CHAPTER XIX

POLYNOMIALS SYMMETRIC IN PAIRS OF VARIABLES

87. Fundamental Conceptions. Σ and S Functions. The variables ($x_{1}, \cdots x_{n}$) which we used in the last chapter may be regarded, if we wish, not as the coördinates of a point in space of n dimensions, but rather as the coördinates of n points on a line. In fact this is the interpretation which is naturally suggested to us by the ordinary applications of the theory of symmetric functions (cf. §86). Looked at from this point of view, it is natural to generalize the conception of symmetric functions by considering n points in a plane,

$$
\begin{equation*}
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots\left(x_{n}, y_{n}\right) . \tag{1}
\end{equation*}
$$

Definition. A polynomial,

$$
\dot{F}\left(x_{1}, y_{1} ; x_{2}, y_{2} ; \cdots x_{n}, y_{n}\right)
$$

in the coördinates of the points (1) is said to be a symmetric polynomial in these pairs of variables if it is unchanged by every interchange of these pairs of variables.

As in the case of points on a line, we see that it is not necessary to consider all the possible permutations of the subscripts in order to show that a polynomial F is symmetric. It is sufficient to show that F is unchanged by the interchange of every pair of the points (1).

We will introduce the Σ notation here precisely as in the case of single variables. Thus, for example,

$$
\begin{aligned}
& \Sigma x_{1}^{a_{1}} y_{1}^{\beta_{1}} \equiv x_{1}^{a_{1}^{1}} y_{1}^{\beta_{1}}+x_{2}^{a_{1}^{a}} y_{2}^{\beta_{1}}+\cdots+\dot{x}_{n}^{a_{1}^{a}} y_{n}^{\beta_{1}^{\beta_{1}}},
\end{aligned}
$$

and so on.
As in the case of single variables, it is clear that the order in which the pairs of exponents $\alpha_{1}, \beta_{1} ; \alpha_{2}, \beta_{2} ; \ldots$ are written is immaterial; and also that every symmetric polynomial in the pairs of variables (1) is a linear combination of a certain number of Σ 's.

We introduce the notation

$$
S_{k l} \equiv \Sigma x_{1}^{k} y_{1}^{l} \equiv x_{1}^{k} y_{1}^{l}+x_{2}^{k} y_{2}^{l}+\cdots+x_{n}^{k} y_{n}^{l} \quad\binom{k=0,1, \cdots}{l=0,1, \cdots} .
$$

Theorem. Any symmetric polynomial $\bar{F}\left(x_{1}, y_{1} ; \cdots x_{n}, y_{n}\right)$ may be expressed as a polynomial in these S 's.

The proof of this theorem is exactly like that of Theorem $3, \S 83$, and is left to the reader.
88. Elementary Symmetric Functions of Pairs of Variables. Every Σ function of n pairs of variables may, by giving to the α 's and β 's suitable values, be written in the form

$$
\begin{equation*}
\Sigma x_{1}^{a_{1}} y_{1}^{\beta_{1}} x_{2}^{a_{2}} y_{2}^{\beta_{2}} \cdots x_{n}^{a_{n}} y_{n}^{\beta_{n}} . \tag{1}
\end{equation*}
$$

Definition. The function (1) is said to be an elementary symmetric function of the pairs of variables $\left(x_{1}, y_{1}\right), \cdots\left(x_{n}, y_{n}\right)$ when, and only when,

$$
\alpha_{i}+\beta_{i}=0 \text { or } 1 \quad(i=1,2, \cdots n),
$$

but not all the α 's and β 's are zero:
We shall adopt the following notation for these elementary sym. metric functions :

$$
\begin{gathered}
\text { metric functions: } \quad p_{10} \equiv \Sigma x_{1}, \quad p_{01} \equiv \Sigma y_{1}, \\
p_{20} \equiv \Sigma x_{1} x_{2}, p_{11} \equiv \Sigma x_{1} y_{2}, p_{02} \equiv \Sigma y_{1} y_{2}, \\
p_{n 0} \equiv x_{1} x_{2} \cdots x_{n}, \cdots p_{i, n-i} \equiv \Sigma x_{1} \cdots x_{i} y_{i+1} \cdots y_{n}, \cdots p_{0 n} \equiv y_{1} y_{2} \cdots y_{n} .
\end{gathered}
$$

It is clear that there are a finite number, $\frac{1}{2} n(n+3)$, of $p_{i j}$'s, but an infinite number of $S_{i j}$'s.

We will attach to each p a weight with regard to the $x^{\prime} s$ equal'to its first subscript and a weight with regard to the y 's equal to its second subscript. When we speak simply of the weight of $p_{i j}$ we will mean its total weight, that is, the sum of its subscripts.

Theorem. Any symmetric polynomial $F\left(x_{1}, y_{1} ; \cdots x_{n}, y_{n}\right)$ may be expressed as a polynomial in the $p_{i j}$'s.

Since, by the theorem in $§ 87$, any such polynomial may be expressed as a polynomial in the $S_{i j}$'s, it is sufficient to show that the $S_{i j}$'s may be expressed as polynomials in the $p_{i j}$'s.

$$
\text { Let } \quad \xi_{1} \equiv \lambda x_{1}+\mu y_{1}, \xi_{2} \equiv \lambda x_{2}+\mu y_{2}, \cdots \xi_{n} \equiv \lambda x_{n}+\mu y_{n} \text {, }
$$

and form the elementary symmetric functions of these ξ 's:

$$
\text { Also let } \quad \sigma_{k} \equiv \Sigma \xi_{1}^{k} \quad(k=1,2, \cdots)
$$

Let α and β be positive integers, or zero, but not both zero.
Then $\sigma_{\alpha+\beta} \equiv \Sigma \xi_{1}^{a+\beta} \equiv \lambda^{\alpha+\beta} \Sigma x_{1}^{\alpha+\beta}+\lambda^{\alpha+\beta-1} \mu \Sigma x_{1}^{\alpha+\beta-1} y_{1}+\cdots$

$$
\equiv \lambda^{\alpha+\beta} S_{a+\beta, 0}+\lambda^{\alpha+\beta-1} \mu S_{a+\beta-1,1}+\cdots .
$$

But by Theorem $1, \S 84$, we may write

$$
\sigma_{\alpha+\beta} \equiv F\left(\pi_{1}, \pi_{2}, \cdots \pi_{n}\right),
$$

where F is a polynomial. Hence

$$
\lambda^{\alpha+\beta} S_{a+\beta, 0}+\lambda^{a+\beta-1} \mu S_{a+\beta-1,1}+\cdots \equiv \Psi\left(p_{10}, \cdots p_{0 n}, \lambda, \mu\right),
$$

where Ψ is a polynomial. Regarding this as an identity in (λ, μ) and equating the coefficients of the terms containing $\lambda^{\alpha} \mu^{\beta}$, we get an identity in the x 's and y 's,

$$
S_{a \beta} \equiv \Phi\left(p_{10}, \cdots p_{0 n}\right),
$$

where Φ is a polynomial in the p 's. Thus our theorem is proved.
Theorem $3, \S 84$, does not hold in the case of pairs of variables, as relations between the $\frac{1}{2} n(n+3) p_{i j}$'s do exist; for example, if $n=2$, the polynomial

$$
4 p_{20} p_{02}-p_{20} p_{01}^{2}-p_{10}^{2} p_{02}+p_{10} p_{11} p_{01}-p_{11}^{2}
$$

vanishes identically when the p 's are replaced by their values in terms of the x 's. It does not vanish identically when $n=3$.

In view of the remark just made, it is clear that the representations of polynomials in pairs of variables in terms of the $p_{i j}$'s will not be unique.

For further information concerning the subjects treated in this section, the reader may consult Netto's Algebra, Vol. 2, p. 63.

EXERCISES

1. Prove that a polynomial symmetric in the pairs of variables $\left(x_{i}, y_{i}\right)$ and which is homogeneous in the x 's alone of degree n and in the y 's alone of degree m can be expressed as a polynomial in the $p_{i j}$'s isobaric of weight n with regard to the x 's, and m with regard to the y 's.
2. Express the symmetric polynomial

$$
\Sigma x_{1}^{2} y_{2} y_{3}
$$

in terms of the $p_{i j}$'s by the method of undetermined coefficients, making use of Exercise 1.
3. A polynomial in $\left(x_{1}, y_{1}, z_{1} ; x_{2}, y_{2}, z_{2} ; \ldots x_{n}, y_{n}, z_{n}\right)$ which is unchanged by every interchange of the subscripts is called a symmetric polynomial in the n points (x_{i}, y_{i}, z_{i}).

Extend the results of this section and the last to polynomials of this sort.
89. Binary Symmetric Functions. The pairs of variables $\left(x_{1}, y_{1}\right)$, $\cdots\left(x_{n}, y_{n}\right)$ may be regarded as the homogeneous coördinates of n points on a line as well as the non-homogeneous coördinates of n points in a plane. It will then be natural to consider only symmetric polynomials which are homogeneous in each pair of variables alone. Such polynomials we will call binary symmetric functions. Most of the $p_{i j}$'s of the last section are thus excluded. The last $n+1$ of them ($p_{n 0}, p_{n-1,1,}, \cdots p_{0 n}$), however, are homogeneous of the first degree in each pair of variables alone. We will call them the elementary binary symmetric functions.

Theorem 1. Any binary symmetric function in $\left(x_{1}, y_{1} ; \cdots x_{n}, y_{n}\right)$ can be expressed as a polynomial in ($p_{n 0}, p_{n-1,1}, \cdots p_{0 n}$).

If we break up our binary symmetric function into Σ 's, it is clear that each of these Σ 's will itself be a binary symmetric function, or, as we will say for brevity, a binary Σ. It is therefore sufficient to prove that our theorem is true for every binary $\boldsymbol{\Sigma}$. The general binary Σ may be written
where, if we denote by m the degree of this Σ in any one of the pairs of variables,

$$
m=\alpha_{1}+\beta_{1}=\alpha_{2}+\beta_{2}=\cdots=\alpha_{n}+\beta_{n} .
$$

Let us assume for the moment that none of the y 's are zero, and let

$$
X_{1}=\frac{x_{1}}{y_{1}}, X_{2}=\frac{x_{2}}{y_{2}}, \cdots X_{n}=\frac{x_{n}}{y_{n}} .
$$

$$
\begin{aligned}
& \pi_{1} \equiv \Sigma \xi_{1} \equiv \lambda \Sigma x_{1}+\mu \Sigma y_{1} \equiv \lambda p_{10}+\mu p_{01}, \\
& \pi_{2} \equiv \Sigma \xi_{1} \xi_{2} \equiv \Sigma\left(\lambda x_{1}+\mu y_{1}\right)\left(\lambda x_{2}+\mu y_{2}\right) \\
& \equiv \lambda^{2} \Sigma x_{1} x_{2}+\lambda \mu \Sigma x_{1} y_{2}+\mu^{2} \Sigma y_{1} y_{2} \\
& \equiv \lambda^{2} p_{20}+\lambda \mu p_{11}+\mu^{2} p_{02}, \\
& \pi_{3} \equiv \Sigma \xi_{1} \xi_{2} \xi_{3} \equiv \lambda^{3} p_{30}+\lambda^{2} \mu p_{21}+\lambda \mu^{2} p_{12}+\mu^{3} p_{03}, \\
& \pi_{n} \equiv \xi_{1} \xi_{2} \cdots \xi_{n} \equiv \lambda^{n} p_{n 0}+\lambda^{n-1} \mu p_{n-1,1}+\lambda^{n-2} \mu^{2} p_{n-2,2}+\cdots+\mu^{n} p_{0 n}
\end{aligned}
$$

Now consider the elementary symmetric functions of these X^{\prime} 's:

We may write

$$
\begin{aligned}
& P_{1}=\Sigma X_{1} \\
& P_{2}=\Sigma X_{1} X_{2}=\frac{p_{1, n-1}}{p_{0 n}} \\
& =\frac{p_{2, n-2}}{p_{0 n}} \\
& \cdot \cdot \cdot \cdot
\end{aligned}
$$

(1) $\frac{\Sigma x_{1}^{a_{1}} y_{1}^{\beta_{1}} x_{2}^{a_{2}} y_{2}^{\beta_{2}} \cdots x_{n}^{a_{n}} y_{n}^{\beta_{n}}}{p_{0 n}^{m}}=\Sigma X_{1}^{a_{1}} X_{2}^{a_{2}} \cdots X_{n}^{a_{n}}=\Phi\left(P_{1}, \ldots P_{n}\right)$,
where, since we have assumed $\alpha_{1} \geqq \alpha_{2} \geqq \cdots \geqq \alpha_{n}, \Phi$ is a polynomial of degree α_{1} in the P 's (Theorem 2, $\S 85$). Hence we may write

$$
\begin{equation*}
\Phi\left(P_{1}, \ldots P_{n}\right)=\frac{\phi\left(p_{0 n}, p_{1, n-1}, \cdots p_{n 0}\right)}{p_{0 n}^{a_{n}}}, \tag{2}
\end{equation*}
$$

where ϕ is a homogeneous polynomial of degree α_{1}.
We thus get from (1) and (2)

$$
\begin{equation*}
\Sigma x_{1}^{a_{1} y_{1}^{\beta_{1}} \cdots x_{i n}^{\alpha_{1}} y_{n}^{i_{n}}=p_{0 n}^{\beta_{1}} \phi\left(p_{0 n}, p_{1, n-1}, \cdots p_{n_{0}}\right), ~} \tag{3}
\end{equation*}
$$

an equation which holds except when one of the y 's is zero. Since each side of (3) can be regarded as a polynomial in the x 's and y 's, we infer, by Theorem $5, \S 2$, that this is an identity, and our theorem is proved.

By Theorem $1, \S 85, \Phi$ is isobaric of weight $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$ in the P 's. Hence $\Sigma x_{1}^{a_{1}} y_{1}^{\beta_{1}} \cdots x_{n}^{\alpha_{n}} y_{n}^{\beta_{n}}$, when expressed in terms of these $(n+1) p_{i j}$'s, is isobaric of weight $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$, provided we count the weight of the $p_{i j}$'s with regard to the x 's. Passing back now to an aggregate of a number of such Σ 's, we get

Theorem 2. If a binary symmetric function is homogeneous in the $n x^{\prime}$'s (or y 's) of degree k, it will, when expressed in terms of $p_{n_{0}}, p_{n-1,1}, \cdots p_{0 n}$, be isobaric of weight k with regard to the x^{\prime} s (or y 's).

We have seen in the proof of Theorem 1 that the polynomial ϕ in (3) is a homogeneous polynomial of degree α_{1} in the p 's; so that $\Sigma x_{1}{ }^{\alpha_{1}} y_{1}{ }^{\beta_{1}} \cdots x_{n}^{a_{n}} y_{n}{ }^{\beta_{n}}$ is a homogeneous polynomial of degree $a_{1}+\beta_{1}$ $=m$ in the p 's. Hence

Thenrem 3. Any binary symmetric function of degree m in each pair of variables will, when written in terms of $p_{n 0}, p_{n-1,1}, \cdots p_{0 n}$ be a. homogeneous polynomial of degree m in these p 's.

EXERCISES

1. Prove that no rational relation exists between $p_{n 0}, \ldots p_{0 n}$, and hence that a binary symmetric function can be expressed as a polynomial in them in only one way.
2. By a ternary symmetric function is meant a symmetric polynomial in n points $\left(x_{i}, y_{i}, z_{i}\right)$ which is homogeneous in the coördinates of each point.

Extend the results of this section to ternary symmetric functions. Cf. Exercise $3, \S 88$.
90. Resultants and Discriminants of Binary Forms. It is the object of the present section to show how the subject of the resultants and discriminants of binary forms may be approached from the point of view of symmetric functions.

$$
\text { Let } \begin{aligned}
f\left(x_{1}, x_{2}\right) & \equiv a_{0} x_{1}^{n}+a_{1} x_{1}^{n-1} x_{2}+\cdots+a_{n} x_{2}^{n} \\
& \equiv\left(\alpha_{1}^{\prime \prime} x_{1}-\alpha_{1}^{\prime} x_{2}\right)\left(\alpha_{2}^{\prime \prime} x_{1}-\alpha_{2}^{\prime} x_{2}\right) \cdots\left(\alpha_{n}^{\prime \prime} x_{1}-\alpha_{n}^{\prime} x_{2}\right), \\
\phi\left(x_{1}, x_{2}\right) & \equiv b_{0} x_{1}^{m}+b_{1} x_{1}^{m-1} x_{2}+\cdots+b_{m} x_{2}^{m} \\
& \equiv\left(\beta_{1}^{\prime \prime} x_{1}-\beta_{1}^{\prime} x_{2}\right)\left(\beta_{2}^{\prime \prime} x_{1}-\beta_{2}^{\prime} x_{2}\right) \cdots\left(\beta_{m}^{\prime \prime} x_{1}-\beta_{m}^{\prime} x_{2}\right),
\end{aligned}
$$

be two binary forms. Each of these polynomials has here been written first in the unfactored and secondly in the factored form. By a comparison of these two forms we see at once that the elementary binary symmetric fractions of the n points
are

$$
\begin{gathered}
\left(\alpha_{1}^{\prime}, \alpha_{1}^{\prime \prime}\right),\left(\alpha_{2}^{\prime}, \alpha_{2}^{\prime \prime}\right), \cdots\left(\alpha_{n}^{\prime}, \alpha_{n}^{\prime \prime}\right) \\
a_{0},-a_{1}, a_{2}, \cdots(-1)^{n} a_{n} ;
\end{gathered}
$$

and of the m points $\left(\beta_{1}^{\prime}, \beta_{1}^{\prime \prime}\right),\left(\beta_{2}^{\prime}, \beta_{2}^{\prime \prime}\right), \cdots\left(\beta_{m}^{\prime}, \beta_{m}^{\prime \prime}\right)$
are

$$
b_{0},-b_{1}, b_{2}, \cdots(-1)^{m} b_{m}
$$

Let us now consider the two linear factors

$$
\alpha_{i}^{\prime \prime} x_{1}-\alpha_{i}^{\prime} x_{2}, \quad \beta_{j}^{\prime \prime} x_{1}-\beta_{j}^{\prime} x_{2} .
$$

A necessary and sufficient condition for these factors to be propor tional is that the determinant

$$
\alpha_{i}^{\prime \prime} \beta_{j}^{\prime}-\alpha_{i}^{\prime} \beta_{j}^{\prime \prime}
$$

vanish. Let us form the product of all such determinants :

$$
\boldsymbol{P} \equiv\left\{\begin{array}{c}
\left(\alpha_{1}^{\prime \prime} \beta_{1}^{\prime}-\alpha_{1}^{\prime} \beta_{1}^{\prime \prime}\right)\left(\alpha_{2}^{\prime \prime} \beta_{1}^{\prime}-\alpha_{2}^{\prime} \beta_{1}^{\prime \prime}\right) \cdots\left(\alpha_{n}^{\prime \prime} \beta_{1}^{\prime}-\alpha_{n}^{\prime} \beta_{1}^{\prime \prime}\right) \\
\left(\alpha_{1}^{\prime \prime} \beta_{2}^{\prime}-\alpha_{1}^{\prime} \beta_{2}^{\prime \prime}\right)\left(\alpha_{2}^{\prime \prime} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{2}^{\prime \prime}\right) \cdots\left(\alpha_{n}^{\prime \prime} \beta_{2}^{\prime}-\alpha_{n}^{\prime} \beta_{2}^{\prime \prime}\right) \\
\cdots: \vdots \vdots: c: c \\
\left(\alpha_{1}^{\prime \prime} \beta_{m}^{\prime}-\alpha_{1}^{\prime} \beta_{m}^{\prime \prime}\right)\left(\alpha_{2}^{\prime \prime} \beta_{m}^{\prime}-\alpha_{2}^{\prime} \beta_{m}^{\prime \prime}\right) \cdots\left(\alpha_{n}^{\prime \prime} \beta_{m}^{\prime}-\alpha_{n}^{\prime} \beta_{m}^{\prime \prime}\right.
\end{array}\right\}
$$

The vanishing of this product is a necessary and sufficient condition that at least one of the linear factors of f be proportional to one of the linear factors of ϕ, that is, that f and ϕ have a common factor which is not a constant.

We may obviously reduce P to the simple form

$$
P \equiv f\left(\beta_{1}^{\prime}, \beta_{1}^{\prime \prime}\right) f\left(\beta_{2}^{\prime}, \beta_{2}^{\prime \prime}\right) \cdots f\left(\beta_{m}^{\prime}, \beta_{m}^{\prime \prime}\right) .
$$

In this form it appears as a homogeneous polynomial of the m th degree in the a 's, and as a symmetric polynomial in the m points $\left(\beta_{i}^{\prime}, \beta_{i}^{\prime \prime}\right)$. Moreover, it is obviously a binary symmetric function which is of the nth degree in the coördinates of each point. Consequently, by Theorem $3, \S 89$, it can be expressed as a homogeneous polynomial of the nth degree in the elementary binary symmetric functions of the points ($\beta_{i}^{\prime}, \beta_{i}^{\prime \prime}$), that is, in the b's. Thus we have shown that the product P can be expressed as a polynomial in the a 's and b 's which is homogeneous in the a \& of degree m and in the b 's of degree n.

In $\S 72$ we found another polynomial in the a 's and b 's, whose vanishing also gives a necessary and sufficient condition for f and ϕ to have a common factor, namely, the resultant R. We will now identify these polynomials by means of the following theorem:

Theorem 1. The product P differs from the resultant R of f and ϕ only by a constant factor, and the resultant is an irreducible poly. nomial in the a's and b's.

We may show, in exactly the same way as in the proof of heo rem $1, \S 86$, that P, when expressed as a polynomial in the a 's and b 's, is irreducible. Since $P=0$ and $R=0$ each give a necessary and sufficient condition for f and ϕ to have a common factor, any set of values of the a 's and b 's which make $P=0$ will also make $R=0$. Thus by Theorem 7, $\S 76, P$ is a factor of R. We have seen that P is of degree m in the a 's and n in the b 's. The same is also true of \boldsymbol{R}, as may easily be seen by inspection of the determinant of $\S 68$. Hence, P being a factor of R, and of the same degree, can differ from it only by a constant factor. Thus our theorem is proved.

Let us now inquire under what conditions the binary form $f\left(x_{1}, x_{2}\right)$ has a multiple linear factor. Using the same notation as above, we see that the vanishing of the product

$$
\left.\begin{array}{r}
\left(\alpha_{1}^{\prime \prime} \alpha_{2}^{\prime}-\alpha_{1}^{\prime} \alpha_{2}^{\prime \prime}\right)\left(\alpha_{1}^{\prime \prime} \alpha_{3}^{\prime}-\alpha_{1}^{\prime} \alpha_{\alpha}^{\prime \prime}\right) \cdots\left(\alpha_{1}^{\prime \prime} \alpha_{n}^{\prime}-\alpha_{1}^{\prime} \alpha_{n}^{\prime \prime}\right) \\
\left(a_{2}^{\prime \prime} \alpha_{3}^{\prime}-\alpha_{2}^{\prime} \alpha_{3}^{\prime \prime}\right) \cdots\left(\alpha_{2}^{\prime \prime} \alpha_{n}^{\prime}-\alpha_{2}^{\prime} \alpha_{n}^{\prime \prime}\right) \\
\left.\cdot \dot{C o}_{n-1}^{\prime} \alpha_{n}^{\prime}-\alpha_{n-1}^{\prime} \cdot \alpha_{n}^{\prime \prime}\right)
\end{array}\right\} \equiv P_{1}\left(\alpha_{1}^{\prime}, \alpha_{1}^{\prime \prime} ; \cdots \alpha_{n}^{\prime}, \alpha_{n}^{\prime \prime}\right)
$$

is a necessary and sufficient condition for this. P_{1} is not symmetrio in the pairs of α 's, since an interchange of two subscripts changes P_{1} into $-P_{1}$. If, however, we consider P_{1}^{2} instead of P_{1}, we have a binary symmetric function which can be expressed as a polynomial in the a 's

$$
\left[P_{1}\left(\alpha_{1}^{\prime}, \alpha_{1}^{\prime \prime} ; \cdots \alpha_{n}^{\prime}, \alpha_{n}^{\prime \prime}\right)\right]^{2} \equiv F\left(a_{0}, \cdots a_{n}\right) .
$$

Moreover, F vanishes when, and only when, P_{1} does. Accordingly $F=0$ is a necessary and sufficient condition for $f\left(x_{1}, x_{2}\right)$ to have a multiple linear factor.

But the vanishing of the discriminant $\Delta(c f . \S 82)$ of $f\left(x_{1}, x_{2}\right)$ is also a necessary and sufficient condition for this.

THEOREM 2. F and Δ differ only by a constant factor, and ars irreducible.

The proof of this theorem, which is practically the same as that of Theorem 1, is left to the reader.

If we subject the two binary forms f and ϕ, which we may suppose written in the factored form, to the linear transformation

$$
\left\{\begin{array}{l}
x_{1}=c_{11} x_{1}^{\prime}+c_{12} x_{2}^{\prime}, \tag{1}\\
x_{2}=c_{21} x_{1}^{\prime}+c_{22} x_{2}^{\prime},
\end{array}\right.
$$

we get two new binary forms

$$
\begin{array}{ll}
& \left(A_{1}^{\prime \prime} x_{1}^{\prime}-A_{1}^{\prime} x_{2}^{\prime}\right)\left(A_{2}^{\prime \prime} x_{1}^{\prime}-A_{2}^{\prime} x_{2}^{\prime}\right) \cdots\left(A_{n}^{\prime \prime} x_{1}^{\prime}-A_{n}^{\prime} x_{2}^{\prime}\right), \\
& \left(B_{1}^{\prime \prime} x_{1}^{\prime}-B_{1}^{\prime} x_{2}^{\prime}\right)\left(B_{2}^{\prime \prime} x_{1}^{\prime}-B_{2}^{\prime} x_{2}^{\prime}\right) \cdots\left(B_{m}^{\prime \prime} x_{1}^{\prime}-B_{m}^{\prime} x_{2}^{\prime}\right), \\
\text { where } \quad A_{i}^{\prime \prime}=\alpha_{i}^{\prime \prime} c_{11}-\alpha_{i}^{\prime} c_{21}, \quad B_{j}^{\prime \prime}=\beta_{j}^{\prime \prime} c_{11}-\beta_{j}^{\prime} c_{21}, \\
& A_{i}^{\prime}=-\alpha_{i}^{\prime \prime} c_{12}+\alpha_{i}^{\prime} c_{22}^{\prime} \quad B_{j}^{\prime}=-\beta_{j}^{\prime \prime} c_{12}+\beta_{j}^{\prime} j_{222}^{\prime}, \\
& A_{i}^{\prime \prime} B_{j}^{\prime}-A_{i}^{\prime} B_{j}^{\prime \prime} \equiv c\left(\alpha_{i}^{\prime \prime} \beta_{j}^{\prime}-\alpha_{i}^{\prime} \beta_{j}^{\prime \prime}\right),
\end{array}
$$

so that
where c is the determinant of the transformation (1).
Since the linear transformation (1) may be regarded as carrying over the α 's and β 's into the A 's and B 's, the last written identity shows us that $\alpha_{i}^{\prime \prime} \beta_{j}^{\prime}-\alpha_{i}^{\prime} \beta_{j}^{\prime \prime}$ is, in a certain sense, an invariant of weight 1. It can, however, not be expressed rationally in terms of the a 's and b 's. Such an expression is called an irrational invariant.

Since the resultant of f and ϕ is the product of $m n$ such irrational invariants of weight 1 , it is evident that the resultant itself is an invariant of weight $m n$. Thus we get a new proof of this fact, independent of the proof given in § 82 .

A similar proof can be used in the case of the discriminant of a binary form.

EXERCISES

Develop the theory of the invariants of the binary biquadratic

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & \equiv a_{0} x_{1}^{4}+4 a_{1} x_{1}^{3} x_{2}+6 a_{2} x_{1}^{2} x_{2}^{2}+4 a_{3} x_{1} x_{2}^{3}+a_{1} x_{2}^{4} \\
& \equiv\left(\alpha_{1}^{\prime \prime} x_{1}-\alpha_{1}^{\prime} x_{2}\right)\left(\alpha_{2}^{\prime \prime} x_{1}-\alpha_{2}^{\prime} x_{2}\right)\left(\alpha_{3}^{\prime \prime} x_{1}-\alpha_{3}^{\alpha} x_{2}\right)\left(\alpha_{4}^{\prime \prime} x_{1}-\alpha_{4}^{4} x_{2}\right)
\end{aligned}
$$

along the following lines:

1. Start from the irrational invariants of weight 2 ,

$$
\begin{aligned}
& A=\left(\alpha_{1}^{\prime \prime} \alpha_{2}^{\prime}-\alpha_{1}^{\prime} \alpha_{2}^{\prime \prime}\right)\left(\alpha_{3}^{\prime \prime} \alpha_{4}^{\prime}-\alpha_{3}^{\prime} \alpha_{4}^{\prime \prime}\right), \\
& B=\left(\alpha_{1}^{\prime \prime} \alpha_{3}^{\prime}-\alpha_{1}^{\prime} \alpha_{3}^{\prime \prime}\right)\left(\alpha_{4}^{\prime \prime} \alpha_{2}^{\prime}-\alpha_{4}^{\prime} \alpha_{2}^{\prime \prime}\right), \\
& C=\left(\alpha_{1}^{\prime \prime} \alpha_{4}^{\prime}-\alpha_{1}^{\prime} \alpha_{4}^{\prime \prime}\right)\left(\alpha_{2}^{\prime \prime} \alpha_{3}^{\prime}-\alpha^{\prime} \mu^{\prime \prime \prime}\right.
\end{aligned}
$$

whose sum is zero, and the negatives of whose ratios are the cross-ratios of the four points $\left(\alpha_{1}^{\prime}, \alpha_{1}^{\prime \prime}\right),\left(\alpha_{2}^{\prime}, \alpha_{2}^{\prime \prime}\right),\left(\alpha_{3}^{\prime}, \alpha_{3}^{\prime \prime}\right),\left(\alpha_{4}^{\prime}, \alpha_{4}^{\prime \prime}\right)$.
2. Form the further irrational invariants of weight 2

$$
E_{1} \equiv B-C, \quad E_{2} \equiv C-A, \quad E_{3} \equiv A-B ;
$$

and prove that every homogeneous symmetric polynomial in E_{1}, E_{2}, E_{3} is a binary symmetric function of the four points ($\alpha_{i}^{\prime}, \alpha_{i}^{\prime \prime}$), and therefore an integral rational invariant of f.
3. In particular

$$
G_{2} \equiv E_{1} E_{2}+E_{2} E_{3}+E_{3} E_{1}, \quad G_{3} \equiv E_{1} E_{2} E_{3}
$$

are homogeneous integral rational invariants of weights 4 and 6 , and of degrees 2 and 3 respectively. Prove that

$$
\begin{aligned}
& G_{2} \equiv-36 g_{2}, \quad G_{R} \equiv 432 g_{3}, \\
& g_{2} \equiv a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}^{2}, \\
& g_{3} \equiv a_{0} a_{2} a_{4}+2 a_{1} a_{2} a_{3}-a_{0} a_{3}^{2}-a_{1}^{2} a_{4}-a_{23}^{3} .
\end{aligned}
$$

where

These expressions g_{2} and g_{8} are the simplest invariants of f.*
4. Prove that the discriminant Δ of f is given by the formula

$$
\Delta \equiv g_{2}^{3}-27 g_{3_{3}}^{2}
$$

5. If $\Delta \neq 0$, prove that $g_{3}=0$ is a necessary and sufficient condition that the four points $f=0$ form a harmonic range; and that $g_{2}=0$ is a necessary and sufficient condition that they form an equianharmonic range. (Cf. Exercise 3, § 33.)
6. Prove that $g_{2}=g_{3}=0$ is a necessary and sufficient condition that f have at least a threefold linear factor. \dagger

* They are among the oldest examples of invariants, having been found by Cayley and Boole in 1845.
\dagger Notice that we here have a projective property of the locus $f=0$ expressed by the vanishing, of two integral rational invariants; cf. the closing paragraph of $\S 81$.

7. If λ is the absolute irrational invariant

$$
\lambda=-\frac{A}{B},
$$

i.e, one of the cross-ratios of the points $f=0$, prove that the absolute rational invariant

$$
I=\frac{g_{2}^{3}}{\Delta}
$$

can be expressed in the form

$$
I=\frac{4}{27} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{(\lambda-1)^{2} \lambda^{2}}
$$

$$
\div
$$

8. Prove that a necessary and sufficient condition for the equivalence of two biquadratie binary forms neither of whose discriminants is zero is that the invariant I have the same value for the two forms.
9. Prove that a necessary and sufficient condition for the equivalence with regard to linear transformations with determinant +1 of two biquadratic binary forms for which g_{2} and g_{3} are both different from zero is that the values of g_{2} and g_{3} be the same for one form as for the other.
10. Prove that if the discriminant of a biquadratic binary form is not zero, the form can be reduced by means of a linear transformation of determinant +1 to the normal form

$$
4 x_{1}^{3} x_{2}-g_{2} x_{1} x_{2}^{3}-g_{3} x_{2}^{4} .
$$

11. Prove that every integral rational invariant of a biquadratic binary form is a polynomial in g_{2} and g_{3}.
12. Develop the theory of the invariants of a pair of binary quadratic forms along the same lines as those just sketched for a single biquadratic form.
13. Prove that every integral rational invariant of a pair of quadratic forms in n variables is an integral rational function of the invariants $\Theta_{0}, \cdots \Theta_{n}$ of $\S 57$.
[Suggestron. Show first that, provided a certain integral rational function of the coefficients of the quadratic form does not vanish, there exists a linear transformation of determinant +1 which reduces the pair of forms to

$$
\begin{aligned}
& \alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+\cdots+\alpha_{n} x_{n}^{2}, \\
& \beta_{1} x_{1}^{2}+\beta_{2} x_{2}^{2}+\cdots+\beta_{n} x_{n}^{2} .
\end{aligned}
$$

Then show that every integral rational invariant of the pair of quadratic forms can be expressed as a binary symmetric function of $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \cdots\left(\alpha_{n}, \beta_{n}\right)$, and that the $@$'s are precisely the elementary binary symmetric functions.]

