorne of the ;>..¡'s are zero. 

We are now in a position to see exactly in what way our elemen­
tary divisors give ns a more powerful instrument than we had in the 
invariants ®, of § 57. These invariants ®,, being the coefficients of 
the ;>..-eqnatiou of onr paír of forms, determine the constants ;>..., which 
are the roots of this equation, as well as the multiplicities of these 
roots. They do not determine the degrees e, of the elementary di­
visors, and the use of the 0,'s alone does uot, in ali cases, euable us 
to determine whether two pairs of forms are equivaleut or not. 
Thus, for instance, we may have two pairs of forms with exactly the 
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same invariants ®, but with characteristics [(11)11 ... 1] and 
(211 ... 1 J respectively. • It will be seen, therefore, tbat the ®;'s 
form in only a very technical sense a complete system of invariants. 

EXERCISES 

l. Form a numerical ex-amph) in the case n = 3 to illustrate the statement 
made in the next to the last sentence of thIB ~ection. 

2. Prove tbat if two equivalent pairs of quadratic forms have two e)ementary 
divisors of the first degree which correspond to the same linear factor, there exist 
an infiuite number of linear transformations whicb ca1 ry over one pair of forros 
into the other. 

3. Prove the general theorem, of which Exercise 2 is a. special _case, namely, 
that if two equivalent pairs of quadratic forms have a charact-eristic in which one 
.:,r more parentheses appear, there exist an infinite number of linear transforma. 
tions which carry over one pair of forms into the other. 

4. Prove that if two equivalent pairs of quadratic forms have a characteristic 
in wbich no parentheses appear, on1y a finite number of linear transformations 
exist which carry over one pair of forms into the other. t · 

How are these transformations related to each other? 

105. Pairs of Quadratic Equations, and Pencils of Forms or Equa­
tions. t ln clealing with quadratic forms, the questions of equiva­
lence ancl classification do not always present themselves to us in 
precisely the form in which we have considerecl them in the last two 
sections. We frequently have to deal not with the quadratic forms 
themsel ves hut with the equations obtained by setting the forms 
equal to zero. Two such pairs of equations we shall regard as 
equivalent, not· merely if the forms in them are equivalent, but also 
if one pair of forms can be obtained from the other by multiplication 
by constants different from zero. 

Let us consider two quadratic forms ,f,, ,¡,, of which we assume, 
as befare, that the second is non-singular, and inquire what the 
effect on the elementary di visors 

(1) (;>.. - ;>..1)\ ("1-,. - ;>..,)", · ..... (;>.. - ;>..,'f• 

• We may, in the casen:;::: 3, put the same thing geometrically (cf. the next sec­
tion) by sa.ying thatit is impossible to distinguish between the case of two conics having 
double contact and that of two conics baving simple contact ata single point by the use 
of the invariant.s 0¡ alone, whereas these two cases are at once distinguished by the use 
of elementa-ry divisors. 

t The exercise in § 58 is practically a special case of this. 
+ Questions similar to those treated in thia section might ha.ve been taken up iu 

the last chapter for the case of bilinear forms. 
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of these forms will be if the forms are multiplied respectively by the 
constants p, q which are both assumed to be different from zerc,. 
Let us write 

Then 
(2) 

where 

'Pi - ?..,J,¡ = p (<f,-)!,J,) 

\'= ~\. 
p 

Let \-" be any one of the linear factors of the matrix of <f,- \,fr, 
so that a is any one of the constants \ 1, \ 2, •·· ?.., ; and Jet us denote, 
as in the footnote to Definition 3, § 92, by l, the exponent of the 
highest power of \ - " which is a factor of ali the i-rowed cleter• 
minants of this matrix. Then it is clear, from (2), that l, is the 
exponent of the highest power of \' - " which is a factor of ali the 
i-rowed determinants of the matrix of <f,1 - ?..,J,¡- In other worcls, 

(\-P;)" 
;s the highest power of the linear factor \ - pa/q which is a factor 
of ali the i-rowed determinants of the matrix of <f,1 - \,fr1• Turning 
now to the definition of elementary divisora as given in the footnote 
to Definition 3, § 92, we see that the elementary divisora of the matrix 
of <f,1 - ?..,J,1 differ from those of the matrix of <f,- \,fr only in having 
the constants ?.., replaced by the constants p?../q. We thus have the 
result: 

THEOREM l. Ij the pair of quadratic forma <f,, ,¡,, of which th, 
second is assumed to be non-eingular, has the elementary divisora 

(?.. - ?..¡)',, (?.. - A,)',, ..••.. (?.. - ?..,'f• • 

and if p, q are constants different from zero, then t1ie pair of quadratio 
forma p<f,, q,¡, has the elementary divieors 

(?.. - \J)'•, (?.. - ?..iY', · · · · · · (?.. - ?..J)'• 

where 

In particular, it will be seen that these two pairs of forms have 
the same characteristic, even whén the conception of the character 
istic is refined not merely by inserting parentheses but also by th 
use of the small zeroe. 
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The theorem just proved shows that pairs of homogeneous 
quadratic equations, of which the second equation in each pair is 
non.;;ingular, may be classified by the use of their characteristics 
precisely as was done in the last section for pairs of quadratic forms. 
W e proceed to illustrate this in the case n = 3, where we may con­
sider that we have to deal with the classification of pairs of conics 
in aplane, one of the conics being non-singular. 

W e have here three categories represented by the following 
normal forros:• 

I. [111] 
{ <p = A.¡X¡ + \,x¡ - A.3Xf 

,¡,- x'+x' - x2 = 1 2 a· 

II. [21] 
{ <f, = 2?..1x1x2 +x¡ + ?..,xf 
t= 2x1x2 +x¡. 

III. [3] 
{ <f, = 2 \ 1 x1 x8 + ;l. 1xJ + 2x1x2 

t= 2x1x8 +xl 

We next subdivide these categories into classes, and, by an ex­
amination of the normal form in each case, we are enabled at once to 
characterize each class by certain projective properties which it has, 
and which are shared by no other class,t Since the conic ,¡, is non­
singular in ali cases, this fact need not be explicitly stated. 

[111] <f, and ,¡, intersect in four distinct points. 

[(11) 1] <f, and ,¡, have double contact. 

[(111)] <f, and ,¡, coincide. 

[2 1] <f, and ,¡, meet in three distinct points at one ot which 
they touch. 

[(21 )] <f, and ,¡, have contact of the third order. 

[3] <f, and ,¡, have coutact of the second order. 

In ali of the above cases <f,, as well as ,¡,, is non-singular. 
In the next five cases, <f, consista of a pair of distinct straight 

lines. 
• We assign to tbe constant.s e¡ and k,1 in formula. (3) of the last section, values sa 

chosen that the loci 4' = O, Y'= O are real when the coAstants :\, are real. Tbis is, of 
course, not es.sential, since we are not concerned with questions of reality. 

t In arder to verify the statementa made below, the reader should have sorne 
knowledge of the theory of tbe canta.et of conics; cf. for instance Salmon's Conil 
Ser.tion1, Chapter XIV., pages 232-238. 
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,f, and ,¡, intersect in four distinct points. 

Both of the lines of which ,¡, cousists touch ,¡,. 
One of the lines of which ,¡, consists touches ,¡,, while 

the other cuts it in two points distinct from the point 
of contact of the first. 

T!Íe two lines of which ,f, consists intersect on ,¡,, and 
neither of them touches ,¡,. 

The two lines of which ,¡, consists intersect on ,¡,, and 
one of them touches ,¡,. 

In the next two cases, ,f, consists of a single line. 
o o 

[(11) 1 ] The line ,f, meets ,¡, in two tlistinct points. 
o o 

[(21)] The line ,¡, touches ,¡,. 
Finally we have the case: 

o o o . 
l(l 11]) Here ,f, = O, anti we have no conic other than ,¡,. 

Suppose finally that we wish to classify not pairs of quadratic forms 
or equations but peneils of qnadratic forms or equations. Consider the 
pencil of quadratic forms ,¡, _ '-,¡, 

where ,f, anti ,¡, are quatlratic forms, and ,¡, is non-singular, anti 
suppose that the elernentary di visors of the pair of forros ,f,, ,¡, are 
given by formula (1) above. The question presents itself whether, 
if, in place of the forms ,¡,, ,¡,, we take any other two forros of the 

pencil 'Pi= 'P _ µ,,¡,, 'f'i =,¡,_vi/·, 

the constants µ,, v being so chosen that µ, * v and that ,¡,1 is non­
singular, the pair of forros ,f,1, ,¡,1, will have these same elementary 
divisors (1). If this were the case, we oould properly speak of (1) 
as tbe elementary divisors of the pencil. This, however, is not t lie 
case, and the pencil of r¡uadratic forms cannot properly be said to have 
elementary divisors. • 

• We bere regard the penctl as merely an aggregate of an infinite number of 
quadratic forms, namely, all ·the forms which can be obtained from the expression 
'P - Xlf by giving to X different values. In this sense we cannot speak of the elementary 
divisors of the penen. If, hówever, we wish to regard the polynomial in the x's and )., 
if, - >.i¡;, as the pencil, we may speak of its elemeutary divisors, meaning thereby simp1y 
what we have called the elementary divisora of the pair of forms 'P, y;. 
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There is, however, a simple relation between the elementary 
divisors of two pairs of forms taken from the same pencil. In order 
to show this, let ns determine the elementary divisors of the pa1r_ of 
forms 'P¡, ,¡,

1
, above. For this purpose consider the express10n 

ef,1 - '-'f'¡, which, when '-* 1, may be written 

(3) ,f,1 -A,Jr1 ae(l-A)[,f,-A1'f'] 
µ,-VA. 

where A-1 = --. 
1 - A. 

Now suppose, as above, that '- - a is any one of the linear fact_ors of 
the matrix of ,¡, - '-,¡,, and that l, is the exponent of the h1ghest 
power of '- - a which is a factor of al! the i-rowed_ deternnnants of 
this matrix. Then any one of the i-rowed determrnants of the ma­
trix of ,f,- A''f' may, when "* 1, be written in the form 

('-' - a)'<f('-') 
where f is a polynomial in A.1 of degree not greater than i - l,. 
Accordingly, by (3), the corresponding i-rowed determinant of the 
matrix of ,f,1 - 1..,¡,1 may be written 

[µ,- VA. - a(l- '-)]'if¡('-) 

wheref
1 

is a polynomial in;>... Thus we see that 

[
/..- a- µ,J; 

a-v 

is a factor of every i-rowed determinant of the matrix of ,f,1 - '-'f'¡· 
Similar reasoning, carried through in the reverse order, shows that 
this is the highest power of '- _ a - µ, 

a-V 

which is a factor of al! these i-rowed determinants. · Hence 

THEOREM 2. If the pair of quadratic forms <f,, ,¡,, of which the 
second is non-singular, have the elementary divisors 

(A - '-¡)\ ('- - A-2)\ • • • • • • ('- -1..,)'', 
and if µ,, v are any two constants distinct from each other and such 
that v is distinct from ali the constants '-¡, A2, ... "•• then the two forms 

'P1 = 'P - µ,,Jr, 'f'¡ = 'P - v,¡,, 
of which the second will then be non-singular, will have the elementar!) 

divisors (A-;\.\)\ ('- - '-~)", (A- A¡)'• 

where ~= '-,- µ, (i = 1, 2, ... k). 
A.¡- V 
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In particular, it will be seen that the two pairs of forros rf,, ,¡, and 
rf,1, ,¡,, have the same characteristic [ e1 e2 ··· e,] even if we put in 
parentheses to indicate which of the e's correspond to equal "/1.,'s, 
The characteristics will not, however, necessarily be the same if we 
put in small zeros to indicate which of the e's correspond to vanish­
ing X,'s, since "• and A/ do not usually vanish together. Accord­
ingly, in classifying pencils of quadratic forros, we may use the 
characteristic of any pair of distinct forros of the pencil, the second 
of which is non-singular, but we must not introduce the small zeros 
into these characteristics. This classification, of course, applies only 
to what may be called non-singular pencils, that is, pencils whose 
forros are not ali singular. · 

It _will readily be seen that what has just been said applies with­
out essential change to the case of pencils of homogeneous quadratic 
equations. We may therefore illustrate it by the classification of 
non-singular pencils of conics. * We have here six classes of pencils 
which we characterize as follows: 

[111] The conics ali pass through four distinct points. 
[(11) 1] The conics all pass through two pQints at which they 

have double contact with each other. 
[(111)] 
[21] 

[(21 )] 

[3] 

The conics ali coincide. 
The conics ali pass through three points at · one o! 

which they touch one another. 
The conics ali pass through one point at which they 

have contact of the third order. 
The conics all pass through two points, at one of 

which they have contact of the second order. 

EXERCISES 

l. Determine, by the use of elementary divisora, the nature of each of the 
following pairs of conics : 

(a) {3x!+7x! +Sx,x,-l0x,x,+4x,x,=0 
2 xj + 3 x!-xl + 4 x,x, - 6 x,x, + 6 x1x, = O. 

(b) {3xj-x¡-3xi-3x,x,+3x,x,+x1x,=0 
2zj+tj- zj-2x1~-2~~+2x1~=~ 

2. Give a classification of paira of binary quadratic equations, the seconif 
equation of each pair being non-singular, and interpret the work geometrically. 

• For a similar classification of pencils of quadrics we refer to p. 46 of Brornwich 1s 
book : Quadratic Forms and their Classification by Means of Invariant Factor.,. 
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106. Conclusion. W e wish, in this section, to point ont sorne 
of the important questions connected with the subject of elementary 
diviaors, which, in order to keep our treatment within proper limits, 
we have been obliged to leave out of consideration·. 

lf rf,
1
, ,¡,

1 
and rf,,, ,¡,

2 
are two pairs of bilinear or quadratic 

forms of which ,¡,
1
, ,¡,2 are non-singular, we have found a method 

of determining whether these two pairs of forros are equiva­
lent or not. lf we use the invariant factors instead of the ele­
mentary divisors, our method involves only the use of the rational 
:iperations (addition, subtraction, multiplication, and division), 
and can, therefore, be actually carried through in any concrete 
case. In fact we have explained in § 93 some reall y practica] 
methods of determining the invariant factors of a A-matrix, so 
that the problem of determining whether or not two pairs of 
bilinear or quadratic forros, the second forro in each pair being 
non-singular, are equivalent, may be regarded as solved, not 
merely from the theoretical, but also from the practica] point of 

view. 
There is, however, another question here, which we have not 

treated, namely, if the two pairs of forros turn out to be equiva­
lent to find a linear transformation which carries over one into 

' the other. This problem, too, we may consider that we have 
sol ved from a tbeoretical point of view; for the proof we have 
given that if two pairs of forros have the same elementary 
diüsors there exists a linear transformation which carries over 
one pair of forros into the otber, consisted, as will be seen on 
examination, in actually giving a method whereby such a linear 
transfQrmation could be determined. In fact, in the case of bilinear 
forros, the processes involved are, here again, merely tbe rational 
processes; so that, given two equivalent pairs of bilinear forros, the 
second forro of each .pair being non-singular, we are in a position to 
find, in any concrete case, linear transformations of tbe x's and y's 
which carry over one pair of forros into the other. Even here the 
arrangement of the work in a practica! manner might reqnire 
further consideration. 

In the case of quadratic forros tbe problem becomes a much more 
difficult one, inasmuch as the processes in volved in the determination 
of the required linear transformation are no longer rational; cf. the 
Lemma of § 101. That this is not merely a defeot of the method we 

l. 
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h_ave u~ed, but_ is inherent in the problem itself, will be seen by a con­
s1derat10n of sm1ple numerical examples. Let, for instance, 

Y1= xf+ x¡, +,= xf- x¡. 
~e~e the pairs of forms ,f,1, ,[,1 and ,f,2, ,[,2 both have the elementary 
d1v1sors 

9 
• 

X-~, X-3, 

and are therefore equivalent. The linear transformation which 
carries over one pair of forms into the other canuot, however, be 
real (aud therefore its coefficients cannot he determined rationally 
from the coefficients of the given forms) since ,¡, and ,¡, are definit~ 
,f,2 and ,[,2 indefinite. 

1 1 
' 

We have, therefore, here the prohlem of devising a practica! 
method of determining a linear transformation which carries over a 
first pair of quadratic forms into a second given equivalent pair. A 
method of this sort, which is a practica! one when once the elemen­
tary divisors have been determined, will be found in Bromwich's 
book on quadratic forms referred to in the footnote on p. 312. 

-A:n~ther point at which our treatment is incomplete is in the 
r~s_trict10n we have_ always made in assuming that, in the pair of 
b1linear o~ ~uadratrn forms ,¡,, ,¡,, the form ,¡, is non-singular. Al­
tho_ugh th1s '.s the case in many of the most important problems to 
wh1ch ?º~ Wishe_s to apply the method of elementary divisors, it is still 
a restr10t10n _whwh it is desirable to remove. This may be done in 
part by makrng use not, as we have done, of the pencil ,t,-x,¡,, but 
of the more general_ pencil µ,,f,- x,¡,, µ, and ;\ being variable param­
eters .. The determmants of the matrix of this pencil are binary 
forms m (µ,, X), and the whole subject of elementary divisors a<lmits 
~n easy extension to this case, the elementary divisors being now 
mtegral powers of linear binary forms. The only case which can­
not be_ treated in this way is that in which not only ,¡, and ,¡, are 
bot_h s'.ngular, but every form of the pencil µ,,f,- x,¡, is singular. 
~his s_ingular case, which was explicitly excluded by Weierstrass in 
h1s origmal paper, requires a special treatment which has been given 
by Kronecker. Cf., for the case of quadratic forms the book of 
Bromwich already referred to. ' 

Still anothet question is the application of the method of ele­
mentary divis~rs to the case in which the two forms ,¡,, ,¡, are real, 
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and only real linear transformations are admitted. In the case of 
bilinear forms, this question presents no serious difficulty; cf. the 
exercises of §§ 97, 99. In the case of quadratic forms, however, the 
irrational processes involved in the proof of the Lemma of § 101 
introduce an essential difficulty, since they are capable of introduc­
ing imaginary quantities. Moreover, this difficulty does not Jie 
merely in the method of treatment. The theorems themselves 
which we have established do not remain true, as is seen by a refer­
ence to the numerical example given earlier in this section for an­
other purpose, where we have two pairs of real quadratic fo11ns 
which, although they have the same elementary divisors, are not 
equivalent with regard to real linear transformations. 

W e must content ourselves with merely mentioning this impor­
tant subject, and referring, for one of the fundamental theorems, to 
p. 69 of the book of Brom wich. 

For further information concerning the subject of elementary 
divisors tbe reader is reíerred to Muth's Theorie und Anwendung der 
Elementartheiler, Leipzig, Teubner, 1899. In English, the book of 
Bromwich already referred to and sorne sections in Mathews' revision 
of Scott's JJeterminants will be found useful. 
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