
CHAPTER XX 
. . 

ELEMENTARY DIVISOR$ AND THE EQUIVALENCE OF 
A-MATRICES 

91. A-Matrices and their Elementary Transformations. The theory 
of elementary divisors, invented by Sylvester, H. J. S. Smith, and, 
more particularly, Weierstrass, and perfected in important respects 
by Kronecker, Frobenius, and others, has, in the form in which we 
will present it,* for its immediate purpose the study of matrices 
( which without loss of generality we assume to be square) whose 
elements are polynomials in a single variable A, Snch matrices we 
will call A-matrices. t The cleterminant of a A-matrix is a polynomial 
in A, and if this determinant vanishes identically, we will call the 
matrix a singular A-matrix. By the rank of a A-matrix we under
stand the order of the largest determinant of the matrix which is 
not identically zero. 

W e have occasion here, as in § 19, to consider certain elementary 
traniformations which we define as follows: 

DEFINITION l. By an elementary transforma/ion of a A-matrí,; 
we understand a transformation of any one of the following forms : 

(a) The interchange of two rows or of two columns. 
(b) The multiplication of each elementof a row (or of a column)by 

tl,e same eonstant not zero. • 
( c) The addition to the elements of a row ( or column) of the product, 

of the corresponding elements of another row ( or column) by one and 
the same polyno':'ial in A, 

* Various modifications of the point of view here adopted are possible and im• 
portant. First, we may consider matrices whose elements are púlynomials in any num• 
ber of variables. Secondly, we may confine ourselves to polynomials whose coefficienta 
lie in a certain domain of rationality. Thirdly, we may approach the subject from the 
side of the theory of numbers, assuming that the coefflcients of the polynomials are 
integers. The simplest case here would be that in wbich the elements of the matri:x 
are themselves integers; see Exercise 2, § 91 1 Exercise 3, § 92, and Exercise 2, § 94. 

t Tbe matrix of a pencil of quadratic formsis an important example of a ).-matril 
to which the ,general theory will be applied in Cbapter XXII. 
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If we pass from a first matrix to a second by an elementary trans• 
formation, it is clear that we can pass back from the second to the 
first by an elementary transformation. Thns the following defini
tion is justified: 

D EFINITION 2. Two A-matrices are said to be equivalent íf it is 
possible to pass from one to the otlier by means of a finite number of 
elementary transforrnations. 

We see here that all A-matrices equivalent to a given matrix are 
equivalent to each other; and, as in § 19, that two equivalent A-ma
trices al ways have the same rank. 

The rank of a A-matrix is not, however, th~ only thing which is 
left unchanged by every elementary transformation. In order to 
show tLis we begin with 

L,;~rnA l. If the polynomial <f,(A) is a factor of ali the i-rowed 
def.e,•minants of a A-matrix a, it will be a factor of ali the i-rowed 
defe,-minants of every A-matrix obtained fro,n a by means of an elemen
tary transformation. 

If the transformation is of the type (a) or (b) of Definition 1, this 
lemrna is obviously true, since these transformations have no effecl; 
on the i-rowed determinants of a except to multiply them by con-
1tants which are not zero. If it is of the type (c), let us suppose it 
consists in adding to the elements of the pth column of a the corre
spon<ling elements of the qth column, each multiplied by the poly
nomial ..¡r (>. ). Any i-rowed determinant of a which either does not 
involve the pth column, or involves both the pth and the qth, will 
be unaffected by this transformation. An i-rowed determinant 
which involves the pth column bnt not the qth may be written afie,· 
the transformation in the form A± t(A )B, where A and B are i-rowed 
determinants of a; so that here also our lemma is true. 

THEOREM l. JJ a and b are equivalent A-mat,rices of rank r, and 
lJ.{>.) is the greatest con,mon divisor qf the i-rowed determinants (i;;:; rJ 
of a, then it is also the greatest common divisor of the i-rowed determi
nants of b. 

For by our lemma, lJ.{>.) is a factor of ali the i-rowed determi
nants of b; and if these determinants had a common factor of higher 
degree, this factor would, by our lemma, be a factor of ali the 
i-rowed determinants of a; which is contrary to hypothesis. 
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The theorero just proved shows that the greatest coromon divisora 
D1 (;1, ), • • • D,(;\.) are in variants with regard to elementary transfor. 
mations, or, more generally, that they are invariants with regard to 
all transformations which can be built up from a finite number of 
elementary transformatiorn¡. In point of fact they forro, along with 

· the rank r, a coinplete system of invariants. To prove this we now 
proceed to show how, by means of elementary transformations, a 
;\,-matrix may be reduced to a very simple normal forro. 

LEMMA 2. Jj the first element • f(;\,) of a ;\,-matrix is not identically 
zero and is not a factor of all the other elements, then an equivalen! 
matrix can be formed whose first element is not identically zero and is oj 
lower degree than f. • 

Suppose first there is an eleroent f 1(;\,) in the first row which is 
not divisible by f(;\,) and letJ denote the number of the column in 
which it lies. Dividing f 1 by f and calling the quotient q and the 

remainder r, we have Ji(;1.)=q(;\,)f(;\,)+r(;1,). 

Accordingly, if to the elements of the Jth column we add those of the 
first,each multiplied by -q(;\,), we get an equivalent matrix in which the 
first eleroent of theJth column is r(;\.), which is a polynomial of degree 
lower than f(;\,). If now we interchange the first andJth columlll!, 
the truth of our lemma is established in the case we are considering. 

A similar proof obviously applies if there is an element in the 
first column which is not divisible by f(;\,). 

Finally, suppose every element of the first row and column is 
divisible by f(;\.), but that there is an element, say in the ith row and 
ith column, which is not divisible by f(;\,). Let us suppose the ele
ment in the first row and Jth coluron is t(;\,)f(;\,), and form an 
equivalent matrix by adding to the eleroents of the Jth column 
- ,J,(;\,) times the corresponding elements of the first column. In 
this matrix, f(;\,) still stands in the upper left-hand corner, the first 
element of the Jth column is zero; the first element of the ith row 
has not been changed and is therefore divisible by f(;\,); and the 
element in the ith row and Jth column is still not divisible by f. 
Now forro another equivalent matrix by adding to the elements of 
the first coluron the corresponding elements of the}th column. The 
upper left-hand eleroent is still f(;\, ), while the first element of the 

• By the ftrst element of a matri.x we will understand the element in the upper left. 
band corner 
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ith row is not divisible by f(;\,). This ~atrix, therefore, comes under 
the case already treated in which there is an element in the first 
column which is not divisible by f('-), and our lemma is established. 

LEMMA 3. Jj we have a ;\,-matrix whose elements are not all iden
tically zero; an equivalent matriz can be formed which has the following 

' three properties : 
(a) Thefirst elementf(;\,) is not identically zero. 
( b) All the other· elements of the first row and of the first column are 

identically zero. 
(e) Every element neither in the first row nor in the first column is 

divisible by j(;_ ). 
. . 

For we may first, by an interchange of rows and of columns, 
bring into the first place an eleroent which is not identically zero. 
If this is not a factor of al! the other elements, we can, by Lemma 2, 
find an equivalent matrix whose first eleroent is of lower degree and 
is not identically zero. If this element is not a factor of ali the 
others, we may repeat the process. Since at each step we lower the 
degree of the first element, there must, after a finite number of steps, 
come a point where the process stops, that is, where the first element 
is a factor of all the others. W e can then, by using transformations of 
type (c) (DefinitionJ),reduce al! the elements in the first row and in 
the first column except this first one to zero, while the other elements 
reroain divisible by the first one. Thus our lemma is established. 

Finally, we note that since f(;\,) in the lemma just proved is a 
factor of ali the other elements of the siroplified matrix, it must, by 
Theorem 1, be the greatest common divisor of al! the elements of 
the original matrix. 

The lemma just proved tells us that the ;\,-matrix of the nth order 
of rank r>O · 

ª11 · · • ªin 

(1) 

can be reduced by means of eleroentary transformations to the forro 

f¡(;\.) o o 

(2) 
O b11 b1,,_1 

. . ' . . 
O b,..1, 1 . . . b,-1. n-1 

11 



260 INTRODUCTION TO HIGHER ALGEBRA 

where f¡("'A,)$. O and where f¡('A,) is a factor of ali the b's. The 1am 
written matrix being necessarily of rank r, the matrix of the (n-l)th 
order •.. b1 i . •-
(3) 

is of rank r-1. Conseqnently, if r>l, (3) may 
means of. elementary transformations to the form 

o 

(4) 

be reduced by 

wheref2(;1.)$. O and wheref2(;1.) is a factor of ali the c's. By Theorem 1, 
f

2
(;1.), being the greatest conunon divisor of ali theelements of (4), is also the 

greatest common divisor of ali the b's,and is therefore divisible by f¡(I..). 
N ow it is important to notice that the elementary transformations 

which carry over (3) into ( 4) may be regarded as elementar y transforma
tions of (2) which lea ve the first row and column of this matra: unchanged. 
Thus by a succession of elementary transformations, we have reduced 

(1) to the form ¡1(;1.) O O O 

o J.(;1.) o o 
Q Q "u ... "1,n--2 (5) . . . . . . . 

where neither f
1 

nor f 2 vanishes identically,f1 is a factor of f 2, and 
f

2 
is a factor of ali the c's. 
If r > 2, we may treat the (n - 2)-rowed matrix of the c's, which 

is clearly of rank r - 2, in a similar manner. Proceeding in this 
w~y, we finally redv.ce our matrix (1) to the form 

f1(;1.) 0 ... 0 0 0 
o f.(;\.) ... o o ... o 

(6) 
o o ... f,(;1.) o ... o 
o o ... o o ... o 

o o o o ... o 
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where none of thef'; is identically zero, and each is a factor of the 
next following one. 

So far we have used merely elementary transformations of the 
forms (a) and (e), Definition l. By means of transformations of tlrn 
form (b) we can simplify (6) still further by reducing the coefficient 
of the highest power of ;\. in each of the polynomials J,(;1.) to unity. 
We have thus proved the theorem: 

THEOREM 2. Every ;\.-matrix of the nth order and of rank r can 
be reduced by elementary transformations to the normal form 

E¡(;1.) O O O O 
O E 2(;1.) ... O O ... O 

(7) O O ... E,(;1.) O ... O , 

o o o o ... o 
where the coefficient of the higltest puwer of ;\. in each of the polynomiala 
E,(;\.) is unity, and E,(;1.) is a factor of E;,i('A,)for i = 1, 2, ··· r -1. 

By Theorem 1, the greatest common divisor of the i-rowed determi
nants (i;;; r) of the original matrix is the same as the greatest common 
divisor of the i-rowed determinants of the normal form (7) to which it is 
reduced. These last mentioned i-rowed determinants are, however, all 
identically zero except those which are the product of i of the E's. Let 

(8) E,,(;1.)E,,(;1.) ... E,/;1.) 

be any one of these, and suppose the integers k1, k2, ... k, to have 
been arranged in order of increasing magnitude. We obviously 
have k1 ~ 1, k2 ;¡;; 2, ... k, ;¡;; i. Consequently E1 is a factor of E,,, E2 

of E,,, etc_ Thus E
1
(;1. )E,(;1.) ... E,(;1.) 

is seen to be a factor of (8), and, being itself one of the i-rowed de
terminants of (7), it is their greatest common divisor. That is, 

THEOREM 3. The greatest common divisor of the i-rowed determi• 
nants of a ;\.-matrix of rank r, when i ;;; r, is 

JJ,(;1.) ea E¡(;1.)E2(;1.) ... E,(;1.), 

where the E's are the elements of the normal form (7) to which tl,e given 
matrix is equivalent. 

It may be noticed that this greatest common divisor is so deter• 
mined that the coeflicient of the highest power of ;\. in it is unity. 
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W e come now to the fundamental theorem: 

THEOREM 4. A necessary and sufficient condition for the equiva
lence of two )l. •matrices of the nth order is that they have the same rank 
r, and that for every value of i from l to r inclusive, the i-rowed deter. 
minants of one matrix have the same greatest common divisor a8 th, 

i-rowsd determinants of the other. 
To say that this is a necessary condition is rnerely to restate 

Theorem 1. To prove it sufficient, suppose both matrices to be 
reduced to the normal forro (7), where we will distinguish the 
normal forro for the second matrix by attaching accents to the 
E's in it. If the conditions of our theorem are fulfilled, we have, by 
Theorern 3, E;( .. )= E¡("-), 

E\("-)E\(¡.,_) = E¡( .. )E,(._), 

E\( .. )E~('/..)E~( .. ) = E¡( .. )El .. )Es( .. ), 

and, since none of these E's are identically zero, it follows that 

E:('/..)= E,{"-) (i = 1, 2, ... r). 
Thus the normal forms to which the two )1.-matrices can be reduced 
are identical, an<}. hence the matrices are equivalent, since two 
._,matrices equivalent to a third are equivalent to each other. 

EXERCISES 
l. Reduce the matri,c ._ 1 o o o 

o ,\ o o o 
o o ,\ o o 
o o o ,\-1 o 
o o o o ,\-1 

by mean, of elementary transformations to the normal form of Theorem 2. 
Verify tho result by finding the greatest common divisora D,(>..) first directly, 

and secondly from the normal form. 

2. By an elementary transformation of a matrix ali of wbose elements are 
integers is underst.ood a transformation of any one of the following forma: 

(a) The intercbange of two rows or of two columns. 
(b) The chango of sign of all the éloments of any row or column. 
(e) The addition to the elements of ono row (or column) of the producto of the 

corresponding elements of another row (or column) by one and the same integer. 
Starting from this definitiou, develop the theory of matrices whose elements are 

integero along the same linos as the theory of >..-matrices was developed in this section. 

ELEMENTARY DIVISORS AND >..-MATRICES 269 

92. Invariant Factors and Elementary Divisors. In place of the 
invariants lJ,{'/..) of the last section, it is, for most purposes, more 
convenient to introduce certain other ·invariants to which we will 
give the technical name invariant factors. As a basis for the defini
tion of these invariants we state the following theorem, which is 
merely ª? immediate consequence of Theorem 3, § 91: 

Tm!:OREM 1. Phe greatest common divisor of the i-rowed determi
nants ( i = 2, 3, •·· r) of a )1.-matrix of rank r is divisible by the greatest 
common divisor of the ( i - 1 )-rowed determinants of this matrix. 

DEFINITION 1. Da is a )1.-matrix of rank r, and 

(i= 1, 2, ... r) 

the greatest common divisor of its i-rowed determinants so determined 
that the coefficient of the hig hest power of ;\, is unity; and if lJ o("-)= 1; 
then the polynomial 
(1) (i=l, 2, ... r) 

Í8 called the it h invariant factor of a. 

This definition shows that these E's are really invariants since 
they are completely determined by the lJ's which we proved to be 
invariants in § 91. Moreover, by rnultiplying together the first i of 
the relations (1 ), we get the formula 

(2) (i=l,2,•••r). 

This shows us that the E's completely determine the lJ's, and since 
these latt_er were seen in § 91 to form, together with the rank, a 
complete system of invariants, the same is true of the E's. That is, 

THEOREM 2. A necessary and s,,ffici,nt condition that two )1.-ma
trices be equivalent is that they have tlw same rank r, and that the inva
riant factors of one be identical respective/y with . the corresponding 
invar·iantfactors of the other. 

Since, in the case of a non-singular matrix of the nth order, 
D0(;\,) differs from the deterrninant of the matrix only by a constant 
factor, we see that in this case the determinant of the matrix is, 
except for a constant factor, preciseiy the product of ali the invari
ant factors. This is the case which is of by far the greatest impor
tance, and the term invariant factor comes from the fact that the E's 
are really factors of the determinant of the matrix in this case. 

" 

11 

i 
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A reference to Theorem 3, § 91, shows that onr invariant factors 
are precisely the polynomials E, which occur in the normal form of 
Theorem 2, § 91 ; and, since in that normal form each E is a factor 
of the next following one, we have the important result, 

THEOREM 3. Jf E¡('-), ... E,("1..) are the successive invariant fa.c
tors of a A.-matrix of rank r, then each of these Eºs is a factor of the next 
following one. 

This theorem enables us to arrange the invariant factors of a A-ma
trix in the proper arder by simply arranging them in the arder of 
incr'easing degree, twu E 's of the same <legree oeing necessarily 
identical. 

The invariant factors (like the D"s of the last section) may be 
spoken of as rational invariants of our A-matrix since they are formed 
from the elements of the A-matrix by purely rntional processes, 
narnely the elementary transformations of § 91, which involye only 
the rational operations of addition, subtraction, multiplication, and 
divisan. In distinction to these the elementary divisors, first intro
duced by Weierstrass, are, in general, irrational invariants. * These 
we now proceed to define. 

DE~'INITION 2. If a is a }..-matrix of rank r, and D,(>..) is the 
greatest common divisor of the r-rowed determinants of a, then the linear 

faetors X-a, X-a', A.-<,.i', 

of D,()..) are called the linear factors of a.t 
Since, by formula (2), D,(A) is the product of ali the invariant 

factors of a, it is clear tbat each invariant factor is merely the prod
uct of certain integral powers, positi ve or zero, of the linear factors 
of a. · We may therefore lay down the following definition: 

• German writers, following Frobenius, use the term elementary divisor to corer 
both kinds of invariants. This is somewhat confusing, and necessitates tlte use of 
modifying adjectives such as simple elementary divisors for the elementary divisors 
as originally defined by Weierstrass, composite ele7J.ientary divísors for the Es. On 
the other hand Bromwich ( Quadratic Furms and their Classification by Means o/ 
Invariantjactors, Cambridge, England, 1906) propases to substituta the term int1ari• 
ant factor for the term elementary divisor. Inasmuch as this latter term IB wholly 
appropriate, it seems clear that it Rhould be retained in English as well as in German 
in the sense in which Weierstrass first u.sed it. 

t It will be noticed that if a is non-singular, the lin~ar factors of a are simply tbe 
linear factors of the determinant of a. 
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DEFINITION 3. Let a be a A-matrix of rank r, and 

A.-a, A-a', "A-a", 

iU distinct linear factors. Then if 

E,('-)=(,.__:_ a J'<A.- a')'i()..- a")'l' (i= 1, 2, ... :r), 

are the invariantfactors of a. such of thefactors 

()..-a)", 
(A-a1)'i, 
(A-a"'fl', 

(A-a)'•, 
()..-a')'l, 
(A-u!')'l', 

(A-a)',, 
(A.-a'y;, 
(A- a")"/, 
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as are not mere constants are called the elementary divisors of a, each 
elementary divisor being said to correspond to the linear factor of whicl, 
it is a power.• 

Since the invariant factors cornpletely determine the elementary 
divisors and vice versa, it is clear that the elementary divisors are not 
merely invariants, but that, together with the rank, they form a 
complete system of invariants. That is, 

THEOREM 4. A necessary and sufficient condition tliat two \-ma
trices be equivalent is that they have the same rank and tl,at the elemen
tary divisor, of one be identical respectively with the corresponding 
elementary divisors of the other. 

By means of Theorem 3 we infer the important result: 

THEOREM 5. The degrees e, of the elernentary divisors correspond
ing to any particular linear factor satisfy the inequalities 

e,~e,_ 1 (i=2,3,·••r). 
By means of this theorem we can arrange the elementary divisors 

corresponding to any given linear factor in the proper arder by simply 
noticing their degrees. 

* It will be seen that the definition just given is equivalent to the following one, in 
which the conception of invariant fa.ctors is uot introduced: 

DEFINITION. Let X-a be a linear factor of the 'l\-matrix a of rank r, and let l, be 
the ezponent of the highest power of X-a which is a factor of all the i-rowed determi
nants ( i ~r) of a. IJ the integers e¡ ( which are necessm·ily positive or zero) are defined 
by the.formula e¡=l¡-l¡_ 1 (i=l, 2, ... r), 
then such of the expressions (X-a)\ (A-a)'\ ... ('A-a)'r 

as are not constants are called the elementary divisors of a which r.orrespond to the 
linear ¡actor X- a. 

1 
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EXERCISES 

l. If .¡,=O and .¡,=O are two conics of which the second is non-singulv, 
show how the number and kind of singular conics contained in the pencH 
.¡, - >,,.¡, = O dependo on the nature of lhe elemenlary divisors of the malrix o! lht 
quadratic form </> - >,,.¡,, 

2. E:xtend Exercise 1 to the case of three dimensiona. 

3. Apply the considerations of this section to matrices whose elements are 
inlegers. (Cf. Exercise 2, § 91). 

93. The Practical Determination of Invariant Factors and Elemen
tary Divisors. The easiest general method for determi11i11g the 
invariant factors of a particular :1.-matrix is to reduce it by means o! 
elementary transforrnatious to the normal form of Theorem 2, § 91, 
following out step by step the reduction used in the proof of tlmt theo
rem. From this normal forni the invariant factors may be read off; 
and frorn these the elernentary divisors may be eomputed,although ouly, 
in general, by the solution of equations of more or less high degree. 

There are, however, many cases of great importance in which the 
elementary divisors may more easily be obtained by other method.s. 
The most obvious of these is to apply the definition of elementary 
divisors directly to the case in hand. Asan illustration, we mention a 
inatrix of the nth arder which has a- :l. as the element in each place 
of the principal diagonal, whi!e ali the other elements are zero exeept 
those which lie immediately to the right of or above the elements of 
the principal° diagonal, these being ali constants different from zero: 

a - ;\. C¡ o .. o o 
o a-:\. ª2 o o 

(1) ( C¡C2 ... ª•·I 'FO). 

o o o ... a- X Cn-I 

o o o O a - :\. 

The deterrninant of this matrix is (a - :l.)". The determinant 
obtained by striking out the first colurnn and, the last row is 
c

1
c

2 
.. . c,,..

1
• Accordingly 

D.(:1.)=(:1. - a)", .D,._1(:1.)= 1, E.(:1.)=(:1. - a)". 

Thus we see that (:l. - .a)" is tbe only elementary divisor of this 
mat1·ix, while the invariant factors are (:1.- a)" and n -1 l's. 
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This direct rnethod may sometimes be ernployed to advantage in 
oonjunction with the rnethod of reducti?n by elernentary transfor• 
mations. Cf. Exercise 1 at the end of this section. 

A further meaos of recognizing the elementary divisors in sorne 
special cases is furnished by the following theorems whose proofs, 
which present no difficulty, we leave to the reader: 

THEOREM l. JJ all tite elements of a :\.-matrix are zeroo except 
those in the p•incípal diagonal, and íf each element of this diagonal 
which is not a constant is resolved into the product qf a co·nstant by powers 
of distinct linear factors of the form :\. - a;:\.- a', ... , then these powers 
of linear factors will be precise/y the elementary divisors of the matrix. 

THEOREM 2. If all the elements of a :\.-matrix are zeros except 
tliose which líe in a certain number qf non-overlapping principal minors, 
then the elementary divisors of the matrix may be found by taking the 
elementary divisors of all these principal minors. 

The proof of this theor~rn consists in redncing the given rnatrix 
to the form referred to in Theorern 1 by rneans of elementary trans
formations each of which may be -regarded as an elementary trans
for~ation of one of the principal rninors in question. 

It should be noticed that this theorem would not be true if the 
words invariant factors were substituted in it for elementary divisors; 
cf. Exercise 3 below. The invariant factors rnay, however, be corn• 
puted from the elementary divisors when these have been fonnd. 

EXERCISES 
l. Prove lhat the malrix 

/,, - a o o . - 1 o 
' o /,, - a o ' o -1 ' ' o o A- a : o o 
' ------- -- -- . ------ --·, . - ----------

Is equivalent t., 

-1 O 
O - 1 
o o 

/3' 
o 
o 

o: 
' o: 

- 1: 
' 

1 
/3' 
o 

o 
o 
o 

o :A - a 
' 1 , o 
' 

/3' ' o ! 

o 
/,,-a 

o 
o 
o 

o 

o 
o 

-1 

o 
o 

/,, - a 

o 
o 
o 

----------------1---------- ------------------- ----~----- ---- ' 
O O O : (/,, - a)'+ f3' 1 O 
O O O : O (/,, - a)'+ ,8' 1 
o O o i O O (/,, - a)'+ 8' 
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and hence that its elementary divisors are 

[l. - (a+ /ji)]', [l. - (a - /ji)]'. 

2. Generalize Exercise 1 to matrices of order 2n. 

3. Find (a) the elementary divisors, and (b) the invariant fact.ors of tbe 
ma.trix 1.2(1. - 1)2 O O O 

O 1.(1.-1) 3 O O 
O O 1.-1 O 
O O O >. . 

t. Determine the invariant factora and the elementary divisora of the matriJ: 

n 3 o 1 >. 
H 3(1.+ 2) o l.+ 2 n 
o 6.\ ¡. 2.\ o 

1.-1 o 1.-1 o o 
3(1. - 1) 1-1. 2(1.-1) o o 

1s this matrix equivalent to the matrix in the exercise at the end of § 91? 

5. Devise a convenient rational process for computing the invariant factors of 
matrices of the kinds considered in Theorems 1 and 2. 

94. A Second Definition of the Equivalence of :\.-Matrices. The 
definition of equivalence of ;\-matrices which we have usecl so far 
rests on the elementary transformations. These transformations are 
of such a special character that this definition is not convenient for 
most purposes. We now give a new definition which we will prove 
to be coextensive with the old one. 

DEFINITION. Two n-rowed ;\-matrices a and b are said to be equiv
alent if there exist two non-singular n-rowed ;\-matrices e and d whose 
determinants are independent of ;\, and such that 

(1) b as cad.• 

Since the matrices e and d have, by hypothesis, constant determi
nants, the inverse matrices c-1 ancl d-1 will also be ;\-matrices, and not 
matrices wh~se coefficients are fractional rational functions of ;\ as would 
in general be the case for the inverse of ;\-matrices. Consequently, if 
we write (1) in the form 
(2) a as c-1bd-1, 

we see that the relation established by onr definition between the 
matrices a and b is a reciproca! one, as is implied in the wording of 
the definition. 

• We use here and in what follows tbe sign ;;;:: between two >..-matrices to denote 
tnat every element of one matrix is identically equal to the corresponding element of 
the other. 
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In arder to justify the definition just given, we begin by estab

lishing the 

LEMMA. If a and b are n-rowed ;\-matrices, and the polynomial 
r/i_;\) is a factor of all the i-rowed deterrninants of a, it is a faetot of all 
the i-rowed determinants of ab and also of ba. 

For, by Theorem 5, § 25, every i-rowed determinant of ab and 
also of ba is a homogeneous linear combination of certain i-rowed 
determinants of a. 

THEOREM l. If a and b are equivalent according to the definition of 
tliis section, they are also equivalent according to the definition of § 91. 

For in this case there exist two non-singular ;\-matrices, e and 
d, whose determinants are constants, such that relation (1) holds. 
Consequ~ntly, by Theorem 7, § 25, • a and b have the same rank r. 
Let JJ.{;>,,) be the greatest common divisor of the i-rowed determi
nants of a, where i::;; r. By our lemma, JJ.{;>,,) is a factor of all 
the i-rowed determinants of ca, and therefore, applying the lemma 
again, it is a factor of all the i-rowed determinants of cad, that is, of b. 

We can infer further that JJ.{;>,,) is the greatest common divisor 
of the i-rowed deterrninants of b. For applying to relation (2) the 
reasoning just used, we see that the greatest comrnon divisor of the 
i-rowed determinants of b is a factor of all the i-rowed determi
oants of a, and cannot therefore be of higher degree than JJ.{;>,,). 

A reference to Theorem 4, § 91, now shows us that a and b are 
equivalent_ according to the definition of that section. 

THEOREM ~- 1f a and b are equivalent according to the definition 
of § 91, they are also equivalent according to the definition of the pres
ent seation. 

\Ve begin by showing that if we can pass frorn a matrix a to a 
matrix a1 by means of an elementary transformation, one of the fol
lowing relations always holds: 
~ ~asra w ~asd 

where e and d are non-singular matrices whose determinants are 
independent of ;\. To prove this we consider in suc9ession the 
elementary transformations of the forms which were called (a), (b~ 
(e~ in Definition 1, § 91. 

• How is it that we h~ve a right to apply this theorem to ~-matrices? 

i r , 
1 
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(a) Suppose we interchange the pth al)d qth rows. This can 
be effected by forming the product ca where the matrix e may be 
obtained by interchanging the pth and qth rows ( or columns) in ths 
unit matrix 

1 O O 
O 1 O 

o 
o 

O O O 1 

Similarly the interchange of the pth and qth columns of a may be 
effected by forming the product ac, where e has the same meaning 
as before. · 

In each of these cases, e may be regarded as a non-singular 
A-matrix with constant determinant, since its elements are constante 
and its determinant is -1. 

(b) To multiply the pth row of a by a constant k, we may forra 
the product ca, where e differs from the unit matrix only in having 
k instead of 1 as the pth element of the principal diagonal. 

SimilMly, we multiply the pth column of a by k, by forming the 
product ac, where e has the same meaning as before. 

If we take the constant k different from zero, e may be regarded 
, as a non-singular X-matrix with constant determinant. 

(e) We can add to the pth row of a </>(_X) times the qth row by 
forming the product ca, where e differs fro¡:n the unit matrix only in 
having </>(_'A.) instead of zero as the element in the pth row and qtb 
column. 

Similarly we add to the qth column </>(_X) times the pth column 
by forming the product ac where e has the same meaning as before. 

The matrix e, whose determinant is 1, is a non-sin_gular 
X-matrix. 

It being thus established that one of the relations (3) holdH 
between any two X-matrices which can be obtained from one another 
by an· elementary transformation, it follows that two matrices a 
and b which are equivalent according to the definition of § 91 will 
satisfy a relation of the form 

b = c,c,_1 ... c1 ad1 d2 ... d• 

where each of the c's and d's is a non-singular X-matrix of constant 
determinant which corresponds to one of the elementary transforma-
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tions we use in passing from a to b. This last relation being of the 
form 

baecad, 

where e and d are non-singular X-matrices with constant determi
nants, our theorem is proved. 

W e have now completed the proof that our two definitions of 
the equivalence of X-matrices are coextensive. 

EXERCISES 

l. ff a denotes the matrix in Exercise 1, § 91, and b the normal form of 
Tbeorem 2, § 01, for this matrix, determine two .\•matrices, e and d, such that 
relation (1) holds. 

Verify your result by showing that the determinants of e and d are constants 

2. Apply the considerations of this section to matrices whose elements are 
integers. Cf. Exercise 2, § 91, aud Exercise 3, § 92. 

95. Multiplication and Division of }..-Matrices. We close this 
chapter by giving a few developments of what might be called the 
elementary algebra. of 'A.-matrices. 

DEF!N[TlON. By the degree of a X-rnatrix is understood the high
est degree in 'A. of any one of its elernents. 

For a X-matrix of the /cth degree, the element in the ith row andjth 
column may be written a .. x• + a'.x•-1 + ... + a!~l 

lJ U \7' 

and at least one of the coefficients of 'A.1 (i.e. one of the a,/s) mus, 
be different from zero. If, then, we denote by a, the matrix of 
which a,~I is the element which stands in the ith row and jth col
umn, we get the theorem 

THEORE.\I 1. Every Vmatrix of the kth degree rnay be written in the f= 

(1) ªo "A.'+ ª1 'A.,-1 + ... +a, (Ro 4a U) 

where llo, .. , a, are rnatrices with constant elernents; and conversely, 
every expression (1) is a 'A.-matrix of deg,·ee k. 

THEOREM 2. The product of two A-rnatrices of degrees k and l 

lio'A-' + a¡ x•-1 + ... + a, 
b0 'A.1 + b1XH + ··· + b, 

is a X-rnatrix of degree k + l provided at least one of the matrices llo and 
b0 is non-singular. 



2TB INTRODUCTION TO HIGHER ALGEBRA 

For this product is a A.-ruatrix of the form . 

Co"-t+I + C¡A.Hl-1 + ... + ck+I 

where c0 has the value llobo or bollo according to the order in which 
t,he two given matrices are multiplied together. By Theorem 7, 
§ 25, neither llobo nor bollo is zero if llo and b0 are not both singular. 

The next theorem relates to what we may call the division 
of A.-matrices. 

THEOREM 3. Jf a and b are two A--matrices and if b, when written 
in the form (1 ), has as the coefficient of the highest power of "- a no11-
1ingular matrix, then there exists one, and only one, pair of A--matrice, 

q1 andr1 forwhich assq¡b+ri 

and such that either r 1 = O, or r 1 is a A.-matrix qf lower degree than b; 
and also one and only one pair ofA.-rnatrices q2 11Jnd r2 jQr which 

aasbq2 +r2 

and such that either r2 = O, or r2 is a A--matrix of lower degree than b. 

The proof of this theorem is practically identical with the prool 
of Theorem 1, § 63. 

EXERCISE 

DEFINITION. By a 1·eal matrix is understood a matrix whose elements are real; 
by a real A-matrix, a malrix wlwse elements are real polynmnials in .\.; and by a real 
elementary tran:iformation, an elementary transformation in wh.ich the constant in (b) 
and the polynomial in (e), Definition 1, § 91, are real. 

Show that ali the results of this chapter still hold if we interpret the word, 
matrix, A-matrix, and elementary tronsformation to mean real matrix, real A-matn'.r, 
a.nd real elementary trnnsformatio,i, respectively. 

CHAPTER XXI 

THE EQUIVALENCE AND CLASSIFICATJON OF PAIRS OF 
BILINEAR FORMS AND OF COLLINEATIONS 

96. The Equivalence of Pairs of Matrices. The applications of 
the theory of elementary divisors with which we shall be concerned 
in this chapter and the next have reference to problems in which 
X-matrices occur only indirectly. A typical prohlem is the theory 
of a pair of bilinear forms. The matrices a and b of these two forms 
have constant elements, and we get our A.-matrix only by consider• 
ing the matrix a - A-b of the pencil of forms determined by the two 
given forms. It will be noticed that this matrix is of the first 
degree, and in. fact we shall <leal, from now on, exclusively with 
X-matrices of the first degree. 

By the side of this simplification, a new difficulty is introduced, 
is will be olear from the following considerations. We shall subject 
the two sets of variables in the bilinear forms to two non-singular 
linear transformations whose coefficients we naturally assume to be 
constants, that is, independent of "-· These transformations have the 
effect of multiplying the A--matrix, a- A-b, by certain non-singular 
matrices whose elements are constants ( cf. § 36) and therefore, by 
§94, carry it over into an equivalent A.-matrix which is evidently of 
the first degree. The transformations of § 94, however, were far 
more general than those just referred to, so that it is not at all oh
vions whether every A--matrix of the first degree equivalent to the 
given one can be obtained by transformations of the sort just re
ferred to or not. 

These considerations show the importance of the following 
theorem: 

THEOREM l. lf a1, a,, b1, b2 are matrices with constant elements 
uf wl,ich the last two are non-singular, and if the A--rnatrices of the firsl 

de,qree m¡ = ª1 - "-b1, m2 = 11i- A-b¡¡ 
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