
CHAPTER XIX 

POLYNOMIALS SYMMETRIC IN PAIRS OF VARIABLES 

87. Fundamental Conceptions. l: and S Functions. The variables 
(x1, ... x0 ) which we used in the last chapte: may be regarded, if we 
wish, not as the coordinates of a point in space of n dimensiona, but 
rather as the coordinates of n points on a line. In fact this is the 
interpretation which is naturally suggested to us by the ordinary 
applications of the theory of symmetric functions (cf. §86). Looked 
at from this point of view, it is natural to generalize tbe conception 
of symmetric functions by considering n points in a plane, 

(1) 

DEFINITION. A polynomial, 

F(xp Y1; X2, Y2; ... Xn• Yn) 

in the coordinates of the points (1) is said to be a symmetric polynomial 
in these pairs of variables if it is uncl,anged by every intercltange of 
tltese pairs of variables. 

As in the case of points on a line, we see that it is not necessary 
to consider ali the possible permutations of the subscripts in order to 
show that a polynomial F is syrnmetric. It is sufficient to show that 
F is unchanged by the interchange of every pair of the points (1 ). 

W e will introduce the I notation here precisely as in the case of 
single variables. Thus, for example, 

~x].1yf1 ;:;x¡1yf1 +x;1,yi' + ... + x:,y~, 

and so on. 
I~y.81zl½yf3, = xª1y.S1xª'y~• + r~•yf31x~yfJ1 + ... , 1 1 2 i - 1 1 2 2 -, 1 a a 

· As in the case óf single variables, it is clear that the order in 
which the pairs of exponents a1, {31 ; a2, {32 ; ... are written is irnrn¡¡. 
terial; aud also that every symmetric polynomial in the pairs of variable, 
(1) is a linear combination of a certain number ~f ~-,. 

2ó~ 

POLYNOMIALS SYMMETRIC IN PAIRS OF VARIABLES 253 

We introduce the notation 

s.,= I xt11\ = xfy\ + x'w-~ + .. · + x!y~ (
k = O, 1, ••• )· 
l = O, 1, ... 

THEQ.REM. Any symmetria polynomial F(x1, 1/¡ ; •·• x., y.) may 
~ expre88ed as a poly~omial in these S's. 

The proof of this theorem is exactly like that of Theorem 3, § 83, 
and is left to the reader. 

88. Elementary Symmetric Functions of Pairs of Variables. 
Every I function of n p><irs of variables may, by giving to the a·s 
an<l f3's suitable values, be written in the forII'. 

(1) 

DEFINITION, The function (1) is said to be an elementary sym­
metric function of the pairs of variables (x1, y1~ ... (x., y.) when, anti 

only when, a,+ f3, = o or 1 (i = 1, 2, ... n~ 

but iwt all tite a's and f3's are zero: 

W e sha!l adopt the following notation for these elementary sym. 
metric functions : " " 

P10 = ~ X¡, Poi=~ 1/1, 

Poo = I x1x,, Pu = I X11J,, PO'J. = :E 111!/'l' 

It is clear that there are a finite number, ½ n (n + 3~ of p.,'s, but 
an infinite number of S;;'s. 

W e will attach to each p a weight with re,gard to the x' s equal•to its 
first subscript anda weight with regard to the y's equal to its second 
subscript. When we speak simply of the weight of Pv we will mean 
its total weight, that is, the sum of its subscripts. 

THEOREM. .Any s_qm.metric polynomial F(x1, y1 ; ... x., y.)may bs 
txpressed as a polynornial in tite p¡/ s. 

Since, by the theorem in § 87, any such polyi,omial may be 
expressed as a polynomial in the S,/s, it is sufficient to, show that 
the 8,/s may he expressed as polynomials in the p,;'s. 

Let · , 1 =AX¡+ µ.y,., , 2 = :\x2 + µ.y2, • •· , n= A.X•+ µ.y., 
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and form the elementary symmetric functions of these fs: 

.,,-1 = Y;1 = ;\.lx1 + µ,Yy1 = ;\.p10 + µ,pOl' 

.,,-2 = Y ; 1 ; 2 = l(;\.x1 + µ,y 1)(;\.x2 + µ,y2) 

=A2lx1x2+ ;\.µ,lx1y2 +µ,2Yy1y2 

= A2P20 + Al'P11 + 1'2Po,, 

.,,. a=¡ f1 f,Ea = A3Pao + A21'P21 + ;\.¡,'p¡, + 1'3Poa, 

.,,-, = E1 E, ... E.= ;\.'Pno + ,1.•-Iµ,p.-1, 1+;\_•-21'2P,-2, 2 + ··· + µ,"po,,. 

Alsolet a-,=YEf (k=l,2, ... ) 
Let a and f3 be positive integers, or zero, but not both .zero. 

Then ""•+P = ¡ E¡H = ;\. •H¡"'Í+P + ;\_•+P-lµ,Yx¡+11-1y1 + ... 

=;\.-+PS • +;\_•+11-InS • +"• - a.+,..,O r a.+,..-1, 1 • 

But by Theorem 1, § 84, we may write 

where F is a polynomial. Hence 

;\_•HS•+P,o+ ;\_•+P-Iµ,S.+P-1,1 + ··· ='l'(Pio• ···Pon•;\.,¡,), 

where 'l' is a polynomial. Regarding this as an identity in (;\., µ,) 
and equating the coefficients of the terms containing ;\.ª µ,P, we get an 

identity in the x's and y's, 

s.~= 'P(Pw ··· Po .. ), 

where ·et> is a polynomial in the p's. Thus our theorem is proved. 
Theorem 3, § 84, does not hold in the case of pairs of variables, 

as r;lations between the ½ n (n + 3) p,;'s do exist; for example, il 
'n = 2, the poi ynomial 

4P20Po2 - P20P51 - P10Po2 + P10P11Po1 - P11 

vanishes identically when the p's are replaced by their values in 
terms of the x's. It does not vanish identically when n = 3. 

In view of the remark just made, it is clear that the represen• 
tations of polynomials in pairs of variables in terms of the p¡/s will 
not be unique. 

For further information concerning the subjects treated in this 
section, the reader may consnlt N etto's Algebra, Vol. 2, p. 63. 
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EXERCISES 

l. Prove that a polynomial symmetric .in the pairs of variables (x,, y1) and 
which is homogeneous in the x's alone of degree n and in the y's alone of degree m 
can be expres.sed as a polynomial in the p¡/s isobaric of weight n with regard to 
the x's, and m with regard to the y's. 

2. Express the symmetric polynomial 

}; xVfzYa 

in terms of the p¡/s by tbe method of undetermined coefficients, making use of 
Exercise l. 

3. A polynomia1 in (xh yi, z1 j x2, y2, Z2 ¡ ... Xn, Yni Zn) which is uncbanged by 
every iuterchange of the subscripts is ca11ed a symmetric polynomial in the n 
points ( x¡, y;, z,). 

Extend the resuns of this section and the last to polynomials of this sort. 

89. Binary Symmetric Functions. The pairs of variables (x1, y1), 

... (x., y.) may be regarded as the homogeneous coiirdinates of n 
points on a line as well as the non-homogeneous coiirdinates of n 
points in aplane. It will then be natural to consider only sym­
metric polynomials which are homogeneous in each pair of v·ariables 
alone. Such polynomials we will cal! binary symmetrie functions. 
Most of the pJ• of the last section are thus excluded. Tbe last 
n + 1 of them (p00, Pn-I,I' ··· p0.), however, are homogeneous of 
the first degree in each pair of variables alone. W e will call them 
the elementary binary symmetric funetions. 

THEOREM l. Any binary symmetric function in (x1, y1; •· • x., y,) 
can be expressed as a polynomial in (p00,p,_1, 1, ••• p0.). 

If we break up our binary symmetric function into Y's, it is clear 
that each of these Y's will itself be a binary symmetric function, or, 
as we will say for brevity, a binary Y. It is therefore sufficient to 
prove that our theorem is true for every binary Y. The general 
binary Y ma y be wri tten 

where, if we denote by m the degree of this Y in any one of the pairs 
of variables, 

Let ns assume for the moment that none of the y's are zero, and Jet 

• 

l 
1 1 

1 
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Now conaider the elementary symmetric functions of these X's: 

P 1 = IX1 =Pi.•-1, 

. . .. . 

Pon 
=P2,n-g, 

Pon 

We may write 
P.= X 1X 2 ... X. =Pno. 

Po• 

(1) 
¡ x••y~•:,;:,y~ ... x'c<!f"" 

1 1 2 2 • • ¡ x1,x2' ... X;:,,= <ti(P
1
, ... P.~ 

p()n 
where, since we have assumed a1 ;;; a2 :;;; . .. :;;; an, <ti is a polynomial 
of degree a¡ in the P's (Theorem 2, § 85). Hence we may write 

{2) <ti(P
1
, ... P.)= cf,{_po••Pi,n-1> ... p .. ),, 

po:i 
where cf, is a homogeneous polynomial of degree ªr 

We t~us get from (1) and (2) 

(3) Ixi'Yf' ... x; y,;• =pgicf,(po.,P1,,,_1, ... Pno~ 

an equation which holds ex:cept when one of the y's is zero. Since 
each side of (3) can be regarded as a polynomial in the x's and y's, 
we infer, by Theorem 5, § 2, that this is an identity, and ·our theorem 
is proved. 

By Theorem 1, § 85, <ti is isoharic of weight ', + a2 + · · · + ª• in 
the P's. Hence I x;,y~ .. . x¿'yf;;', when ex:pressed in terms of these 
( n+ 1) p./s, is isobaric of weight a1 + a2 + .. • + a., provided we count 
the weight of the p1/s with regard to the x's. Passing back now to 
an aggregate of a number of such I's, we get 

THEOREM 2. If a binary symmetric function is homogeneous i11 
the n x's (or y's) of degree k, it will, when expressed in terms of 
Pno, Pn-1, 1, ... p0., he isobaric of weight k with regard to the x's (or y's). 

W e ha ve seen in the proof of Theorem 1 that the polynomial cf, in 
(3) is a homogeneous polynomial of degree a1 in the p's; so that 
Ixt'Yl' ... x;:,, yl • is a homogeneous polynomial of degree a1 + {31 
= m in the p's. Hence 

THEOl\EM ~- Any binary symmetric function of degree m in each 
pair of vari~bles will. when written in terms of Pno•P•-'· ,, ... Pon be a. 
hom.ogeneous polynomial of degree m in these p' s. 
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EXERCISES 

1. Prove that no ratiOnal relation e:xists between p..o, ... p0,0 and hence that a 
binary symmetric function can be expressed as a polynomial in them in only one 
way. 

2. By a ternary symmetric function is meant a symmetric polynomial in n 
poiuts ( x¡, y¡, Zi) which is homogeneous in the coordinates of each point. 

Extend the results of this section t.o ternary symmetric functions. Cf. Exer• 
ciae 3, § 88. 

90. Resultants and Discriminants of Binary Forms. It is the 
object of the present section to show how the subject of the re­
snltants and discriminants of binary forms may be approached from 
the point of view of symmetric functions. 

Let fl_x¡, X2) = ªoxi + ª1X¡-1Xz + .. · + a,x¡; 
- («11x ,.¿x Xa"x .ix) (a11x M:X), = 1 1 - -·1 2 2 1 - --;¡ 2 .. . " 1 - -, 2 

cf,(x1, x2) = b0xj + b1x¡-1x2 + .. · + b .. x'; 

= (f3~x1 - f3\x2Xf3~X¡ - f3',;x2) ... (f3:~x1 - {3;."'J~ 

be two binary forms. Each of these polynomials has here been 
written first in the unfactored and secondly in the factored form. 
By a comparison of these two forms we see at once that the elemen• 
tary binary symmetric fractions of the n points 

( '½• an, ( ¾• a;), .. . ( a~, a~') 
are a0, - a1, a2, •· · ( -1 )"a,.; 

and of the m points (f1\, f3f),(f3;, f3~), • .. ({3;., f3'/.) 
are b0, - b1, b2, ... (-'ltb ... 

Let us now consider the two linear factors 

11 1 f3" f3' IX¡X¡ - U¡Xz, ;X¡ - ;X2• 

A necessary and sufficient condition for these factors to be propor­
tional is that the determinant 

nnish. 
a~1/3j- a'J1,1 

Let us form the product of all such determinants : 

( a'{ f3\ - a'¡f3f) ( a~ f3\ - a!jlq) .. , ( a~f3\ - a'J3f) 
(a!ff31- a\f3~) (a~f3~ - a!jl~) ... (a~f3;-a~f1n 

'l 

I¡ 
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The vanishing of this product is a necessary and sufficient con• 
dition that at least one of the linear factors of f be proportional to 
one of the linear factors of cf,, that is, thatf and cf, have a common 
factor which is not a constant. 

We may obviously reduce P to the simple form 

p eef(/3¡, /3nf(/3;, /3~) ···f(/3~. /3'/,.). 
In this form it appears as a homogeneous polynomial of the mth 

degree in the a's, and as a symmetric polynomial in the m points 
(/3¡, {31/). Moreover, it is obviously a binary symmetric function which 
is of the nth degree in the coiirdinates of each point. Conseqnently, 
by Theorem 3, § 89, it can he expressed as a homogeneous polynomial 
of the nth degree in the elementary binary symmetric functions of 
the points (/3¡, /3:'), that is, in the b's. Thus we have shown that tlw 
product P can be expressed as a polynomial in the a' s and b' s which is 
homogeneous in the a·s of degree m and in the b' s of degree n. 

In § 72 we found another polynomial in the a's and b's, whose 
vanishing also gives a necessary and sufficient condition for f and </> 

to have a common factor, namely, the resultant R . . We will now 
identify these polynomials by means of the following theorem : 

THEOREM 1. The product P dijfersfrom the resultant R off and 
cf, only by a constant factor, and the resulta11t is an irreducible poly­
nomial in the a's and b's. 

We may show, in exactly the same way as in the proof or :.'heo 
rem 1, § 86, that P, when expressed as a polynomial in the a's and 
b's, is irreducible. Since P = O and R = O each give a necessarJ and 
snfficient condition for f and cf, to have a common factor, any F,et of 
values of the a's and b's which make P = O will also make R = O. 
'fhns by Theorem 7, § 76, P is a factor of R. We have seen that P 
is of degree m in the a's and n in the b's. Th~ same is also true of 
R, as may easily be seen by inspection of the determinant of § 68. 
Hence, P being a factor of R, and of the same degree, can differ 
from it only by a constant factor. Thus our theorem is proved. 

Let us now inquire under what conditions the binary form f( x1, x2) 

has a multiple linear factor. Using the same notation as above, we 
see that the vanishing of the product 

(a11a1 
- n'.a11 )(a11a1 

- a1 a11
) •·· (a"a1 

- a1 a")\ 1 2 -·1 2 1 8 1 3 1 n 1 n 
( 11 1 1 ") ( 111 "') ª2ªa-ª2ªa ··· ª2ªn-'½ªn =:P1(~,u![_; . . . . . . . . 

( 11 1 1 11) 
ªn-\lln - ªn-1ª11 
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is a necessary and sufficient condition for this. P1 is not symmetrio 
in the pairs of a's, since an interchange of two subscripts changes P1 
into -P1• If, however, we consider P¡ instead of P 1, we have a 
binary symmetric function which can be expressed as a polynomial 
in the a's 

Moreover, F vanishes when, and only when, P 1 does. 
F= O is a riecessary and suffieient condition for f(x¡, 
multiple linear factor. 

Accordingly 
x2) to liave a 

llut the vanishing of the discriminant t. ( cf. § 82) of f(x1, x2) 

is also a necessary and sufficient condition for tliis. 

THEOREM 2. F and t. dijfer only by a constant factor, and ara 
irreducible. 

The proof of this theorem, which is practically the same as that 
of Theorem 1, is left to the reader. 

If we subject the two binary forms f and cf,, which we may sup­
pose written in the factored form, to the linear transformation 

{ 
x1 = c11x; + c12x;, 

(1) 1 + 1 
X2 = C21X1 C2r2, 

we get two new binary forms 

(Alx\ - A;x\)(Aix; - A;x;)-·· (A;:x; -A;,x,,), 
(B~x¡ - B;r,)(B~x¡ - B\x;) ··· (B~,"'i - Hmx;), 

whero A l/ 11 1 B.,, ¡JI/ /JI 
i = U¡ l'¡¡ - Utl'21' i = /Jj Cll - ,v_;Cn, 

A l - "· +' B' - !JI/ +IJ'~ i - - ªi c:12 a¡c22, J - - /JJ l'12 ,-.,r·~ 
so that A'-'U-A'B'.' = c(a"/J( _ a'r.,'-'), 

1 J 1 J - 1 fJJ t/JJ 

where e is the determinant of the transformation (1 ). 
Since the linear transformation (1) may be regardeo. as carrying 

over the a's and fj's into the A's and B's, the last written identity 
shows us that u!/f)j-a!fJJ' is, in a certain sense, an invariant of 
weight 1. I t can, however, not be expressed rationall y in terms of 
the a's and b's. Such an expression is called an irrational invariant. 

Since the resultant off and cf, is the product of mn such irra­
tional invariants of weight 1, it is evident that the resultant itself i¡, 
an invariant of weight mn. Thns we get a new proof of this fact, 
independent of the proof given in § 82. 

A similar proof can be used iu the case of the discr:minant of a 
binary form. 
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EXERCISES 

Develop the theory of the invariants of the binary biquadratic 

f(x1, x2)eea,xl + 4a1x¡x, + 6 •,xM + 4 a,x1xJ + a,x¡ 

ea ( a¡'x1 - a¡x,) ( a¡'x1 - afx,) ( aqx,- af,;2) ( afx
1 

- a'•"t) 
along the following lines: 

l. Start fro~ the irrational invariants of weight 2, 

A= (ai',4- ai~')(afa!- l¼af), 

B = (ai'afi- a:ai-)(a'!~ - c❖4'), 

C = (al'a!- afa~')(a;'ai- rh<'~-

• 

whose sum is zero, and the ~egatives of whose ratios are the cross-ra.tios of the 
four points (aj, aD, (~, a~'), (ll:\, (¼'), (a¡, a~'). 

2. Form the further irrational invariants of weight 2 

E,eeB-C, E,eeC-A, E,eeA-B; 

and prove that every homogeneous symmetric polynomial in E 1, E 2, E 8 is a 
binary symrnetric function of the four points (a¡, a~'), and therefore an integral 
rational invariant off. 

3. In particular 

G,eeE,E, + E,E8 + E,Ei, 

are homogen~ous integral rational invariants of weights 4 and 6, and of degrees ! 
and 3 respect1vely. Prove that 

G,ee- 36g,, G,ee432g8, 

where 

ft=•-~+2~----~-~--, 
These expressions g2 and gs are the simplest invariants off.• 

f. Prove that the discriminan\ il. of / is given by the formula • 

il.eeg¡ - 27 /,. 

5. If a =I=- O, prove that gs = O is a necessary and sufficient condition that the 
four points /=O form a harmonic range; and that g2 = O is a necessary and 
sufficient condition that they forro an equianharmonic range. (Cf. Exercise 3, 
§ 33.) 

6. Prove that g, = g, = O is • necessary and sufficient condition that / have 
al least a threefo!d linear factor. t 

• They are among th~ oldest examples of invariant.s, having been found by Cayley 
and Boole in 1845. 

t Notice that we here ha.ve a projective property of the locus f = O expressed t,y 
the vanishing.of two integral rational invariants ¡ cf. the closing param-aph of § 81-
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7. If A is the absolute irrational invariant 

.4 ,\: --¡¡• 

i.e. one of the cross-ratios of 
invariant 

the points / = O, prove that the absolute rational 

can be expressed in the form 

• 

l=~ 
,l. 

_4(,\2 -.1.+l)' 
I - 27 (,\ -1) 2 ,\2 • 

• 
8. Prove that a necessary and sufficient coudition far the equivalence of two 

biquadratic binary farms neither of whose discriffiinants is zero is tbat the inva­
riant I have the same value far the two forms. 

9. Prove that a necessary and sufficient condition far tbe equivalence with 
regard to linear transformations with determinant + 1 of two biquadratic binary 
forms far which g2 and g3 are both different from zero is that the values of g2 

and g3 be the same for one form as for the other. 

10. Prove tbat ü the discriminant of a biquadratic binary form is not zero, th& 
form can be reduced by means of a linear transformatiou of determinant + 1 to the 
normal form 

11. Prove that every integral rational invariant of a biquadratic binary form 
is a polynomial in g, and g,. 

12. Develop the theory of the Íil\'ariants of a pair of binary quadratic forros 
along the same lines as those just sketched far a single biquadratic forro. 

13. Prove that every integral rational invariant of a pair of quadratic forms 
in n variables is an integral rational function of the invariants ®o, ... @ll of § 57. 

( SrrGGEBTJON. Show first that1 provided a certain integral rational function of 
the coeflicients of the quadratic form does not vanish, there exista a linear transfor­
mation of determinant + 1 which reduces the pair of forma to 

a1Xi + t½~ + · · · + allx!, 
p,x¡ + p,x¡ + ·.. + P.x;. 

Then show that every integral rationa;l invariant of the pair of quadratic forma can be 
ei-pressed as a binary symmetric function of (a1, fli), (et:!, fJ2), ... (a,., /311), and that 
tbe @1s are preci.sely the elementary binary sym.metric functiollS.) 


