
CHAPTER XVIII 

SYMMETRIC P0LYN0MIALS 

83. Fundamental Conceptions. l: and S Functions. 

DF:FINITION l. A polynomial F(x1, ··• xn) is said to be symmetric 
if it is unchanged by any interchang, of tite variables (x1, •·· x,). 

It is not uecessary, however, to consider ali the possible permuta­
tions of the variables in order to show that a polynomial is sym­
metric. If we can show that it is unchanged by the interchange of 
every pair of the variables, this is sufficient, for any arrangement 
(x., x,, •·· x,) may he obtained from (x1, x2, ..• x,) by interchanging 
the x's in pairs. Thus, if a* 1, interchange x. with x1; then in­
terchange the second letter in the arrangement thus obtained with 
x2 ; and so on. Hence we have the following theorem: 

THEOREM 1. A necessary and sufficient condition for- a poly­
nomial to be symmetric is that it be unchanged by every interchange oj 
two variables. 

A special class of symmetric polynomials of much importance are 
the l-functions, defined as follows: 

DEFINITION 2. l befare any term means the sum of this term and 
of all the similar ones obtained from it by interchanging the subscripts. 

Thus, for example, 

lx} = x¡ + x; + • •. + x!, 
Ix¡x~ = x}~ + x¡x~ + · • • + xj~ 

+ x2"1 + x;x: + •·· + x;x~ 
+ 
+ x:;vf+ x:~ + •·· + x!x!-1' 

Ixjx; = Xix2 + xjx3 + · · · + xJx: 
+x;x3+ •·· +x,X: 

+. 
+ Z:-1X!. 

lt is clearly immaterial in what order the exponents a, fl, ... are 
written. Thus, ~xr~x; = ~xfx~. 
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lf we consider any term of a symmetric polynomial, it is evident 
that the polynomial must contain ali the terms obtained from this 
one by interchanging the x's. This aggregate of terms is merely a 
oo~stant multiple of one of the l's just defined. In the same way it 
;s clear that ali the other terms of the symmetric polynomial must 
arrange themselves in groups each of which is a constant multiple 
of a l. That is, 

THEOREM 2. Every symmetrie polynomial is a linear combination 
with constant eoefficients of a eertain number of l 's. 

Among these l's the simplest arr the sums of powers of the r's. 
For the sake of brevity the notation is used: 

8kaaelzjaaexf +:if,+ •·· +x! (k=l, 2, ···). 

Jt is sometimes convenient to write 80 = n. 

THEOREM 3. Any symmetrie polynomial in the x's can be ex­
pressed as a polynomial in a certain number of the 8's. 

Since every symmetric polynomial is a linear combination of a 
certain number of l's, in order to prove our theorem we have only 
to show that every l can be expressed as a polynomial in the S's. 
Now • 

811 :=x¡+x;+ ··· +x:, 
8~="1+~+ ... +xi:. 

Hence, if á * f], 
s.s~ ée x¡+~ + x,+~ + ... + x:+~ + x¡~ + x¡:i1 + ... 

aaeS.+~+ lxj~-

From this we get the formula: 

(1) Ix;~ = s.s~ - s.+~ 
If a= f], we have 

Hence 
(2) 

s~ = x¡• + x~•+ ... +x;• + 2x¡x, + 2x;x.+ ·•· 

=: 8211 + 2 ~xlx2. 

Similarly, by multiplying lxj:J, by Sy, we get the following 
formuhe where the three integers a, f], 'f are supposed to be distinct: 

(3) lxjx'.x¡ = s.s~SY-8•+~By - s.+yB~ - 8~+y s.+ 28.H+,,. 

(4) lxjx2x¡ = ½(8:SY- 82.Sy - 28.+y 8. + 282.+y), 

lx¡x,"'s=HS~ - 882.s. + 283.). 

R 
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The proof indicated in these two special cases may be ext.ended 
to tbe general case as fallows : 

If we multiply together tbe two symmetric polynomials 

(6) lxj~ ··· x,, 8, ea l~, (k < 11) 
we get terms of various sorts which are readily seen to be ali con­
tained in one or the other of the fallowing polynomials, each of these 
polynornials being actually represented: 

(7) lzt'~ ··· z,, lxj~+> ··· XZ, ··· ··· lxj~ ·· · z;+', lxj~ ··· x".z-'m­
Consequently, since the product of the two polynomials (6) is sym­
metric, it rnust have the farm 

c1 Ix;+><4 ··· XZ + c2 lx¡<4+> ··· x; +•·· ······+e, Izj'4 •·· x,+A 
+ c>+1 Ix;'4 • • • x".,x'->+1, 

where c1, • •· º>+i are positive integers. 
Transposing, we may write 

Izj~ •·· ZZ+1 ea_..!_[lxj~ ··· XZ · lx;- c1lxj+'~ ··· XZ 
Ck+¡ 

- c2lx¡~+• · · · x¡ - · · • • •· · · · - c,lx¡~ ... x;+>]. 

Hence, if- our theorem is true far lz¡ •·· ,,Z, it is also true for 
Iz¡ ... x'k+I" But we know it is true far k = 1 (by definition of the 
8's~ hence it is true far k= 2, hence far k=3, and so on. Thus 
our theorem is completely proved. 

84. Elementary Symmetric Functions. The notation Iz¡~ •·· Z: 
may be used to represent any l in n variables. If f3 = 'Y = •·· = 
v = O, this becomes Iz¡ or 8. ; if 'Y = • • • = v = O, it becomes Iz¡~; 
and so on. 

Let us now consider Ixj ~ •·· x~ where a, f3, •·· v, are all O or 1, 
The following n cases arise : 

U = 1, f3 = '"( = · · · = V= 0, 
a=f3=1, '"(= ··· =V=Ü, 

a = f3 = ... = ¡, = 1, v = O, Ix1x2 • • • x,...1, 
a= f3 = · · · = V= 1, X¡X2 · •• X0, 

The extreme case a= f3 = • •. = v = O is of no interest. We will 
represent these n symmetric polynomials by p1, p2, •.. p., respee+'valy, 
They are call~d the elementary symmetric fu.nctions. 

• 
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THEOREM l. Any symmetric polynomial in the x' s may be ez. 
pressed as a pol ynomial in the p 's. 

Since any symmetric polynomial in the z's may be expressed as a 
polynomial in the 8's, it is sufficient to show that every 8 may be 
ex_pressed as a polynomial in the p 's. 

Let us introduce a new variable x and consider the polynomial 

f(x; x1,x2, ·•• z.)ea(z-z1Xz-z2) ··· (x-x. ) 
ea x• - p1x•-1 + p2x•-2 - • •· + ( -1 )"p,,. 

Using th¡¡ factored form off, we may write 

af f f f 
- ea -- + - -+ ... +- -· 
ax X-x1 X-X2 X-X~ 

Since f vanishes identically when z = x,, we may write 

fea (x"- x:)- p1(x•-1 - x;-1) + •··· 
Accordingly, 

_j__ ea x•-1 + (z; -p¡)x"-2 +(xt- p¡X; + p,)x•-3 + •• •, 
x-x, 

of ean,,,.-1 +(81 - np1)x•-2 + (82 - p181 + np2)x ... ª+ .... 
ox 

On ihe other hand, we have 
a¡ . 
ox ea nx•-1 - ( ~ - 1 )p1z"-2 + ( n - 2)p2,,.-s_ - .... 

Hence, equating the coefficients of like powers of x in these two 
expressions, we have 

l 
81 - np1 ea-(n- l)p¡, 
82 -p181 + nh ea (n- 2)p2, 

s._~ -·p¡S,_; + ~.s ... a· - • ... + ( - 1 ) ... lnp,._¡ ea ( - 1 ) ... lp,._¡, 

Now consider the identities 

x: - f!:ffl + p,.zl'·-1 - . .. + ( - 1 )"p. ea Ü 
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Multiplying these identities by :¡f,-•, ... :,:!-• respectively and adding 
the results, we have 

(2) 8,-p¡8k-1 + P28,_2- ... +( -l)"p.8,_.eaO (k=n, n+ 1, ···). 

Formulre (1) and (2) are known as Newton's Formul/E. By 
means of them we can compute in succession the values of 81, 8,: ... 
as polynomials in the p's : 

81=Pt, 
82=p1- 2p., 

(3) 83 = PI - 3PtP2 + 3p3, 

Thus our theorem is proved. 
It will be noted that Newton's formulre (1) cannot be obtained 

from (2) by giving to k values less than n. The necessity for two 
different sets of formulre may, however, be avoided by introduciug 

the notation Pn+t = P•+• = • .. = O. 

Then all of Newton's formulre may be included in the following forro: 

(4) 8,-Pt8H+··+(-l)Hp,_181+(-l)'kp,=O (k=l, 2,···} 

Using this notation, we see that the explicit formulre (3) for 
expressing the S's in terms of the p's are wholly independent of tbe 
number n of the x's. 

Since the formulre referred to in the last section for expressing the 
I's in terms of the S's are also independent of n, we have established 

THEOREM 2. lf we introduce the notation Pn+1 = P,+2 = ··· = O and 
use Newton' s Formulce in the form ( 4 ), the formula for expressing 
any :S as a polynomial in the p's is independent ofthe number n ofthe x's. 

When we have k polynomials in n variables 

Ji(x1, •·· x.),f2(x1, ··· x,), ··· f.(x1, •·· x.), 

we say that there exists a rational ,·elation between them when, and 
only when, a polynomial in k variables 

F(z1, ·••z,) 

exists which is not identically zero, but which becomes identically 
zero as a poi ynomial in the x's when each z is replaced by the 

sorresponding f, F(fi, ... f,)=0. 
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THEOREM 3. There exista no rational relation between the elemen­
tary symmetricfunctions in n variables p1, •·· p •. 

For let F(z
1
, ... z.) be any polynomial in n variables which is not 

identically zero, and Jet (a1, ... a.) be a point at which this polynomial 
does not vanish, Determine (x1, ··• x,) as the roots of the equation 

x• - a¡r1 + a,x•-'- ···· +(- l)•a. =0. 

For these values of the x's, the p's have the values a1, ••• ª•• and 
therefore F(p

1
, ... p.) does not vanish for these x's, and is con­

sequently not identically zero as a polynomial in the x¡'s. Thus 

our theorem fs proved. 

CoROLLARY. There is only one way in which a symmetric poly­
nomial in (x

1
, ... x.) can be expressed as a polynomial in the elementary 

symmetric functions Pt, ···p •. 

For iff is a symmetric polynomial,and if we had two expres~ions 

for it, f(x¡, ... x.)=<f>i(p¡, ···p.), 

f(x 1, ·•• x.)=c/>,(p1, ···p.), 

then by subtracting these identities from one another we should hav; 
as an identity in the x's, 

c/>lP1, ···p.)-c/>.(Pt, ···p.)=º· 

This, however, would give us a rational relation between the p's. 

unless cf,i(z1, ... z.) = cf,.( z1, •·· z.). 

Thus we see that the two expressions for f are really the same. 

EXERCIBEB 

l. Obtain the expressions for the following symmetric polynomials in terma of 

the elementary symmetric functions: 
:Sx~x2, :SxiX§, :SxfxJxs• 

2. Prove that every symmetric polynomial in (xi,•·· Xn) can be expressed in 
one, &nd only one, way as a polynomial in S1, , .. Sn. 

85. The Weights and Degrees of Symmetric Polynomlals. We 
will attach to each of the elemeutary symmetric functions p, a weight 

equal to its subscript, cf. § 79. 

THEOREM l. A homogeneous symmetríc polynomíal of degree m in 
the x's, when expressed in terms of the p's, is isobaric of weight m. 
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Let 
(1) 
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be such a polynomial. Since p1 is a homogeneons polynomial of the 
first -degree in the x's, p2 of the second, etc., any term of cf,, when 
written in the x's, mnst be a homogeneous polynomial of degree equal 
to the original weight of the term. Thus, far example, the term 
6 p¡p,p¡ whose weight is 13, when written in the x's will be a homo­
geneous polynomial of degree 13. Accordingly an isobaric group ol 
tclrms when expressed in terrns of the x's will, since by Theorem 3, 
§ 84, it cannot reduce identically to zero, be homogeneous of the 
same degree as its original weight. If then cf, were not isobario, 
/ would not be homogeneous, and our theorern is proved. 

COROLLARY. 1/ f is non-homogeneous and o/ the mth degree, cf, Í8 

non-isobaric and o/ weight m. 

THEOREM 2. A symmetric polynomial in (x1, ... xn), when written 
in terms o/ the elementary symmetria functions p1, ···p., will be o/ tht 
same degree in the p's as it was at first in any one of the x's. 

Letfbe the symmetric pqlynomial, and write 

f(x1, X~,, .. Xn) =cf,(p1, p,, ··· p.), 

and supposef is of degree m in x1 (and therefore, 011 account of the 
symmetry, in any one of the x's), and that cf, is of degree µ, in the p's. 
W e wish, to prove that m = µ,. Since the p's are of the first degree 
in x1, it is clear that m~µ,. 

If cf, is non-homogeneous, we can break it up into the sum of a 
number of homogeneous polynomials by grouping together ali the 
terms of like degree. Each of these homogeneous polyuomials in 
the p's can be expressed (by substituting far the p's their values in 
terms of the x's) as a symmetric polynomial in the x's. If our theo­
rem were establisbed in the case in whicb the poi ynomial in tbe p's 
is homogeneous, its truth in the general case would then fallow at 
once. 

Let us then assume that cf, is a homogeneous polynomial. Tbe 
theorem is obviously true wben n = 1, since then p 1 = - X¡- It will 
therefore be completely proved by the method of mathematical in­
duction if, assuming it to hold when the number of x's is 1, 2, ··· n-1, 
we oan prove that it holds when the numher of x's is n. 
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For this purpose !et us first assume that Pn is not a factor of every 
term of cf,. Then cf,(p1, ... p,. 1, O) is not iden~ically zero but is still 
a bomogeneous polynomial of degree µ, in (p1, ... p._1). Now let 
x, = O. This makes Pn = O, and gives the identity 

(2) 

where p(, ... P~-¡ are the elementary symmetric functions of 
(x1, ... x •. 1), and f(x1, ... x,-¡, O) is a symmetric polynomial of 
degree m1 in x1, where m1 ~ m. From the assumption that our 
tbeorem holds when the number of x's is n- 1, we infer from (2) 
that µ, = m1 ~ m ; and since we saw above that µ, cannot be less than 
m, we in fer that µ, = m, as was to be proved. 

There rernains mere! y tbe case to be considered in which p. is a 
factor of every term of cf,. Let p! be the highest power of Pn which 
occurs as a factor in cf,. Then 

where cf,1 is a polynomial of degree µ, - k. Putting in for the p's 
their values in terms of the x's, we get 

(3) 
wbere 
(4) 

From (3). we see that f 1 is of degree m - k in x1, and from ( 4), since 
,f,1 does not contain p. as a factor, that the degrees of Ji in x1, and 
of cf,1 in the p's are equal, 

· m-k=µ,-k. 

From which we see that m = µ,, as was to be proved: 
The t~o theorems of this section are not only of theoretical 

importance, they may also be put to tbe direct practica! use of 
facilitating the computation of the values of symmetric polynomials 
in terms of the p's, 

In arder to illustrate this, !et us consider the symmetric function 

f(x1, ... x.) = Ix¡x2x3• 

Since f is homogeneous of the fourth degree in the x's, it will, by 
Tbeorem 1, be isobaric of weight 4 in the p's. Since it is of the 
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second degree in x1, it will, by Theorem 2, be of the second degree in 
the p's. Hence 
(5) ±x¡x2x3 eeAp1p8 -..Bp¡+ Ofi, 

where A, B, and O are independent of the number ·n (Theorem 2, 
§ 84 ), and may be deterrnined by the ordinary method of unde­
termined coefficients. 

Take n = 3, so that p4 = O. Letting x1 = O, x2= x3 = 1, we bave 
p1=2,p2=1,p3=0. Substituting these values in (5), we find B=O. 

Letting x1 = -1, x2 = x3 = 1, we have p1 = 1, p2 = -1, p8 = -1. 
which gives A= l. 

N ow Jet n = 4, x1 = x2 = x3 = x4 = l. 

From this we find p¡ = 4, p2 = 6, p3 = 4, p4 = l. 

Substituting this in (5) gives 0= -4. Hence 

lx¡x,xa = PiPa - 4ft. 

EXERCISES 
l. The symmetric function 

/(xi, ,,. Xn) = :Sxfxsxa + ~Jx: + lx1X2X3X4 

is homogeneous of the fourth degree in the x's, and is oí the second degree in x1; 
hence, when written in terms of thep's, it will bave the sa.me form, Apipa+ Bp: 
+ Cp._, as the above example. Compute the values of A, B, and C. 

,. If / (x1, x,, x,) = (x1 -x,)'(x1 - x,)'(x, - x8) 2, show tbat 

f (xi, x,,.x,) = - 27 p¡ - 4 p! + 18 p1p,p, - 4p¡p, + plp¡. 

86. The Resultant and the Discriminant of Two Polynomials iD 
One Variable. Let 

f(x) eex• + a1x•-1 + a,x•-2 + ... + ª• 
ee(x-a1Xx- a2) ••• (x- a,.), 

cf,(x)eexm+b1xm-1 +b2xm-2 + •·· +bm 

ee(x- f31Xx- {32) ••• (x- f3m), 

be two polynomials in x, and consider the product of the mn factora 

(1) ¡ ( ª1 - f31X ª1 --' fJ,) · · · ( ª1 - fJ,.) 
( a, - f31)( a, - fJ,) ... ( ª2 -fJ,.) 

. . . . . . . . . 
(a.- f)1)(a,,-f)2 ) ·•· (a.-/3,.\. 
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Tbis product vanishes when, and only when, at least one of the a's 
is equal to one of the fJ's. Its vanishing therefore gives a necessary 
and sufficient condition that f and <f, have a common factor. More­
over, the product (1), being a symmetrical polynomial in the a's and 
also in•the f)'s, can be expressed as a polynomial in the elementary 
symmetric functions of the a's and /3's, and therefore as a polynomial 
in the a's and b's. This will be still more evident if we notice that 
the product (1) may be written 

cf,(a1),f,(a2) ... cf,(a.). 
• 

In this form it is a symmetric polynomial in the a's whose co-
efficients are polynomials in the b's, and it remains merely to bring 
in the a's in place of the a's. 

We thus see that the product (1) may be expressed as a poly­
nomial F ( a1, ... a.; b1, •·· b,.) in the a's and b's whose vanishing gives 
a necessary and sufficient condition that f and cf, have a common 
factor. In § 68 we also found a polynomial in the a's and b's whose 
vanishing gives a necessary and sufficient condition that f and <f, 
have a common factor, namely the resultant R off and cf,. 

We will now identify these two polynomials by means of the 
following iheorem : 

'l'HEOREM l. The product (1) differs from the resultant R off 
and cf, only by a constant factor, and the resultant is an irreducible 
polynomial in the a's and b's. 

In arder to prove this theorem we will first show that this prod­
uct (1), which we will cal! F(a1, •·• ª•; b1, ••· b,.), is irreducible. 
This may be done as followB: Suppose F is reducible, alld Jet 
F ( a1, ••• ª• ; b1, •·· bm)eeF¡(a1, .. · ª•; b1, .. · b,.) F2( ª1• ... ª• ; b1, ··· bm), 
where F

1 
and F

2 
are polynomials neither of which is a constant 

Then, since the a's and b's are symmetric polynomials in the a's and 
IJ's, F

1 
and F2 may be expressed as symmetric polynomials cf,1 and <fis 

'n the a's and f)'s, and we may write 

epi( ª1• ... ª• ; /31, "· fJm) </>2( ª1• • ·• ª• ; f11, • • • {J.,) 

1 

( "¡ - /31) ( ª1 - f32) · .. ( "J - /3,.) 

= (a, - f)¡) (<; - /32) "' (a, - f3m) 

( a~ - ./31) ( «: -· /32) .. : ( «: -· /3~). 
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The factors on the right-hand side of this identity being irreducible, 
we see that ef,1 must be composed of sorne of these binomial factors 
and <f,2 of the others. This, however, is impossible, since neither 'Pi 
nor <f,2 would be symmetric. Hence F is irreducible. 

Now, since F = O is a necessary and sufficient condition ior f(x) 
and cf,(x) to have a common factor, and R=O is the same, any set of 
values of the a's and b's which make F=O will also make R=O. Hence 
by the theorem for n + m variables analogous to Theorem 7, § 76, F is 
a factor of R. Also, since F is a symmetric polynomial in the a's 
and f]'s of degree m in each of the a's allll n in each of the fJ's, ~ 
Theorem 2, § 85, it must be of degree m in the a's and n in the b's. 
But R is of degree not greater than m in the a's and nin the b's, as is 
at once obvious from a glance at the determinant in § 68. Hence F, 
being a factor of R, and of degree not lower than R, can differ from 
it only by a constant factor. Thus our theorem is proved. 

Let us turn now to the question: Under what conditions does 
the polynomial f(x) have a multiple linear factor? Using the same 
notation as above, we see that the vanishing of the product 

is a necessary and sufficient condition for this. P is not symmetric 
in the a's, since an interchange of two subscripts changes Pinto -P. 
If, however, we consider P2 in place of P, we have a syrnmetric 
polynominal, which can therefore be expressed as a polynomial in 
the a's, 

Moreover, F= O is also a necessary and sufficient condition thatf(x) 
have a multiple linear factor. 

On the other hand, it is easily seeu that J(x) has a multiple linear 
factor when and onl y when J( x) and f' ( x) ha ve a common linear 
factor. A necessary and sufficient condition for f(x) to have a mul­
tiple linear factor is therefore tbe vanishing of the resultant off(., 
and J'(x). This resultant we will call the discriminant a of f(x} 
It is obviously a polynomial in the coefficients off. 
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THEOREM 2. The polynomials F and a differ only by a constant 
factor, and are irreducible. 

The proof of this theorem is similar to the proof of Theorem 1. 
and is left to the reader. 

EXERCISES 

l. Compute by the use of symmetric functions the product (1) for tbe two 
~fyoom~ ~+~+% 

x2 + b1x + b2, 

and compare the result with the resultant obtained in determinant form. 

2. Verify Theorem 2 by compariug the result oí Exercise 2, § 85, with the 
discriminant in det.erminant form of the polynomial 

x3 + a1x2 + a2x + ag. 
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