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For this product is a A-matrix of the form.

Cohk” £ clhkﬁ-l-l 4 oeeet Cost

where ¢, has the value agh, or bya, according to the order in which
the two given matrices are multiplied together. By Theorem 7,
§ 25, neither ab, nor bya, is zero if a, and b, are not both singular.

The next theorem relates to what we may call the division
of \-matrices.

TurorEM 8. If a and b are two A-matrices and if b, when written
in the form (1), has as the coefficient of the highest power of N a non-
singular matriz, then there exists one, and only one, pair of N-matrices
q, and r, for which a=qbtr,
and such that either T, =0, or 1y is a A-matriz of lower degree than b;
and also one and only one pair of N-matrices q, and 1, for which

a=bg,+1,
and such that either 1,=0, or 1, i a N-matriz of lower degree than b.

The proof of this theorem is practically identical with the proof
of Theorem 1, § 63.

EXERCISE

DeriNiTIoN. By a real matriz is understood a matriz whose elements are real;
by a real A-matriz, a matriz whose elements are real polynomials in X\ ; and by a real
elementary transformation, an elementary transformation in which the constant in (B)
and the polynomial in (¢), Definition 1, § 91, are real.

Show that all the results of this chapter still hold if we interpret the words
matriz, \-matriz, and elementary transformation to mean real matriz, real X-matriz,
and real elementary transformation, respectively.

CHAPTER XXI

THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF
BILINEAR FORMS AND OF COLLINEATIONS

96. The Equivalence of Pairs ¢f Matrices. The applications of
the theory of elementary divisors with which we shall be concerned
in this chapter and the next have reference to problems in which
A-matrices occur only indirectly. A typical problem is the theory
of a pair of bilinear forms. The matrices aand b of these two forms
have constant elements, and we get our A-matrix only by consider-
ing the matrix a — Ab of the pencil of forms determined by the two
given forms. It will be noticed that this matrix is of the first
degree, and in fact we shall deal, from now on, exclusively with
A-matrices of the first degree.

By the side of this simplification, a new difficulty is introduced,
ag will be clear from the following considerations. We shall subject

the two sets of variables in the bilinear forms to two non-singular

linear transformations whose coefficients we naturally assume to be
constants, that is, independent of A. These transformations have the
effect of multiplying the A-matrix, a — Ab, by certain non-singular
matrices whose elements are constants (cf. § 36) and therefore, by
§94, carry it over into an equivalent A-matrix which is evidently of
the first degree. The transformations of § 94, however, were far
more general than those just referred to, so that it is not at all ob-
vious whether every A-matrix of the first degree equivalent to the
given one can be obtained by transformations of the sort just re-
ferred to or not.

These considerations show the importance of the following
theorem :

THEOREM 1. If a;, &, by, b, are matrices with constant elements
of which the last two are non-singular, and if the N\-matrices of the first
degree m, =a, — Aby,
» 279

m, = a;— Ab,
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are equivalent, then there exist two mon-singular matrices, p and g
whose elements are independent of N, and such that

1) m, = pm,q.

Since m, and m, are equivalent, there exist two non-singular
A-matrices, p, and qq, whose determinants are constants and such thag
L]

(2) m, = pomy Q-

The matrix q, has, therefore, an inverse, q;1, which is also a
A-matrix. _

Let us now divide p, by m, and q;* by m, by means of Theorem
3, § 95, in such a way as to get matrices p;, p, 55, s which satisfy the
relations

(3) Po=m,yp; + Dy Q(;]ES1m1+Sa

p and s being matrices whose elements are independent of A. From
2) we get =
(Ryweg pom; =m,qgt

Substituting here from (3), we have

m,p,m, +pm; = r'ngslm1 - m,s,
%) m,(p; — s;)m; =m,s — pm,.

From this identity we may infer that p, =s; and therefore
(5) m,§ = pm;.

For if p,—s; were not identically zero, m,(p;—s,;) would be a
A-matrix of at least the first degree (cf. Theorem 2, §95), and hence
the left-hand side of (4) would be a A-matrix of at least the second
degree. But this is impossible, since the right-hand side of (4)
is a A-matrix of at most the first degree.

If we knew that p and s were both non-singular, our theorem
would follow at once from (5); for we could write (5) in the form

(6) m, = pmys™

and p and s~ would be non-singular matrices with constant elements:
Moreover, we see from (5) that p and s are either both singular ot
both non-singular. Our theorem will thus be proved if we can

show that s is non-singular.
.
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For this purpose let us substitute in the identity
I=qyg,"

for ¢, its value from (3),
(M) I=qesm; +qs.
Now divide g, by m, by means of Theorem 8, §95, in such a way as
fo get
8) Qo =9;m; +4
where q is a matrix with constant elements.

Substituting this value in (7), we have

I=qys;m, + q;m,s + gs:

Referring to (5), we see that this may be written

(9 I-qs=(q¢s; + q,p)m,.

From this we infer that ggs, +q1p must be identically zero, and

therefore
(10) I=gs.

Yor if q,s,+ q,p were not identically zero, the right-hand side of
(9) would be a \-matrix of at least the first degree, while the left-
hand side of (9) does not involve A.

Equation (10) shows that s is non-singular, and thus our theorem
is proved. It shows us, however, also that g is non-singular, and
that q =s71, so that equation (6) becomes m, = pmq.

We may, therefore, add the following

COROLLARY. The matrices p and q whose existence i3 stated in the
above theorem may be obtained as the remainders in the division of p,
and q, in (2) by m, by means of the formule :

Py=mp+ Py 4, =q;m, + 4.

From this theorem concerning A-matrices of the first degree we
can now deduce the following theorem concerning pairs of matrices
with constant elements. It is this theorem which forms the main
foundation for such applications of the theory of elementary divisors
as we shall give.

We shall naturally speak of two pairs of matrices with constant
elements a,, b, and a,, b, as equivalent if two non-singular matrices p
and q exist for which

(11) a, =Dpaq, b, = pb,q.
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TueoreEM 2. If a;, b, and a, b, are two pairs of matrices
independent of A, and if by and b, are non-singular, a necessary
and sufficient condition that these two pairs of matrices be equiva-
lent is that the two \-matrices -

m;=a; — Ab;,

have the same invariant factors, — or, if we prefer, the same elementary
divisors.

For if the pairs of matrices are equivalent, equations (11)
hold; hence, multiplying the second of these equations by A
and subtracting it from the first, we have

(12) 7 m,=pm,q,

that is the A-matrices m, and m, are equivalent, and therefore have
the same invariant factors, and the same elementary divisors. On
the other hand, it follows at once from the assumption that b, and be
are non-singular, that m; and m, are non-singular, and hence have
the same rank. Consequently if m; and m, have the same invariant
factors, or the same elementary divisors, they are equivalent. *Since
they are of the first degree, there must, by Theorem 1, exist two
non-singular matrices p and g, whose elements are independent of A,
which satisfy the identity (12). From this identity, the two equa-
tions (11) follow at once ; and the two pairs of matrices are equivalent.
Thus the proof of our theorem is complete.

A case of considerable importance is that in which the matrices
b, and b, both reduce to the unit matrix I. In this case m; and m,
reduce to what are known as the characteristic matrices of a, and a,
respectively, according to the following definition :

DEFINITION. If a is a matriz of the nth order with constant ele-
ments and I the unit matriz of the nth order, the \-matriz

A=a -2l

i called the characteristic matriz of a; the determinant of A is called
the characteristic function of a; and the equation of the nth degree in
\ formed by setting this determinant equal to zero is called the char-
acteristic equation of a.
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We can now deduce from Theorem 2 the following more specia!
result :

THEOREM 3. If a, and a, are two matrices independent of N, aneces-
sary and sufficient condition that a non-singular matriz p exist such that *

(13) ay=pa;p~’
is that the characteristic matrices A, and A, of a, and a, have the same
inbariant factors, — or, if we prefer, the same elementary divisors.

For if A, and A, have the same invariant factors (or elementary

divisors), there exist, by Theorem 2, two non-singular matrices p

and q such that a,= paq, I=rplq.

The second of these equations shows us that q=p~; and this
value being substituted in the first, we see that p is the matrix whose

existence our theorem asserts.
That, on the other hand, A, and A, have the same invariant factors
and elementary divisors if equation (13)is fulfilled, is at once obvious.

97. The Equivalence of Pairs of Bilinear Forms. Suppose we
have a pair of bilinear forms in 2 n variables
» "
¢ = %a%wiyj, Y= %bgm Yy
and also a second pair

i
= "
by =252,

V= 3’% b9y

and let us assume that yr, and 4, are non-singular. We will in-
quire under what conditions the two pairs of forms are equivalent,
that is, under what conditions a first non-singular linear transforma-
tion for the #’s and a second for the y’s,

p=dyyit -+ Ay

' '
Ty = Cyy %+ 0
R 4
xn=cﬂ1m,1+ +cnnxjn

can be found which together carry over ¢, into ¢, and ¥, into ¥,

y‘n: dnlyi + + dm,"j;:

* Two matrices connected by a relation of the form (13) are sometimes called
«imilgr matrices. This conception of similarity is evidently merely a special casg'of
the general conception of equivalence as defined in § 29, the trans{forma.t.it?ns c.ons:.idere'd
being of the form (13) instead of the more general form usually considered in this

chapter and the last.
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If we denote the conjugate of the matrix ¢ by ¢’ and the matrices
of ¢y Vs g Yy by @y, by, a5, by, Tespectively, we know, by Theorem 1,
§36, that the tranmsformations ¢,d carry over ¢, and 4, into forms
with matrices : cad, ¢'b,d

respectively; so that, if these are the forms ¢, and 4, we have
2y e a, = c'ad, b, = ¢'b;d.

Consequently, by Theorem 2, §96, the two A-matrices

have the same invariant factors and elementary divisors.

Conversely, by the same theorem, if these two A-matrices have
the same invariant factors (or elementary divisors), two constant
matrices ¢/ and d exist which satisfy both equations (1); and hence
there exists a linear transformation of the #'s and another of the y's
which together carry over ¢, into ¢, and + into v,. Thus we
have proved the

TuroreM. If ¢y, Y and ¢y, v, are two pairs of bilinear forms in 2n
variables of which ry and A, are non-singular, a necessary and sufficient
condition that these two pairs of forms be equivalent is that the matrices

of the two peneils b, — My, by — My

have the same tnvariant factors,—or,if we prefer, the same elementary
divisors.*
EXERCISE

" Prove that the theorem of this section remains true if the bilinear forms
¢y, Y1, P2, Yo are real and the term equivalent is understood to mean equivalent with
regard to real non-singular linear transformations.

98. The Equivalence of Collineations. A second important appli-
cation of the theory of elementary divisors is to the theory of col-
lineations. For the sake of simplicity we will consider the case of

two dimensions 1y
J“’I =A%)+ G Ty + Q3T
a

‘”:2 = g @y + Ug ¥y + Uos T
(2 = @y 2 + agy 2y + ag,
although the reasoning will be seen to be perfectly general.

* For the sake of brevity, we shall, in future, speak of these invariant factors and
elementary divisors as the invariant factors and elementary divisors of the pairs of
Jorms ¢4, Y1 and ¢s, Y respectively.
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We have so far regarded a collineation merely as a means of
transforming certain geometric figures. It is possible to adopt an-
other point of view, and to study the collineation in itself with
special reference to the relative position of points before and after
the transformafion. Thus suppose we have a figure consisting of
the points A,, A,, -+, finite or infinite in number, and suppose these
points are carried over by the collineation a into the points A,

& -=+ These two sets of points together form a geometric figure.
It is the properties of such figures as this that we call the properties
of the collineation. Such properties may be either projective or
wmetrical. Thus it would be a metrical property of a collineation if
it carried over some particular pair of perpendicular lines into a pair
of perpendicular lines; it would be a projective property of the
eollineation if it carried over some particular triangle into itself. We
ghall be concerned only with the projective properties of collineations.

As an example, let us consider the fized points of the collineation,
that is points whose initial and final position is the same. In order
that (z;, #,, 75) be a fixed point it is necessary and sufficient that

/ /
&y = Ay, &g = Alg,

dy
2:1 — ?\.Z’l,

that is, substituting in a, that a constant A exist such that,
(@ =Nz, + A3y +

(1) Uy + (gy — N)2y +
g1 %y + gy + (g3 — N2y = 0.

375 =0,
g2y =0,

The matrix of this system'of equations is precisely what we have
called the characteristic matrix of the matrix a of the linear trans-
formation. The characteristic function is a polynomial of the third
degree in A which, when equated to zero, has one, two, or three dis-
tinet roots. Let A; be one of these roots. When this is substituted
in (1), these equations are satisfied by the codrdinates of one or more
points,—the fixed points of the collineation a. The number and
distribution of these fixed points give an important example of a
projective property of a collineation; and it is readily seen that
collineations may have wholly different properties in this respect,
one having three fixed points, another two, and still another an
infinite number.

Coming back now to the two sets of points 4, 4,, --- and 4],
Aj, --- which correspond to one another by means of the collinea-
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tion a (which may be singular or non-singular), let us subject all these
points to a non-singular collineation ¢, which carries over 4, 4, -
into By, By, --- and A}, A}, --- into B}, B, - respectively. The fig-
ure formed by the B’s will have the same projective properties as
that formed by the A’s; and consequently if we can'find a collinea-
tion b which carries over By, B,, --- into B, B’z, .-+, this collineation
will have the same projective properties as the collineation a. Such
a collineation is clearly given by the formula
(2) b = cac!
since ¢~1 carries over the points B; into the points 4,, a then carries
over these into A, and ¢ carries over the points 4] into the points B,
Sinee two collineations a and b related by formula (2) are indis-
tinguishable so far as their projective properties go (though they
may have very different metrical properties), we will call them
equivalent according to the following

DerFINITION. Two collineations a and b shall be called egui'arafem
if a non-singular collineation ¢ exists such that relation (2) is fulfilled.

A reference to Theorem 3, § 96, now gives us the fundamental
theorem:

THEOREM. A necessary and sufficient condition that two collinea
tions be equivalent is that their characteristic matrices have the same -
variant factors,— or, if we prefer, the same elementary divisors.

EXERCISES

1. If Py, P,, -+ Py are fixed points of a non-singular collineation in spaee of
n — 1 dimensions which correspond to k distinet roots of the characteristic equas
tion, prove that these points are linearly independent.

2. Discuss the distribution of the fixed points of a collineation
() in two dimensions,
(b) in three dimensions,
for all possible cases of non-singular collineations.
3. Discuss the distribution of
(a) the fixed lines of a collineation in two dimensions,
(b) the fizxed planes of a collineation in three dimensions, _
for all possible cases of non-singular collineations; paying special attention to their
relation to the fixed points.
4, Two real collineations, a and b, may be said to be equivalent if there exists
a real non-singular collineation ¢ such that b= cac-L
With this understanding of the term equivalence, show that the theorem of the
present section holds for real collineations.
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99. Classification of Pairs of Bilinear Forms. We consider again
the pair of bilinear forms

‘ n
$= 20,2,

Y= ?b,}-miyj,
of which we assume the second to be non-singular, and form the
A-matrix.

(1) a—\b.

Using a slightly different notation from that employed in § 92, we
will denote the elementary divisors of (1) by

(?" e 7\'1)?1’ (a— 7“3)82, (A — )y (e,l eyt = n),

so that the linear factors A — \; need not all be distinet from one
another. The most important thing concerning these elementary
divisors is, for many purposes, their degrees, e,, €, --- ¢;. When we
wish to indicate these degrees without writing out the elementary
divisors in full, we will use the symbol [e; ¢, --- ¢;], called the char-
acteristic of the A-matrix (1), or of the pair of forms ¢, 4. It will be

‘seen that this characteristic is a sort of arithmetical invariant of the

pair of bilinear forms, since two pairs of bilinear forms which are
equivalent necessarily have the same characteristic. The converse
of this, however, is not true, since for the equivalence of two pairs of
bilinear forms the identity of the elementary divisors themselves,
not merely the equality of their degrees, is necessary.

All pairs of bilinear forms which have the same characteristic are
said to form a category. Thus, for example, in the case of pairs of
bilinear forms in six variables we should distinguish between three
gategories corresponding to the three characteristics,

[ 1 U AR A B

which are obviously the only possible ones in this case. In fact, we
must inquire whether these three categories really all exist. This
question we answer in the affirmative by writing down the following
pairs of bilinear forms in six variables which represent these three
categories:
1. [1 1 I:I {?“lxlyl <k 7‘22’22/2 + AgZalYz

2yt Tt Tl

0 YN T T
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AMZ1Y1 + MTalfy + 219 + Noels
Tt Tl t Tyl

IL [21] [

R W e ‘
0 U

IlII [3] { A&y + MToYs + Msls + 21Ys + Yy
2t Yyt 2y

Ry <] 0
| 0 0 =2

The pairs of bilinear forms we have just written down do more
than merely establish the existence of our three categories. They
establish the fact that not only the degrees of the elementary divisors
are arbitrary (subject merely to the comdition that their sum be
three), but that, subject to this restriction, the elementary divisors
themselves may be arbitrarily chosen. They are, moreover, normal
Jorms to one or the other of which every pair of bilinear forms in
six variables, of which the first is non-singular, may be reduced by
non-singular linear transformations.

The general theorem here is this:

THEOREM. If Ay, Ny, -+ N, are any constants, equal or unequal, and
€1 G+ € Are ANy positive integers whose sum is n, there evist pairs of
bilinear forms in 2n variables, the second form in each pair being non-
singular, which have the elementary divisors

@) A=A (A= 2g)h womee (A D,

The proof of this theorem consists in considering the pair of
bilinear forms

e & ey &+éy
b= (?klxiy,- 2 2235-1%) > (ﬁ'ﬁﬂk ;T E a:,_hj)
®) A e “
H_E‘H?\kx iYi + n—%—i—ﬂw"”iy" s
V=2 + 250+ 0+ B
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of which the second is non-singular. These forms have a A-matrix
which may be indicated, for brevity, as

where the letters M;, --- M, represent not single terms but blocks of
terms ; M, standing for the matrix of order ¢

USSR [ R AN
IR T T T
M, = R G e g
0 0 0 = X=A
while all the terms of the matrix (4) are zero which do not stand in
one of the blocks of terms M. The elementary divisors of (4) are,
as we see by a reference to § 93 (Formula (1) and Theorem 2), pre-
cisely the expressions (2). Thus our theorem is proved.
A reference to § 97 shows that formula (8)is a normal form to

swhich every pair of bilinear forms in 2n variables with the ele-
mentary divisors (2) can be reduced.*

# Many other normal forms might be chosen In place of (8). Thus, for instance,
we might have used in place of (3) the form

( e=1 e tey & te,—1
@& 5(27\161%,% R Edlxzygl..;) + (-—r?\;sz" Lillge, +ey—i+1 + ﬂ‘f&-ﬂ;ykﬁrz —i)

Fi—

n-1
4 o (E)‘kck-ﬁy’-‘n— g—=i+1 + Edk-ﬂlyﬂn—%—l)
n-eyt+l n—ep+l
e te, cld-ng 2

v= Zcmﬂe 4 + ECET"-'yk teg=i4] T ZOiYse 400 e =i

GJ-c¢1

B E{‘L\:ﬁﬁjﬂn—ﬁ’lwi-}h
n—eg+l

where the constants ¢y, «« ¢k, d1, =+ dp may be chosen at pleasure provided, merely,
that none of them are zero. For instance, they may all be assigned the value 1,
v




290 INTRODUCTION TO HIGHER ALGEBRA

Let us now return to the classification of pairs of bilinear forms,
For a given number, 2 #, of variables we have obviously only a finite
number of categories. We may subdivide these categories into
classes by noticing which, if any, of the elementary divisors corre-
spond to the same linear factor. This we can indicate in the char
acteristic by connecting by parentheses those integers which are the
degrees of elementary divisors corresponding to one and the same
linear factor. Thus, in the case n = 8, the characteristic

[@1)(111)2]

would indicate that the A-matrix has just three distinct linear fac-
tors; that to one of these there correspond two elementary divisors
of degrees two and one respectively, to another three elementarjf
divisors of the first degree, and to the last a single elementary
divisor of degree two.

Two pairs of bilinear forms which are equivalent belong neces-
sarily to the same class, but two pairs of bilinear forms which be-
long to the same class are not necessarily equivalent.

To illustrate what has just been said, let us again consider the
case n=3. Here we have now, instead of three categories, six
classes, which are exhibited in the following table:

i@ b e
(111] [(A11)1] | [(111)]
IL | [21] | [(21)] |
IL | [3] '

The A-matrix of this pair of forms may be written in the form (4), where, howm
ever, M; now stands for the matrix of order e;:

e 0 d;‘ c,(}\‘—h) [
ey (M=)

It will be noticed that the matrices M;, and therefore also the bilinear forms 3",

are symmetrical, a fact which will make this normal form important when we gome ta

the subject of quadratic forms in the next chapter.

_ Constants similar to the constants ¢ and d; which we have introduced in 31
might also have been introduced in (3). :
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The three classes Ia, 13, Ic form together the category I, and are
all represented by the normal form given for that category above,
the only difference being that in class Is the three quantities A;, Ao
)\ arve all distinet, in class 16 two, and only two, of them are equal,
while in class Ic they are all equal. Similarly category II is now
divided into two classes, Ila and IIb, for both of which the normal
form of category IT holds good, A, and ), being, however, different
in that normal form for class Ila and equal for class II6. Finally
eategory III consists of only a single class.

For some purposes it is desirable to carry this subdivision still
farther. The second of our two bilinear forms, ¥, has been assumed
throughout to be non-singular. The first, ¢, may be singular or
non-singular; and it is readily seen that a necessary and sufficient
condition that ¢ be singular is that one, at least, of the constants ),
which enter into the linear factors of the A-matrix be zero. Thus it
will be seen that in a single class we shall have pairs of bilinear
forms both of which are non-singular and others one of which is
singular, and we may wish to separate into different sub-classes
the pairs of forms which belong to one or the other of these two
cases.

Let us go a step farther in this same direction, and inquire how
the rank of ¢ is connected with the values of the constants A, We
notice that the matrix of ¢ is equal to the matrix of the pencil ¢—ryr
when A=0. Accordingly, if ¢ is of rank #, every (r+ 1)-rowed
determinant of the matrix of ¢ — Ay will be divisible by A, while at
least one r-rowed determinant of this matrix is not divisible by .
It is then necessary, as we see by a reference to the definition of
elementary divisors (cf. the footnote to Definition 3, § 92), that just
n—r of the constants A; which enter into the elementary divisors
should be zero. Since the converse of these statements is also true,
we may say that a necessary and sufficient condition that the form ¢
be of rank r 1s that just n— r of the elementary divisors be of the form
A% Let us, in the characteristic [¢; ¢, --- €], place a small zero
above each of the integers ¢; which is the degree of such an elemen-
tary divisor; and regard two pairs of bilinear forms as belonging to
a single class when, and only when, their characteristics coincide in
the distribution of these zeros as well as in other respects. Here
again two equivalent pairs of forms will always belong to the same
¢lass, but the converse will not be true.
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As an illustration, let us again take the case n=38. We have
now fourteen classes instead of six,

[11 11, 1@ 111, [@ 1442 13, [ 1] 3], (r=3),
i1 1, [(1 > 1], [21], (213, (3], (r=2)
[ 1)1, (@ 5y, (r=1),
000
[A11)], (r=10).
We have indicated, in each case, the rank » of the form ¢. Thus
in the first six cases ¢ is non-singular; in the next five it is of rank
2, ete.
EXERCISES
1. Prove that there exist pairs of real bilinear forms in 2 n variables of which
the second is non-singular, and which have the elementary divisors
(A=X)5s,  (A=N)% o (A=A)&% (g +ey+ - +e=n),
provided that such of these elementary divisors as are not real admit of arranges
ment in conjugate imaginary pairs. (Cf. Exercises 1, 2, § 93.)

2. Classify pairs of real bilinear forms in six variables (the second form
in each pair being non-singular), distinguishing between real and imaginary
elementary divisors.

100. Classification of Collineations. The classification of pairs
of bilinear forms which we gave in the last section may obviously
be regarded, from a more general point of view, as a classification
of pairs of matrices, the second matrix of each pair being assumed
to be non-singular. From this point of view it admits of applica-
tion to the classification of collineations, since, as we saw in § 98, to
every collineation corresponds a pair of matrices of which one is
non-singular, namely the unit matrix I and the matrix of the linear
transformation. Moreover, the normal form (3) of § 99 is precisely
adapted to the treatment of the more special kind of equivalence
which we have to consider here, since the matrix of the form Jris
precisely the unit matrix. We may therefore state at once the
fundamental theorem :

TaeoreM 1. If Ay gy =+ Ny are any constants, equal or unequal,
and e, ey, -+ e, any positive integers whose sum is n, there exists a col-
lineation in space of n—1 dimensions whose characteristic matriz hag
the elementary divisors

=) (A=2g),
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To this we may add .
THEOREM 2. Every collineation of the kind mentioned in Theorem
1 is equivalent to the collineation whose matric s

where M, stands for the matriz of order e;,
X1 8
R R |
M=

0 Gl e X

We thus get a classification of collineations into categories and
a subdivision of these categories into classes precisely as in § 99.
For instance, in the case n = 3 (collineations in the plane), we have
three categories whose characteristics and representative normal

forms we give: ol =22,

I. [111] m= Ny

B= M%

ﬁ:{ = Klml + Zq

IIL [3] n= M%ht+
xé = 7&1563.

IL [21]

These categories we should then subdivide either into six' classes
as on page 290 or into fourteen classes as on page 292. This 1?,tter
classification is the desirable one in this case. We proceed to give a
list of these fourteen classes with a characteristic property of each.
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That the normal forms of the collineations have these properties
will be at once evident, and from this it follows that all the collinea-
tions of the class have the property in question, since the properties
mentioned are obviously all projective, That the properties men-
tioned are really characteristic properties, that is, serve to distin-
guish one class from another, can only be seen a posteriors, by noticing
that no one of the properties mentioned is shared by two classes.
[111] Three distinct non-collinear fixed points.*

[(11)1] Every point of a certain line and one point not -on
this line are fixed.

[(111)] The identical collineation.

[21] Two distinet fixed points.

[(21)] Every point of a certain line is fixed.

[3] One fixed point.

In all these cases the collineation is non-singular. The remain-
ing collineations are singular. In the next three, one point P of the
plane is not transformed at all, while all other points go over on to

a line p which does not pass through P, and every one of whose
points corresponds to an infinite number of points.

[11 01] There are two fixed points on p.

[(11) i] Every point on p is fixed.

[2 i] One fixed point on p.

In the next two cases one point P is not transformed at all,
while all other points go over on to a line p which passes through P,

and every one of whose points corresponds to an infinite number of
points,

0
[21] One fixed point.
[%] No fixed point.

The remaining collineations are so simple that they are not merely
characterized, byt completely deseribed, by the property we mention.

[(01 i) 1] The points on a certain line are not transformed. All
other points go over into a single point which does
not lie on this line.

* It should be understood here and in what follows that the fixed points which
are mentioned are the only fixed points of the collineation in guestion.
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[(§ iol)] The points on a certain line are not transformed. All
other points go over into a single point on this line.

000 ; :
[(111)] No point in the plane is transformed.
This last case is of course not a transformation at all.

EXERCISES
1. Classify, in a similar manner, the projective transformations in one
dimension.
2. Classify the collineations in space of three dimensions.

8. Classify'the real projective transformations in space of one, two, and three
dimensions. (Cf. Exercises 1,2, § 99.)




