CHAPTER XIX
POLYNOMIALS SYMMETRIC IN PAIRS OF VARIABLES

87. Fundamental Conceptions. I and § Functions. The variables
(4, -+ 2,) which we used in the last chapter may be regarded, if we
wish, not as the codrdinates of a point in space of n dimensions, but
rather as the cobrdinates of n points on a line. In fact this is the
interpretation which is naturally suggested to us by the ordinary
applications of the theory of symmetric functions (cf. §86). Looked
at from this point of view, it is natural to generalize the conception
of symmetric functions by considering  points in a plane,

(1) (xl’ yl)’ (1‘2, 92)’ (xn’ Ya)-
DErINITION. A polynomial,

Fzy, y15 29 4y 5+ 20 92)

in the cosrdinates of the points (1) s said to be a symmetrie polynomial
in these pairs of variables if it is unchanged by every interchange of
these pairs of variables.

As in the case of points ona line, we see that it is not necessary

to consider all the possible permutations of the subscripts in order fo
show that a polynomial ¥ is symmetric. It is sufficient to show that
F'is unchanged by the interchange of every pair of the points (1).

We will introduce the = notation here precisely as in the case of
single variables. Thus, for example,

- Zapyr =AY+ oyl + o ay
‘ Zapytayyy = apybapyi + dpybhapyl 4 o,
and so on.
As in the case of single variables, it is clear that the order in
which the pairs of exponents @y, By; @y By ... are written is imma-
terial; and also that every symmetrie polynomial in the pairs of variables

(1) és @ linear combination of a certain number of ='s.
252
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TrEOREM. Any symmetric polynomial F(zy, yy 5+ 2, y,) may
be expressed as a polynomial in these §s.

The pfoof of this theorem is exactly like that of Theorem 8, § 83,
and is left to the reader.

We introduce the notation
Su=Ealyl = +olgh + - 42kl

88. Elementary Symmetric Functions of Pairs of Variables.
Every X function of n pairs of variables may, by giving to the «s
and B’s suitable values, be written in the form

(1) Sapypagyy - wya

DerivitioN. The function (1) is said to be an elementary sym-
metric function of the pairs of variables (zy, yy), - (%Tw Y,) when, and
Oﬂly wbeng o+ ﬁ'_ =00rl (i: 1, 2’ e ﬂ),
but not all the «’s and B's are zero:

We shall adopt the following notation for these elementary sym.
metric functions : =3
Pu=<¥p

Pu= 2y, Pu=Z Yy

Py=Zz
Py =Z 27,

L] L . .

P =2yZy Ty + * Pi,ﬂ—iEEml"'mﬂyi-t-l"'ym ity b PONEylyﬁ ot Yoo

It is clear that there are a finite number, 1 n (n + 8), of Py'sy bub
an infinite number of §,s.

We will attach to each p a weight with regard to the 2’s equal*to its
first subseript and a weight with regard to the y's equal to its second
subscript. When we speak simply of the weight of p,; we will mean
its total weight, that is, the sum of its subseripts.

TaEOREM. Any symmetric polynomial F(zy, yy3 + @, y,) may be
expressed as a polynomial in the p's.

Since, by the theorem in § 87, any such polynomial may be
expressed as a polynomial in the s, it is sufficient to.show that
the §,’s may be expressed as polynomials in the p,’s.

Let . 515Xm1+ﬂyp EzE)"%“‘}‘ Pifgy v EnE:\xn‘!" By
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and form the elementary symmetric functions of these s
m=2§ =Nz + pZy; = Apyg + By
my =2 &, =2\ + py, ) Ay + py,)
= lZExlzz + Ay, + .“223113/3
=A2py + Mpyy + E2Dgs
g = 2§ £ 8= NPy + Nupy + Mgy + 139y

Ta=E 8y B SN Pag + NPy 1+ N 22, g g + o g,
Also let a,=2§& (b=1,2
Let o and 8 be positive integers, or zero, but not both zero.

Then o,,, =2 &P = A AEaste L AE- 1, T e tf-ly, £ ..

A8 a0 FAEIUS e
But by Theorem 1, § 84, we may write
Catp EF(WP Ty =+ Ta)y
where F is a polynomial. Hence
A g o FAPTILS g o =T (Pygy o+ Do Mo B

where ¥ is a polynomial. Regarding this as an identity in (A, p)
and equating the coefficients of the terms containing A*u®, we get an
identity in the #’s and s,

Sa,& = (.I)(plov "'Pon)a

where @ is a polynomial in the p’s. Thus our theorem is proved.

'I:heoreln 3, § 84, does not hold in the case of pairs of variables,
as relations between the 3n(n+ 3) p,’s do exist; for example, if
n = 2, the polynomial

420 Pog — PPl — PhoPoz + ProPuPor — P

vanishes identically when the p’s are replaced by their values in
terms of the #’s. It does not vanish identically when n = 3.

In view of the remark just made, it is clear that the represen-
tations of polynomials in pairs of variables in terms of the p,’s will
not be unique.

For further information concerning the subjects treated in this
section, the reader may consult Netto’s Algebra, Vol. 2, p. 63.
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EXERCISES

1. Prove that a polynomial symmetric in the pairs of variables (z; ) and
which is homogeneous in the z's alone of degree n and in the y's alone of degree m
¢an be expressed as a polynomial in the p,’s isobaric of weight n with regard to
the #'s, and m with regard to the y’s.

2, Express the symmetric polynomial

Z 2fyay3
in terms of the p,’s by the method of undetermined coefficients, making use of
Exercise 1.

3. A polynomialin (21, y1, 21; @2, Yo, 22} **- Tuy Yuy %) which is unchanged by

every interchange of the subsecripts is called a symmetric polynomial in the »

points (i Y ). =
Extend the results of this section and the last to polynomials of this sort.

89. Binary Symmetric Functions. The pairs of variables (z;, ¥;),
s+ (%, §,) may be regarded as the homogeneous coordinates of =
points on a line as well as the non-homogeneous coérdinates of n
points in a plane. It will then be natural to consider only sym-
metric polynomials which are homogeneous in each pair of variables
alone. Such polynomials we will call dinary symmetric functions.
Most of the p;'s of the last section are thus excluded. The last
n+ 1 of them (p,g Pu-y,p - Pon), however, are homogeneous of
the first degree in each pair of variables alone. We will call them
the elementary binary symmetric functions.

TuroreM 1. Any binary symmetric function in (24 Yy3 *+ Zns Yn)
can be expressed as a polynomial in ( Py Puy 1 *+* Pon)r

If we break up our binary symmetric function into 2’s, it is clear
that each of these X’s will itself be a binary symmetric function, or,
as we will say for brevity, a binary 2. It is therefore sufficient to
prove that our theorem is true for every binary =. The general
binary 2 may be written

(202 - Za,)

2 apyfagys - 2y
where, if we denote by m the degree of this = in any one of the pairs
of variables, i e

Let us assume for the moment that none of the y's are zero, and let
Fa :

s B BB M
Y1 Ya Yn
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Now consider the elementary symmetric functions of these X’s:
P,=3X, =Luny
: Pon
P,=3XX, =lung
DPpn

® .

P,=XX, - X,=Ln,
We may write Pon

= 2hyBptaybs .. gfngbn
(1) SN WK 5 XX o X = B(Py o P
Pon
where, since we have assumed o; 2 ay= -+ 2@, P is a polynomial
of degree e, in the P’s (Theorem 2, § 85). Hence we may write

(2) O(Py, - P,)= S Pow Prn-p - Pno)aj
pa
where ¢ is a homogeneous polynomial of degree ;.
We thus get from (1) and (2)

(3) Sapyp - 20y, = posd(Pow Pra-v *** Pagk
an equation which holds except when one of the y’s is zero, Singe
each side of (3) can be regarded as a polynomial in the 2’s and y's,
we infer, by Theorem 5, § 2, that this is an identity, and our theorem
is proved.

By Theorem 1, § 85, @ is isobaric of weight &, 4 #,+ -+ + &, 1n

the P's. Hence = afiyf ... 232" when expressed in terms of these

(n+1) p;’s, is isobaric of weight e; + a5+ -+ + @, provided we count
the weight of the p,’'s with regard to the 2’s. Passing back now to
an aggregate of a number of such 2’s, we get

TurOREM 2. If a binary symmetric function is homogeneous in
the n 2’s (or y’s) of degree k, it will, when ezpressed in terms of
Pup P, v+ Do be Gs0baric of weight & with regard to the z's (or y’s).

We have seen in the proof of Theorem 1 that the polynomial ¢ in
(3) is a homogeneous polynomial of degree &, in the p’s; so that
Zzmy, P o 2pr P s a homogeneous polynomial of degree a; + B8
=m in the p’s. Hence

TaroREM 3. Any binary symmetric funetion of degree m in each
pair of varibles will, when written in terms of Pup Po_1,10 ** Pou D &
homogeneous polynomial of degree m in these p’s.
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EXERCISES

1. Prove that no rational relation exists between pag, --- pos, and hence thata
binary symmetric function can be expressed as a polynomial in them in only one
way-

2. By a ternary symmetric function is meant a symmetric polynomial in n
points (2, y; 2;) which is homogeneous in the codrdinates of each point.

Extend the results of this section to ternary symmetric functions. Ci.Exer-
cise 3, § 88.

90. Resultants and Discriminants of Binary Forms. It is the
object of the present section to show how the subject of the re-
sultants and discriminants of binary forms may be approached from
the point of view of symmetric functions,

g Ay 7)) = a2t + a2, + - + 0,53
= (efzy — eyl egmy — ayzy) -+~ (€ny — 6Zp)
$(2p, 25) = b + byl ey + - + but
= (87 — ﬁixz)(ﬁgm;[ — Byry) - (B — :nxz)a
be two binary forms. Each of these polynomials has here been
written first in the unfactored and secondly in the factored form.

By a comparison of these two forms we see at once that the elemen-
tary binary symmetric fractions of the » points

(o, o), (et o), -+ (a7, o)
are gy — Gy By -+ (—1)'a,;
and of the m points (B}, BY)}(Bh B ) -+ (B Ba)
are b()s = 51, 52’ (—'1)’”61»'

Let us now consider the two linear factors
; I ! 1 I
o2y — iy BTy — Biy:

A necessary and sufficient condition for these factors to be propor
tional is that the determinant

8}~
vanish. Let us form the product of all such determinants :
(/8] — 48Y) (238, — e38)) -+ (e — By

o | (4B — D) (4L — 4B (s — L)

(B~ L) (4Bl — B - (Bl — )
&
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The vanishing of this product is a necessary and sufficient con.
dition that at least one of the linear factors of f be proportional te
one of the linear factors of ¢, that is, that f and ¢ have a common
factor which is not a constant.

We may obviously reduce P to the simple form

P =f(By BY)S(By By) +f (B Bu)-

In this form it appears as a homogeneous polynomial of the mth
degree in the a's, and as a symmetric polynomial in the m points
(Bis BY). Moreover, it is obviously a binary symmetric function which
is of the nth degree in the cotrdinates of each point. Consequently,
by Theorem 38, § 89, it can be expressed as a homogeneous polynomial
of the nth degree in the elementary binary symmetric functions of
the points (B}, 8/), that is, in the &’s. Thus we have shown that the
product P can be expressed as a polynomial in the a’s and b's which i
homogeneous in the o's of degree m and in the b’s of degree n.

In § 72 we found another polynomial in the a's and &'s, whose
vanishing also gives a necessary and sufficient condition for f and ¢
to have a common factor, namely, the resultant B. We will now
identify these polynomials by means of the following theorem :

TraeoreM 1. The product P differs from the resultant B of f and
¢ only by a constant factor, and the resultant is an trreducible poly-
nomial in the a’s and b's.

We may show, in exactly the same way as in the proof or . 'heo
rem 1, § 86, that P, when expressed as a polynomial in the a’s and
b’s, is irreducible. Since P =0 and R =0 each give a necessary and
sufficient condition for fand ¢ to have a common factor, any set of
values of the a’s and &’s which make P =0 will also make E=0.
Thus by Theorem 7, § 76, P is a factor of B. We have seen that £
is of degree m in the a’s and n in the 8’s. The same is also true of
R, as may easily be seen by inspection of the determinant of § 68.
Hence, P being a factor of R, and of the same degree, can differ
from it only by a constant factor. Thus our theorem is proved.

Let us now inquire under what conditions the binary form f(zy, %)
has a multiple linear factor. Using the same notation as above, we
see that the vanishing of the product

ol T . L2
(e — oty ) (o] th — ejee) -+ (o, — o)
Il (S & I e |
O 0y — UL, vaol all. — £, o I ", 1 1)
(23 at3 (gn %‘n) =P1(“1-“1’ '”%x%’)

." . J . .r 5
(an-1an — Oy )
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is a necessary and sufficient condition for this. P, is not symmetrio
in the pairs of a's, since an interchange of two subscripts changes Py
into —P;. If, however, we consider P} instead of Py, we have a
binary symmetrie function which can be expressed as a polynomial
in the a's
[Piers &5 -+ oy )] = F(ag, - ).

Moreover, F vanishes when, and only when, P; does. Accordingly
F=0 is a necessary and sufficient condition for f(zy, ;) to have a
multiple linear factor.

But the vanishing of the discriminant A (cf. § 82) of f(z,, 2,)

is also a necessary and sufficient condition for this.

TaroreM 2. F and A differ only by a constant factor, and ars
irreducible.

The proof of this theorem, which is practically the same as that
of Theorem 1, is left to the reader.

If we subject the two binary forms f and ¢, which we may sup-
pose written in the factored form, to the linear transformation

(1) {3’1 = ey + ¢1gTh

Ty = Cyy) + gy
we get two new binary forms
(Afz] — Ajh)(A32; — Ay2) - (Aizy — Aiy),
(Biz, — Bizy)( By, — Byzy) -+ (Buy — Bya),
where Al'=  dlleyy — aley, B!= Be,— Bley,
A} = — dleyy + aiey, B} = — Bleyy+ Bitm
so0 that Al Bj— ABj = (o — i),
where ¢ is the determinant of the transformation (1)

Since the linear transformation (1) may be regarded as carrying
over thea’s and @’s into the A’s and B’s, the last written identity
shows us that oB— e8] is, in a certain sense, an invariant of
weight 1. Tt can, however, not be expressed rationally in terms of
the o’s and &’s. Such an expression is called an irrational invariant.

Since the resultant of f and ¢ is the product of mn such irra-
tional invariants of weight 1, it is evident that the resultant itself is
an invariant of weight mn. Thus we get a new proof of this fact,
independent of the proof given in § 82.

A similar proof can be used in the case of the discriminant of &
binary form.
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EXERCISES
Develop the theory of the invariants of the binary biguadratic
S (@ z)=agt + 4a 5z, + 6 a3 + 4 agraf + agry
= (o', - zy) (), — ojz,) (e, ofz,) (e, — algy)

along the following lines:

Ll
1. Start from the irrational invariants of weight 2,

A= (oo~ o) (e — e,
B = (oo~ eqees) (o' — eon),
C= (e'oy — ajer) ) (g — orler™,
whose sum is zero, and the hegatives of whose ratios are the crossratios of the
four points (e, o), (04 &), (e, o), (¢4, &f).
2. Form the further irrational invariants of weight 2
E.=B-C, E,=C-4, E;=A-B;
and prove that every homogeneous symmetric polynomial in E;, Es, Ej is a

binary symmetric function of the four points (e, ¢'), and therefore an integral
rational invariant of f.

8. In particular
G:=E\E: + E:E; + EsEy, Gy=EE:E;

are homogeneous integral rational invariants of weights 4 and 6, and of degrees 2
and 3 respectively. Prove that

Gy=— 3692, G3543293,
where fe=asas—4 a-las SIS
§5=000204 + 2 a1 0205 — apa} — alay — ab.

These expressions g, and gs are the simplest invariants of f*

4. Prove that the discriminant A of fis given by the formula *
A=g - 2743

5. If A0, prove that gs = 0 is a necessary and sufficient condition that the
four points f=0 form a harmonic range; and that g,=0 is a necessary and
sufficient condition that they form an equianharmonic range. (Cf. Exercise 3,

§33.)

6. Prove that g, = g3 =01is a necessary and sufficient condition that J have
at least a threefold linear factor.}

* They are among the oldest examples of invariants, having been found by Cayley
and Boole in 1845,

1 Notice that we here have a projective property of the locus f=0 expressed by
the vanishing,of two integral rational invariants; cf, the closing paragraph of § 81-
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9. If A is the absolute irrational invariant
A=-— %,
ie. one of the cross-ratios of the points f=0, prove that the absolute rational
invariant it g_,g
A
PR L :
27 (A-1)%a2

8. Prove that a necessary and sufficient condition for the equivalence of two
biquadratic binary forms neither of whose discriminants is zero is that the inva-
riant [ have the same value for the two forms.

‘can be expressed in the form

9. Prove that a necessary and sufficient condition for the equivalence with
regard to linear transformations with determinant + 1 of two biquadratic binary

forms for which g» and gz are both different from zero is that the values of gz

and g3 be the same for one form as for the other. \
10. Prove that if the discriminant of a biquadratic binary form is not zero, the
form can be reduced by means of a linear transformation of determinant 4 1 to the

' 3 3 4
normal form 4o, — gonral — gorh

11. Prove that every integral rational invariant of a biquadratic binary form
is a polynomial in g; and gs.

12. Develop the theory of the invariants of a pair of binary quadratic forms
along the same lines as those just sketched for a single bignadratic form.

13. Prove that every integral rational invariant of a pair of quadratic forms
in n variables is an integral rational function of the invariants @y, - @, of § 57.

[SveeesTion. Show first that, provided a certain integral rational function of
the coefficients of the quadratic form does not yvanish, there exists a linear transfor-
mation of determinant + 1 which reduces the pair of forms to

aw%—l— 0529534‘ cor A= 00,
Bird + Baad + - + Bt

Then show that every integral rational invariant of the pair of quadratic forms can be
expressed as a binary symmetric function of (o1, B1), (% B2)y - (Omy Bn), and that
the @'s are precisely the elementary binary symmetric functions.]




