CHAPTER XVIII
SYMMETRIC POLYNOMIALS

83. Fundamental Conceptions. Z and § Functions.

DerINITION 1. A polynomial F(zy, --- 2,) s said to be symmetric
if it 18 unchanged by any interchange of the variables (2, -~ ,).

It is not necessary, however, to consider all the possible permuta
tions of the variables in order to show that a polynomial is sym-
metric. If we can show that it is unchanged by the interchange of
every pair of the variables, this is sufficient, for any arrangement
(o> Ty +- @) may be obtained from (z), 2y, ---#,) by interchanging
the 2’s in pairs. Thus, if @ = 1, interchange =, with 43 then in-
terchange the second letter in the arrangement thus obtained with
,; and so on. Hence we have the following theorem :

TaporeM 1. A necessary and sufficient condition for-a poly-
nomial to be symmetric is that it be unchanged by every interchange of
two variables.

A special class of symmetric polynomials of much importance are
the 2-functions, defined as follows:
DEFINITION 2. 2 before any term means the sum of this term and
of all the similar ones obtained from it by interchanging the subseripts.
Thus, for example,
2at=ay+ i+ - + 2,
Tateh = wiah + o TR rid
+ 252 + 2528 + ++ 4wl
e e T S0

+ 22+ afad 4 -
T1x2+xlra+
+1‘2;y3+

+.

+ x;x‘gv-lﬂ
+ 2z,
+ 257,

2=

+33;—1x;'
It is clearly immaterial in what order the exponents e, B, - are
written. Thus, Zafefzy = Safrlat.
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If we consider any term of a symmetric polynomial, it is evident

that the polynomial must contain all the terms obtained from this

This aggregate of terms is merely a
In the same way it

one by interchanging the o’s.
gonstant multiple of one of the 2’s just defined.

| s clear that all the other terms of the symmetric polynomial must
\ arrange themselves in groups each of which is a constant multiple
| ofaZ. Thatis,

TaeorEM 2. Every symmetric polynomial is a linear combination

with constant coefficients of a certain number of 's.

Among these 2's the simplest are the sums of powers of the #'s.
For the sake of brevity the notation is used :
S,=Sat=abt+ oty - 4 2f
It is sometimes convenient to write S, =n.

(b, L)

THEOREM 8. Any symmetric polynomial in the x’s can be ex-
pressed as a polynomial in a certain number of the S’s.

Since every symmetric polynomial is a linear combination of a
gertain number of =’s, in order to prove our theorem we have only
to show that every = can be expressed as a polynomlal in the &'s.
How So=af+agt o+

Sﬁzx§+x§+ o
Hence, if &+ 8,
S Sﬁ_xa.+ﬁ+z.u+a+ +xa+,3+_ $B+x‘]‘_xg+ Sl
= a+ﬂ + E :L‘]ﬂl'ﬂ

From this we get the formula:
(1) Effﬂﬂﬁ = SaS,'a = Sa.+|3
If =B, we have
82 xza + x2a.+ +z%m
=8, + 2 Zafxg.

2z5xg + Lafwg 4+

Hence
) 22425 =4 (51— Syo)-

Similarly, by multiplying Z«jzf by S, we get the following
formuls where the three integers a, 3, v are supposed to be distinet:
(3) Satelel = 8,808, — 8ur6%y — SurySs — Sy Ba + 28asser
() Safasz) = 1(8%8, — 850 8, — 28,4, Sa + 285049
f5) Satary=1(8% — 88,8, +28;.).

R
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The proof indicated in these two special cases may be extended
to the general case as follows:

If we multiply together the two symmetric polynomials
(6) Sotaf .o 2, 8, =27, (k< n)
we get terms of various sorts which are readily seen to be all con-
tained in one or the other of the following polynomials, each of these
polynomials being actually represented :
(") Za2i"9) -2, 2ajay™ - 2ol - ™, Zaje - gk,
Consequently, since the product of the two polynomials (6) is syms
metrie, it must have the form

e 2ol - dh 4 e Byt e o gl
o + Cpq Zajzy “‘ﬂ)‘Hv

where ¢;, -+ ¢4, are positive integers.

Transposing, we may write

1
Ty = g_[z 2}

k+1

a8 x A iy
Za5g - z; - Tz — e it o 2

L BH+A ... e el — i A
Qa2 oSl - o).

Hence, iff our theorem is true for Zaf --
a8 - Ty
8s), hence it is true for k=2, hence for k=3, and so on.
our theorem is completely proved.

- af, it is also true for
But we know it is true for £ =1 (by definition of the
Thus

84. Elementary Symmetric Functions. The notation Za%af ---
may be used to represent amy Z in n variables, IfB8=q=
v = 0, this becomes 2z or 8,.; if y=-.=p=0, it becomes Ex“ixg-,
and so on,

Let us now consider Zz}2f ... 2 where e, 8, --- », are all 0 or L

The following n cases arise :

a=1, ﬂ
(l=B=1,

Zzyp
p LR

u:ﬁ: =p,=1,

a=B= i =1’=1,
The extreme case a=pg= -
represent these » symmetric polynomials by p,, p;, -
They are called the elementary symmetric functions.

Za2y + Ty

4y *++ dpe
=v»=0 is of no interest.
D respep*"‘fﬂly.

We will |
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:\ TaroreMm 1. Any symmetrzc polynomial in the z's may be ex-
| pressed, as a polynomial in the p's.
Since any symmetric polynomlal in the #’s may be expressed as a
" polynomial in the &, it is sufficient to show that every § may be
expressed as a polynomial in the p’s.
Let us introduce a new variable z and consider the polynomial

) =(2— 22 —15) +- (2 —2,)
== i p = 4 (= 1pa

Flas oy -

Using the factored form of f, we may write

B e T

d = +‘+
A x—:v1 .’17-—.’!32 r—z,

Since f vanishes identically when z = z,, we may write

_ f= (@ =) = pi@ ~ )
Accordingly,

L= + @ = p " 2+ (2 — pizi+ ple" 2 +

r—x;

0 = n— n=
a%am 14 (8] — np 2" 2 4 (83— py Sy + npy )" =8 4 =eee

On the other hand, we have

Hence, equating the coefficients of like powers of z in these two
gxpressions, we have

—(n—1)p,,

Sy PlS + ”Pz —(" * 2)?2’

: S —np,=

S plSﬂ-z +_p2‘Sn—3 + ( l)n_ln.p" =g =( 1) lpﬂ—l’

or
(S, —p=0,

(1)) S, PIS +~P2—0

[ Sn—1 PlSn—z +P2‘gn-3 < +(=1)"Yn-1)p,.,=0.

Now consider the identities

2 =2l B e # (=1, =0 (=12 m
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Multiplying these identities by %", ... #i™" respectively and adding

the results, we have

2 8y — 1Sy + PaSig— - +(=1)puS, =0 (k=n,n+41,..),
Formulsa (1) and (2) are known as Newton’s Formule. By

means of them we can compute in succession the values of 8y, S,
as polynomials in the p's:

8, =py,
3 8, =pi—2p,
@) Sy = pi — 3p1pa + 3pp

Thus our theorem is proved.

It will be noted that Newton’s formulwe (1) cannot be obtained
from (2) by giving to k values less than n. The necessity for two
different sets of formule may, however, be avoided by introducing
the notation Prsy =Prpg = =0.

Then all of Newton’s formule may be included in the following form:
(4) 8i—p1Sia+ - H (=1 1pp S +(— D=0 (k=1, 2,2},

Using this notation, we see that the explicit formule (3) for
expressing the s in terms of the p’s are wholly independent of the
number » of the 2’s.

Since the formul referred to in the last section for expressing the
3’s in terms of the S’s are also independent of n, we have established

THEOREM 2. If we introduce the notation p,., = p,= - =0 and
use Newton’s Formule in the form (4), the formula for expressing
any 3 as a polynomial in the p's is independent of the number n of the 2.

When we have % polynomials in » variables

fl(xl’ e mﬂ)’fz(zv Sem xn)! "'fk(xlﬁ e mﬂ)’
we say that there exists a rational relation between them when, and
only when, a polynomial in % variables
F(zl’ sea z]f,)
exists which is not identically zero, but which becomes identically
zero as a polynomial in the #’s when each z is replaced by the
zorresponding f, F(fss - F)=0.
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THEOREM 3. There exists no rational relation between the elemen- -
tary symmetric funetions in n variables p, - Py

For let F(z,, .- 2,) be any polynomial in n variables which is not
identically zero, and let (4, --- a,) be a point at which this pelynomial
does not vanish. Determine (zy, -+ z,) a8 the roots of the equation

2" — a2+ @ — e -}‘—(—-1)"%:0.

For these values of the z’s, the p’s have the values a;, «+- @, and
therefore F(py, - p,) does not vanish for these z's, and is con-
gequently not identically zero as a polynomial in the #'s. Thus
our theorem 1is proved.

CoROLLARY. There 18 only one way wn which a symmetric poly-
nomial in (2, - z,) can be expressed as a polynomial in the elementary
symmetric functions p, - Pu-

For if f is a symmetric polynomial,and if we had two expressions

for it, Sy o 2) =i Py + Pa)y
f(@y - 2)= by Py Pads

then by subtracting these identities from one another we should have
a8 an identity in the 2’s,

¢1(pys +* Pn) — Do Poo - pa)=0.
This, however, would give us a rational relation between the p's.

unlesg iz 20) = a2+ 20):
Thus we see that the two expressions for f are really the same.

EXERCISES

1. Obtain the expressions for the following symmetric polynomialsin terms of
the elementary symmetric functions :
Sxdxy, Spo 3 wf iz,
2. Prove that every symmetric polynomial in (1,+:+Za) can be expressed in
one, and only one, way as a polynomial in Sy, «-- S

85. The Weights and Degrees of Symmetric Polynomials. We
will attach to each of the elemeutary symmetric functions p; a weight
equal to its subscript, of. § T9.

TrrorEM 1. A homogeneous symmetric polynomial of degree m in
the 2's, when expressed in terms of the p’s, is isobaric of weight m.
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Let
(1) f(xp Tgy *** -’Eﬂ)E‘f’(Pv Py *** Pn)

be such a polynomial. Since p, is a homogeneous polynomial of the
first -degree in the 2's, p, of the second, etc., any term of ¢, when
written in the «'s, must be a homogeneous polynomial of degree equal
to the original weight of the term. Thus, for example, the term
6 p2p,p3 whose weight is 18, when written in the 2’s will be a homo-
geneous polynomial of degree 13. Accordingly an isobaric group of
terms when expressed in terms of the 2’s will, since by Theorem 3,
§ 84, it cannot reduce identically to zero, be homogeneous of the
same degree as its original weight. If then ¢ were not isobarie,
f would not be homogeneous, and our theorem is proved.

CoROLLARY. If f 1s non-homogeneous and of the mth degree, ¢ is
non-isobaric and of weight m.

TaEOREM 2. A symmetric polynomial in (zy, «- @,), when written
in terms of the elementary symmetric functions p, -+ P, will be of the
same degree in the p's as it was at first in any one of the z’s.

Let f be the symmetric polynomial, and write

Sy 25 -+ 2,) =¢(py Py = P

and suppose f is of degree m in z, (and therefore, on account of the
symmetry, in any one of the #’s), and that ¢ is of degree u in the p's.
We wish to prove that m = u. Since the p’s are of the first degree
in 2y, it is clear that m< p.

If ¢ is non-homogeneous, we can break it up into the sum of a
number of homogeneous polynomials by grouping together all the
terms of like degree. Each of these homogeneous polynomials in
the p’s can be expressed (by substituting for the p's their values in
terms of the ’s) as a symmetric polynomial in the #’s. If our theo-
rem were established in the case in which the polynomial in the p's
is homogeneous, its truth in the general case would then follow at
once.

Let us then assume that ¢ is a homogeneous polynomial, The
theorem is obviously true when n=1, since then p, = —2;. It will
therefore be completely proved by the method of mathematical in-
duction if, assuming it to hold when the number of #'s is 1, 2, - n—1,
we ean prove that it holds when the number of 2’s is n.
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For this purpose let us first assume that p, is not a factor of every
term of ¢. Then ¢(py, -+ p,_y» 0) is not identically zero but is still
a homogeneous polynomial of degree u in (py, «+ p,-y). Now let
7,=0. This makes p,=0, and gives the identity

(2) S(@p = @y 0)=$(ph -+ Py O)y

where pj, -+ p, , are the elementary symmetric functions of
(zgy ** Zp-y)y and f(zy 2,4, 0) is a symmetric polynomial of
degree m, in @;, where m;<m. From the assumption that our
theorem holds when the number of 2’s is n—1, we infer from (2)
that w=m, <m; and since we saw above that p cannot be less than
m, we infer that p=m, as was to be proved.

There remaing merely the case to be considered in which p, is a
factor of every term of ¢. Let pf be the highest power of p, which
occurs as a factor in ¢. Then

(Pp = Pa)=Pibi( Py ++ Pud

where ¢, is a polynomial of degree u— k. Putting in for the p’s
their values in terms of the z’s, we get

3) Fp - 2) = Bhh woe 2% Fi(@y e T
where

(4) Ji(zy - )= ¢y(pp o Pa)

From (8) we see that f; is of degree m — % in #,, and from (4), since

¢, does not contain p, as a factor, that the degrees of f; in z;, and

of ¢, in the p’s are equal,
' m—rk=p—1£k.

From which we see that m = u, as was to be proved.

The two theorems of this section are not only of theoretical
importance, they may also be put to the direct practical use of
facilitating the computation of the values of symmetric polynomials
in terms of the p’s.

In order to illustrate this, let us consider the symmetric function

Sayy - 2,)=2dz,z,

Since f is homogeneous of the fourth degree in the o', it will, by
Theorem 1, be isobarie of weight 4 in the p’s. Since it is of the
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second degree in z,, it will, by Theorem 2, be of the second degree in
the p's. Hence

() Zatw,zy = Ap py + Bpi+ Cp,

where A, B, and ( are independent of the numbern (Theorem 2,
§ 84), and may be determined by the ordinary method of uunde-
termined coefficients.
Take n = 3,50 that p,=0. Letting 2, =0, 2,=2;=1, we have
p1='2, py=1, p;=0. Substituting these values in (5), we find B=0,
Letting #;=~1,z,=2,=1, we have p, =1, p, = =1, py= =1
which gives 4 =1.
Now let =ty cp =g =]
From this we find p,=4, p,=6, p;=4,p,=1.
Substituting this in (5) gives ('= —4. Hence

2afrs = py Py — dpye

EXERCISES
1. The symmetric function

I (21, - @) = Zatmars + Sxie] + Sxiars2s

is homogeneous of the fourth degree in the 2's, and is of the second degree in 21}
hence, when written in terms of thesp’s, it will have the same form, Apips + Bp}
+ Cpy, a8 the above example. Compute the values of 4, B, and C.

2. If f (21, 22, @) = (21—~23) (21 — 25) (22 — x3)% show that
S (21, 22,005) = = 27 p§ — 4 p3 + 18 p1paps — 4 pips + pipk-
86. The Resultant and the Discriminant of Two Polynomials in
One Variable. Let
f(@)=2"+ 2" + agz" P+ - +a,
=)o — ) -+ (2= )
¢($) =g+ },Jlf)m_l + bzzm—E AL T bm
=(z— Bz —By) -+ (2= Bn)

be two polynomials in z, and consider the product of the mn factors

(& — ByNey = By) -+ (2, —By)
(1) ((I2 = /81)(“3 > Bg) (“2 —Bm) -

( 31)( Bz) ;x,,—-Bm\»

.F(al, oo lly 3 by, et
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This product vanishes when, and only when, at least one of the a’s
is equal to one of the 8's. Its vanishing therefore gives a necessary
and sufficient condition that f and ¢ have a common factor. More-
over, the product (1), being a symmetrical polynomial in the o’s and
also in'the 8’s, can be expressed as a polynomial in the elementary
symmetrlc functions of the «'s and 8's, and therefore as a polynomial
in the a's and #’s. This will be still more evident if we notice that
the product (1) may be written

$(or) $(ay) - (en):

In this form it is a symmetric polynomial in the o’s whose co-
éfﬁcients are polynomials in the b’s, and it remains merely to bring
in the a’s in place of the &’s.

We thus see that the product (1) may be expressed as a poly-
pomial F(ay, -+ @,; by, -+ b,) in the a’s and 's whose vanishing gives
a necessary and sufficient condition that f and ¢ have a common
factor. In §68 we also found a polynomial in the &'s and 4’s whose
vanishing gives a necessary and sufficient condition that f and ¢
have a common factor, namely the resultant R of f and ¢.

We will now identify these two polynomials by means of the
following theorem :

TaeoreM 1. The product (1) differs from the resultant R of f
and ¢ only by a constant factor, and the resultant is an wrreducible
polynomial in the «’s and b’s.

In order to prove this theorem we will first show that th1s prod-
uct (1), which we will call F(ay, - a,3 by, -+ by), is irreducible.
This may be done as follows: Suppose F is reducible, and let

i m) Fl(a]‘... s ,'... m) Fﬂ(al"" o ,... m)’
where F1 and F, are polynomials nelther of which is a constant.
Then, since the a’s and b's are symmetric polynomials in the s and
8's, F, and F, may be expressed as symmetric polynomials ¢; and ¢y
‘n the o’s and B's, and we may write
$ilogs -+ @3 By =+ Bim) bol ey -+ @3 By *+* Bm)
(o = By) (@ — By) -+ (o — )
(o — By) (o5 — 32) (“z Bm)

(“n Bl) (“n ol Bz) Bm)
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The factors on the right-hand side of this identity being irreducible,
we see that ¢, must be composed of some of these binomial factors
and ¢, of the others. This, however, is impossible, since neither ¢
nor ¢, would be symmetric. Hence F is irreducible.

Now, since F'=0 is a necessary and sufficient condition for S(z)
and ¢(z) to have a common factor, and R=0 is the same, any set of
values of the a’s and b's which make F=0 will also make R=0. Hence
by the theorem for n 4 m variables analogous to Theorem 7, § 76, Fis
a factor of B. Also, since F is a symmetric polynomial in the s
and B's of degree m in each of the «’s and n in each of the B’s, by
Theorem 2, § 85, it must be of degree m in the a’s and n in the §'s.
But B is of degree not greater than m in the a’s and n in the b’s, as is
at once obvious from a glance at the determinant in § 68. Hence F,
being a factor of R, and of degree not lower than R, can differ from
it only by a constant factor. Thus our theorem is proved.

Let us turn now to the question: Under what conditions does
the polynomial f(x) have a multiple iinear factor? Using the same
notation as above, we see that the vanishing of the product

(g — ) (g — tg) === (0 — @)

. (052 — Og) e (“‘2 — &) EP(OLP “n)

(anfl V] “n)

Is a necessary and sufficient condition for this. P is not symmetric
in the &'s, since an interchange of two subscripts changes P into — P.
If, however, we consider P2 in place of P, we have a symmetric
polynominal, which can therefore be expressed as a polynomial in
the a’s,

[P(ey, - @)= F(ay, - a,).

Moreover, F =0 is also a necessary and sufficient condition that J(=)
have a multiple linear factor.

On the other hand, it is easily seen that f(z) has a multiple linear
factor when and only when f(z) and f/(z) have a common linear
factor. A necessary and sufficient condition for f(z) to have a mul-
tiple linear factor is therefore the vanishing of the resultant of f{~,
and f(z). This resultant we will call the discriminant A of f(#)
It is obviously a polynomial in the coefficients of o
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TaroreM 2. The polynomials F and A differ only by a constant

factor, and are trreducible.

The proof of this theorem is gimilar to tlie proof of Theorem 1,
and is left to the reader.

EXERCISES
1. Compute by the use of symmetric functions the produet (1) for the two
polynomials 224 a1z + as,
&% + bz + b,

and compare the result with the resultant obtained in determinant form.

2. Verify Theorem 2 by comparing the result of Exercise 2, § 85, with the
diseriminant in determinant form of the polynomial

28+ @122 + ay% + ag.
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