CHAPTER XVIII

SYMMETRIC POLYNOMIALS

83. Fundamental Conceptions. Σ and S Functions.

Definition 1. A polynomial $F\left(x_{1}, \cdots x_{n}\right)$ is said to be symmetric if it is unchanged by any interchange of the variables $\left(x_{1}, \cdots x_{n}\right)$.

It is not necessary, however, to consider all the possible permutations of the variables in order to show that a polynomial is symmetric. If we can show that it is unchanged by the interchange of every pair of the variables, this is sufficient, for any arrangement $\left(x_{a}, x_{b}, \cdots x_{k}\right)$ may be obtained from ($x_{1}, x_{2}, \cdots x_{n}$) by interchanging the x 's in pairs. Thus, if $a \neq 1$, interchange x_{a} with x_{1}; then interchange the second letter in the arrangement thus obtained with x_{2}; and so on. Hence we have the following theorem:

Theorem 1. A necessary and sufficient condition for a polynomial to be symmetric is that it be unchanged by every interchange of two variables.

A special class of symmetric polynomials of much importance are the Σ-functions, defined as follows:

Definition 2. Σ before any term means the sum of this term and of all the similar ones obtained from it by interchanging the subscripts.

Thus, for example,

$$
\begin{aligned}
\Sigma x_{1}^{a} & \equiv x_{1}^{a}+x_{2}^{a}+\cdots+x_{n}^{a}, \\
\Sigma x_{1}^{a} x_{2}^{\beta} & \equiv x_{1}^{a} x_{2}^{\beta}+x_{1}^{a} x_{3}^{\beta}+\cdots+x_{1}^{a} x_{n}^{\beta} \\
& +x_{2}^{\alpha} x_{1}^{\beta}+x_{2}^{\alpha} x_{3}^{\beta}+\cdots+x_{2}^{a} x_{n}^{\beta} \\
& +x_{n}^{a} x_{1}^{\beta}+x_{n}^{a} x_{2}^{\beta}+\cdots+x_{n}^{a} x_{n-1}^{\beta}, \\
\Sigma x_{1}^{a} x_{2}^{a} & \equiv x_{1}^{\alpha} x_{2}^{a}+x_{1}^{a} x_{3}^{a}+\cdots+x_{1}^{a} x_{n}^{a} \\
& \quad+x_{2}^{a} x_{3}^{a}+\cdots+x_{2}^{a} x_{n}^{a} \\
& \quad+\cdot \cdot \cdot \\
& +x_{n-1}^{a} x_{n}^{a} .
\end{aligned}
$$

It is clearly immaterial in what order the exponents α, β, \cdots are written. Thus, $\Sigma x_{1}^{a} x_{2}^{\beta} x_{3}^{\nu} \equiv \Sigma x_{1}^{\beta} x_{2}^{\gamma} x_{3}^{\alpha}$.

If we consider any term of a symmetric polynomial, it is evident that the polynomial must contain all the terms obtained from this one by interchanging the x 's. This aggregate of terms is merely a constant multiple of one of the Σ 's just defined. In the same way it is clear that all the other terms of the symmetric polynomial must arrange themselves in groups each of which is a constant multiple of a Σ. That is,

Theorem 2. Every symmetric polynomial is a linear combination with constant coefficients of a certain number of Σ 's.
Among these Σ 's the simplest are the sums of powers of the \boldsymbol{x} 's. For the sake of brevity the notation is used:

$$
S_{k} \equiv \sum x_{1}^{k} \equiv x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k} \quad(k=1,2, \cdots) .
$$

It is sometimes convenient to write $S_{0}=n$.
Theorem 3. Any symmetric polynomial in the x 's can be expressed as a polynomial in a certain number of the S^{\prime} 's.
Since every symmetric polynomial is a linear combination of a certain number of Σ 's, in order to prove our theorem we have only to show that every Σ can be expressed as a polynomial in the S 's. Now

$$
\begin{aligned}
& S_{a} \equiv x_{1}^{a}+x_{2}^{a}+\cdots+x_{n}^{a}, \\
& S_{\beta} \equiv x_{1}^{\beta}+x_{2}^{\beta}+\cdots+x_{n}^{\beta} .
\end{aligned}
$$

Hence, if $\dot{\alpha} \neq \beta$,

$$
\begin{aligned}
S_{a} S_{\beta} & \equiv x_{1}^{a+\beta}+x_{2}^{a+\beta}+\cdots+x_{n}^{a+\beta}+x_{1}^{a} x_{2}^{\beta}+x_{1}^{a} x_{3}^{\beta}+\cdots \\
& \equiv S_{a+\beta}+\Sigma x_{1}^{a} x_{2}^{\beta} .
\end{aligned}
$$

From this we get the formula:

Similarly, by multiplying $\Sigma x_{1}^{a} x_{2}^{\beta}$ by S_{γ}, we get the following formulæ where the three integers a, β, γ are supposed to be distinct:

$$
\begin{equation*}
\Sigma x_{1}^{a} x_{2}^{\beta} x_{3}^{\gamma} \equiv S_{a} S_{\beta} S_{\gamma}-S_{a+\beta} S_{\gamma}-S_{a+\gamma} S_{\beta}-S_{\beta+\gamma} S_{a}+2 S_{a+\beta+\gamma} \tag{3}
\end{equation*}
$$

$$
\Sigma x_{1}^{a} x_{2}^{a} \gamma_{3}^{\gamma} \equiv \frac{1}{2}\left(S_{a}^{2} S_{\gamma}-S_{2 a} S_{\gamma}-2 S_{a+\gamma} S_{a}+2 S_{2 a+\gamma}\right)
$$

$$
\text { (5) } \quad \Sigma x_{1}^{a} x_{2}^{a} x_{3}^{a} \equiv \frac{1}{6}\left(S_{a}^{3}-3 S_{2 a} S_{a}+2 S_{3 a}\right) \text {. }
$$

The proof indicated in these two special cases may be extended to the general case as follows:

If we multiply together the two symmetric polynomials
(6)

$$
\begin{equation*}
\Sigma x_{1}^{a} x_{2}^{\beta} \ldots x_{k}^{\kappa} \tag{k<n}
\end{equation*}
$$

$$
S_{\lambda} \equiv \Sigma x_{1}^{\lambda}
$$

we get terms of various sorts which are readily seen to be all contained in one or the other of the following polynomials, each of these polynomials being actually represented:
(7) $\Sigma x_{1}^{a+\lambda} x_{2}^{\beta} \cdots x_{k}^{\kappa}, \Sigma x_{1}^{a} x_{2}^{\beta+\lambda} \cdots x_{k}^{k}, \cdots \cdots \Sigma x_{1}^{a} x_{2}^{\beta} \cdots x_{k}^{k+\lambda}, \Sigma x_{1}^{a} x_{2}^{\beta} \cdots x_{k}^{\kappa} x_{k+1}^{\lambda}$.

Consequently, since the product of the two polynomials (6) is symmetric, it must have the form

$$
\begin{aligned}
& c_{1} \Sigma x_{1}^{a+\lambda} x_{2}^{\beta} \cdots x_{k}^{k}+c_{2} \Sigma x_{1}^{a} x_{2}^{\beta+\lambda} \cdots x_{k}^{\kappa}+\cdots \cdots \cdots+c_{k} \Sigma x_{1}^{a} x_{2}^{\beta} \cdots x_{k}^{\alpha+\lambda} \\
&+c_{k+1} \Sigma x_{1}^{a} x_{2}^{\beta} \cdots x_{k}^{\alpha} x_{k+1}^{k}
\end{aligned}
$$

where $c_{1}, \cdots c_{k+1}$ are positive integers.
Transposing, we may write

$$
\begin{gathered}
\Sigma x_{1}^{a} x_{2}^{\beta} \cdots x_{k+1}^{\lambda} \equiv \frac{1}{c_{k+1}}\left[\Sigma x_{1}^{a} x_{2}^{\beta} \cdots x_{k}^{\alpha} \cdot \Sigma x_{1}^{\lambda}-c_{1} \Sigma x_{1}^{\alpha+\lambda} x_{2}^{\beta} \cdots x_{k}^{\alpha}\right. \\
\left.\quad-c_{2} \Sigma x_{1}^{a} x_{2}^{\beta+\lambda} \cdots x_{k}^{\alpha}-\cdots \cdots \cdots-c_{k} \Sigma x_{1}^{\alpha} x_{2}^{\beta} \cdots x_{k}^{\kappa+\lambda}\right]
\end{gathered}
$$

Hence, if our theorem is true for $\Sigma x_{1}^{a} \cdots x_{k}^{\kappa}$, it is also true for $\Sigma x_{1}^{a} \cdots x_{k+1}^{\lambda}$. But we know it is true for $k=1$ (by definition of the S^{\prime} s), hence it is true for $k=2$, hence for $k=3$, and so on. Thus our theorem is completely proved.
84. Elementary Symmetric Functions. The notation $\Sigma x_{1}^{\alpha} x_{2}^{\beta} \cdots x_{n}^{\gamma}$ may be used to represent any Σ in n variables. If $\beta=\gamma=\cdots=$ $\nu=0$, this becomes Σx_{1}^{a} or S_{a}; if $\gamma=\cdots=\nu=0$, it becomes $\Sigma x_{1}^{a} x_{2}^{\beta}$; and so on.

Let us now consider $\Sigma x_{1}^{a} x_{2}^{\beta} \cdots x_{n}^{\nu}$ where $\alpha, \beta, \ldots \nu$, are all 0 or 1 . The following n cases arise:

$$
\begin{aligned}
& \alpha=1, \quad \beta=\gamma=\cdots=\nu=0, \quad \Sigma x_{1}, \\
& \alpha=\beta=1, \quad \gamma=\cdots=\nu=0, \quad \Sigma x_{1} x_{2}, \\
& !:!:!:!:!:!:!:!!:!: ~ \\
& \alpha=\beta=\cdots=\mu=1, \quad \nu=0, \quad \quad \Sigma x_{1} x_{2} \cdots x_{n-1} \\
& \alpha=\beta=\cdots=\nu=1, \quad x_{1} x_{2} \cdots x_{n} .
\end{aligned}
$$

The extreme case $\alpha=\beta=\cdots=\nu=0$ is of no interest. We will represent these n symmetric polynomials by $p_{1}, p_{2}, \cdots p_{n}$, respentively. They are called the elementary symmetric functions.

Theorem 1. Any symmetric polynomial in the x 's may be expressed as a polynomial in the p 's.

Since any symmetric polynomial in the x 's may be expressed as a polynomial in the S 's, it is sufficient to show that every S may be expressed as a polynomial in the p 's.

Let us introduce a new variable x and consider the polynomial

$$
\begin{aligned}
f\left(x ; x_{1}, x_{2}, \cdots x_{n}\right) & \equiv\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \\
& \equiv x^{n}-p_{1} x^{n-1}+p_{2} x^{n-2}-\cdots+(-1)^{n} p_{v}
\end{aligned}
$$

Using the factored form of f, we may write

$$
\frac{\partial f}{\partial x} \equiv \frac{f}{x-x_{1}}+\frac{f}{x-x_{2}}+\cdots+\frac{f}{x-x_{n}}
$$

Since f vanishes identically when $x=x_{i}$, we may write

$$
f \equiv\left(x^{n}-x_{i}^{n}\right)-p_{1}\left(x^{n-1}-x_{i}^{n-1}\right)+\cdots
$$

Accordingly,

$$
\begin{gathered}
\frac{f}{x-x_{i}} \equiv x^{n-1}+\left(x_{i}-p_{1}\right) x^{n-2}+\left(x_{i}^{2}-p_{1} x_{i}+p_{2}\right) x^{n-3}+\cdots \\
\frac{\partial f}{\partial x} \equiv n x^{n-1}+\left(S_{1}-n p_{1}\right) x^{n-2}+\left(S_{2}-p_{1} S_{1}+n p_{2}\right) x^{n-3}+\cdots
\end{gathered}
$$

On the other hand, we have

$$
\frac{\partial f}{\partial x} \equiv n x^{n-1}-(n-1) p_{1} x^{n-2}+(n-2) p_{2} x^{n-3}-\cdots
$$

Hence, equating the coefficients of like powers of x in these two expressions, we have

$$
\left\{\begin{array}{l}
S_{1}-n p_{1} \equiv-(n-1) p_{1} \\
S_{2}-p_{1} S_{1}+n p_{2} \equiv(n-2) p_{2} \\
S_{n-1}-p_{1} S_{n-2}+p_{2} S_{n-3}-\cdots+(-1)^{n-1} n p_{n-1} \equiv(-1)^{n-1} p_{n-1}
\end{array}\right.
$$

$$
\text { (1) }\left\{\begin{array}{l}
S_{1}-p_{1} \equiv 0 \\
S_{2}-p_{1} S_{1}+2 p_{2} \equiv 0 \\
S_{n-1}-p_{1} S_{n-2}+p_{2} S_{n-3}-\cdots+(-1)^{n-1}(n-1) p_{n-1} \equiv 0
\end{array}\right.
$$

Now consider the identities

$$
x_{i}^{n}-p_{1} x_{i}^{n-1}+p_{0} x_{i}^{n-2}-\cdots+(-1)^{n} p_{n} \equiv 0 \quad(i=1,2, \cdots n) .
$$

Multiplying these identities by $x_{1}^{k-n}, \cdots x_{n}^{k-n}$ respectively and adding the results, we have
(2) $\quad S_{k}-p_{1} S_{k-1}+p_{2} S_{k-2}-\cdots+(-1)^{n} p_{n} S_{k-n} \equiv 0 \quad(k=n, n+1, \cdots)$. Formulæ (1) and (2) are known as Newton's Formulce. By means of them we can compute in succession the values of S_{1}, S_{2}, \ldots as polynomials in the p 's:

$$
\left\{\begin{array}{l}
S_{1} \equiv p_{1}, \tag{3}\\
S_{2} \equiv p_{1}^{2}-2 p_{2} \\
S_{3} \equiv p_{1}^{3}-3 p_{1} p_{2}+3 p_{2} \\
. . .
\end{array}\right.
$$

Thus our theorem is proved.
It will be noted that Newton's formulæ (1) cannot be obtained from (2) by giving to k values less than n. The necessity for two different sets of formulæ may, however, be avoided by introducing the notation

$$
p_{n+1} \equiv p_{n+2} \equiv \cdots \equiv 0
$$

Then all of Newton's formulæ may be included in the following form:

$$
\begin{equation*}
S_{k}-p_{1} S_{k-1}+\cdots+(-1)^{k-1} p_{k-1} S_{1}+(-1)^{k} k p_{k} \equiv 0 \quad(k=1,2, \cdots) . \tag{4}
\end{equation*}
$$

Using this notation, we see that the explicit formulæ (3) for expressing the S 's in terms of the p 's are wholly independent of the number n of the x 's.

Since the formulæ referred to in the last section for expressing the Σ 's in terms of the S 's are also independent of n, we have established

THEOREM 2. If we introduce the notation $p_{n+1} \equiv p_{n+2} \equiv \cdots \equiv 0$ and use Newton's Formulce in the form (4), the formula for expressing any Σ as a polynomial in the p 's is independent of the number n of the x 's.

When we have k polynomials in n variables

$$
f_{1}\left(x_{1}, \cdots x_{n}\right), f_{2}\left(x_{1}, \cdots x_{n}\right), \cdots f_{k}\left(x_{1}, \cdots x_{n}\right),
$$

we say that there exists a rational relation between them when, and only when, a polynomial in k variables

$$
\boldsymbol{F}\left(z_{1}, \cdots z_{k}\right)
$$

exists which is not identically zero, but which becomes identically zero as a polynomial in the x 's when each z is replaced by the zorresponding f,

$$
F\left(f_{1}, \cdots f_{k}\right) \equiv 0 .
$$

Theorem 3. There exists no rational relation between the elementary symmetric functions in n variables $p_{1}, \cdots p_{n}$.

For let $F\left(z_{1}, \cdots z_{n}\right)$ be any polynomial in n variables which is not identically zero, and let $\left(a_{1}, \cdots a_{n}\right)$ be a point at which this polynomial does not vanish; Determine $\left(x_{1}, \cdots x_{n}\right)$ as the roots of the equation

$$
x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}-\cdots+(-1)^{n} a_{n}=0
$$

For these values of the x 's, the p 's have the values $a_{1}, \cdots a_{n}$, and therefore $\boldsymbol{F}\left(p_{1}, \cdots p_{n}\right)$ does not vanish for these x^{\prime} 's, and is consequently not identically zero as a polynomial in the x_{i} 's. Thus our theorem is proved.

Corollary. There is only one way in which a symmetric polynomial in $\left(x_{1}, \cdots x_{n}\right)$ can be expressed as a polynomial in the elementary symmetric functions $p_{1}, \cdots p_{n}$.

For if f is a symmetric polynomial, and if we had two expressions for it,

$$
\begin{aligned}
& f\left(x_{1}, \cdots x_{n}\right) \equiv \phi_{1}\left(p_{1}, \cdots p_{n}\right) \\
& f\left(x_{1}, \cdots x_{n}\right) \equiv \phi_{2}\left(p_{1}, \cdots p_{n}\right)
\end{aligned}
$$

then by subtracting these identities from one another we should have as an identity in the x 's,

$$
\phi_{1}\left(p_{1}, \cdots p_{n}\right)-\phi_{2}\left(p_{1}, \cdots p_{n}\right) \equiv 0
$$

This, however, would give us a rational relation between the p 's. unless
$\phi_{1}\left(z_{1}, \cdots z_{n}\right) \equiv \phi_{2}\left(z_{1}, \cdots z_{n}\right)$.
Thus we see that the two expressions for f are really the same.

EXERCISES

1. Obtain the expressions for the following symmetric polynomials in terms of the elementary symmetric functions:

$$
\begin{array}{lll}
\mathrm{\Sigma} x_{1}^{2} x_{2}, & \mathrm{\Sigma} x_{1}^{2} x_{2}^{2}, & \mathrm{\Sigma} x_{1}^{3} x_{2}^{2} x_{3}
\end{array}
$$

2. Prove that every symmetric polynomial in $\left(x_{1}, \cdots x_{n}\right)$ can be expressed in one, and only one, way as a polynomial in $S_{1}, \ldots S_{n}$.
3. The Weights and Degrees of Symmetric Polynomials. We will attach to each of the elementary symmetric functions p_{i} a weight equal to its subscript, ef. § 79.

Theorem 1. A homogeneous symmetric polynomial of degree m in the x 's, when expressed in terms of the p 's, is isobaric of weight m.

SYMMETRIC POLYNOMIALS

Let
(1)

$$
f\left(x_{1}, x_{2}, \cdots x_{n}\right) \equiv \phi\left(p_{1}, p_{2}, \cdots p_{n}\right)
$$

be such a polynomial. Since p_{1} is a homogeneous polynomial of the first degree in the x 's, p_{2} of the second, etc., any term of ϕ, when written in the x s, must be a homogeneous polynomial of degree equal to the original weight of the term. Thus, for example, the term $6 p_{1}^{2} p_{2} p_{3}^{2}$ whose weight is 13 , when written in the x 's will be a homogeneous polynomial of degree 13. Accordingly an isobaric group of terms when expressed in terms of the x 's will, since by Theorem 3, § 84, it cannot reduce identically to zero, be homogeneous of the same degree as its original weight. If then ϕ were not isobaric, f would not be homogeneous, and our theorem is proved.

Corollary. If f is non-homogeneous and of the m th degree, ϕ is non-isobaric and of weight m.

Theorem 2. A symmetric polynomial in $\left(x_{1}, \cdots x_{n}\right)$, when written in terms of the elementary symmetric functions $p_{1}, \cdots p_{n}$, will be of the same degree in the p 's as it was at first in any one of the x 's.

Let f be the symmetric polynomial, and write

$$
f\left(x_{1}, x_{2}, \cdots x_{n}\right) \equiv \phi\left(p_{1}, p_{2}, \cdots p_{n}\right),
$$

and suppose f is of degree m in x_{1} (and therefore, on account of the symmetry, in any one of the x^{\prime} s), and that ϕ is of degree μ in the p^{\prime} s. We wish to prove that $m=\mu$. Since the p 's are of the first degree in x_{1}, it is clear that $m \leqq \mu$.

If ϕ is non-homogeneous, we can break it up into the sum of a number of homogeneous polynomials by grouping together all the terms of like degree. Each of these homogeneous polynomials in the p 's can be expressed (by substituting for the p 's their values in terms of the x 's) as a symmetric polynomial in the x s. If our theorem were established in the case in which the polynomial in the p 's is homogeneous, its truth in the general case would then follow at once.

Let us then assume that ϕ is a homogeneous polynomial. The theorem is obviously true when $n=1$, since then $p_{1} \equiv-x_{1}$. It will therefore be completely proved by the method of mathematical induction if, assuming it to hold when the number of x s is $1,2, \ldots n-1$, we oan prove that it holds when the number of x 's is n.

For this purpose let us first assume that p_{n} is not a factor of every term of ϕ. Then $\phi\left(p_{1}, \cdots p_{n-1}, 0\right)$ is not identically zero but is still a homogeneous polynomial of degree μ in $\left(p_{1}, \cdots p_{n-1}\right)$. Now let $x_{n}=0$. This makes $p_{n}=0$, and gives the identity

$$
\begin{equation*}
f\left(x_{1}, \cdots x_{n-1}, 0\right) \equiv \phi\left(p_{1}^{\prime} \cdots p_{n-1}^{\prime}, 0\right), \tag{2}
\end{equation*}
$$

where $p_{1}^{\prime}, \cdots p_{n-1}^{\prime}$ are the elementary symmetric functions of $\left(x_{1}, \cdots x_{n-1}\right)$, and $f\left(x_{1}, \cdots x_{n-1}, 0\right)$ is a symmetric polynomial of degree m_{1} in x_{1}, where $m_{1} \leqq m$. From the assumption that our theorem holds when the number of x 's is $n-1$, we infer from (2) that $\mu=m_{1} \leqq m$; and since we saw above that μ cannot be less thari m, we infer that $\mu=m$, as was to be proved.

There remains merely the case to be considered in which p_{n} is a factor of every term of ϕ. Let p_{n}^{k} be the highest power of p_{n} which occurs as a factor in ϕ. Then

$$
\phi\left(p_{1}, \cdots p_{n}\right) \equiv p_{n}^{k} \phi_{1}\left(p_{1}, \cdots p_{n}\right),
$$

where ϕ_{1} is a polynomial of degree $\mu-k$. Putting in for the p 's their values in terms of the x 's, we get

$$
\begin{equation*}
f\left(x_{1}, \cdots x_{n}\right) \equiv x_{1}^{k} x_{2}^{k} \cdots x_{n}^{k} f_{1}\left(x_{1}, \cdots x_{n}\right), \tag{3}
\end{equation*}
$$

here
(4)

$$
f_{1}\left(x_{1}, \cdots x_{n}\right) \equiv \phi_{1}\left(p_{1}, \cdots p_{n}\right) .
$$

From (3) we see that f_{1} is of degree $m-k$ in x_{1}, and from (4), since ϕ_{1} does not contain p_{n} as a factor, that the degrees of f_{1} in x_{1}, and of ϕ_{1} in the p 's are equal,

$$
m-k=\mu-k .
$$

From which we see that $m=\mu$, as was to be proved.

The two theorems of this section are not only of theoretical importance, they may also be put to the direct practical use of facilitating the computation of the values of symmetric polynomials in terms of the p 's.

In order to illustrate this, let us consider the symmetric function

$$
f\left(x_{1}, \cdots x_{n}\right) \equiv \Sigma x_{1}^{2} x_{2} x_{3} .
$$

Since f is homogeneous of the fourth degree in the x^{\prime} s, it will, by Theorem 1, be isobaric of weight 4 in the p 's. Since it is of the
second degree in x_{1}, it will, by Theorem 2, be of the second degree in the p 's. Hence

$$
\begin{equation*}
\dot{\Sigma} x_{1}^{2} x_{2} x_{3} \equiv A p_{1} p_{3}+B p_{2}^{2}+C p_{4} \tag{5}
\end{equation*}
$$

where A, B, and C are independent of the number n (Theorem 2, $\S 84$), and may be determined by the ordinary method of undetermined coefficients.

Take $n=3$, so that $p_{4}=0$. Letting $x_{1}=0, x_{2}=x_{3}=1$, we have $p_{1}=2, p_{2}=1, p_{3}=0$. Substituting these values in (5), we find $B=0$.

Letting $x_{1}=-1, x_{2}=x_{3}=1$, we have $p_{1}=1, p_{2}=-1, p_{3}=-1$, which gives $A=1$.

Now let $\quad n=4, x_{1}=x_{2}=x_{3}=x_{4}=1$.
From this we find $p_{1}=4, p_{2}=6, p_{3}=4, p_{4}=1$.
Substituting this in (5) gives $C=-4$. Hence

$$
\Sigma x_{1}^{2} x_{2} x_{3} \equiv p_{1} p_{3}-4 p_{4}
$$

2. The symmetric function

EXERCISES

$$
f\left(x_{1}, \cdots x_{n}\right) \equiv \Sigma x_{1}^{2} x_{2} x_{3}+\Sigma x_{1}^{2} x_{2}^{2}+\Sigma x_{1} x_{2} x_{3} x_{4}
$$

is homogeneous of the fourth degree in the x^{\prime} s, and is of the second degree in x_{1}; hence, when written in terms of the p 's, it will have the same form, $A p_{1} p_{3}+B p_{2}^{2}$ $+C p_{4}$, as the above example. Compute the values of A, B, and C.
2. If $f\left(x_{1}, x_{2}, x_{3}\right) \equiv\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2}$, show that

$$
f\left(x_{1}, x_{2}, x_{3}\right) \equiv-27 p_{3}^{2}-4 p_{2}^{3}+18 p_{1} p_{2} p_{3}-4 p_{1}^{3} p_{3}+p p_{2}^{2}
$$

86. The Resultant and the Discriminant of Two Polynomials in One Variable. Let

$$
\begin{aligned}
f(x) & \equiv x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n} \\
& \equiv\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) \\
\phi(x) & \equiv x^{m}+b_{1} x^{m-1}+b_{2} x^{m-2}+\cdots+b_{m} \\
& \equiv\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots\left(x-\beta_{m}\right),
\end{aligned}
$$

be two polynomials in x, and consider the product of the $m n$ factors
(1)

$$
\left\{\begin{array}{c}
\left(\alpha_{1}-\beta_{1}\right)\left(\alpha_{1}-\beta_{2}\right) \cdots\left(\alpha_{1}-\beta_{m}\right) \\
\left(\alpha_{2}-\beta_{1}\right)\left(\alpha_{2}-\beta_{2}\right) \cdots\left(\alpha_{2}-\beta_{m}\right) \\
\cdots \\
\left(\alpha_{n}-\beta_{1}\right)\left(\alpha_{n}-\beta_{2}\right) \cdots\left(\alpha_{n}-\beta_{m}\right)
\end{array}\right.
$$

This product vanishes when, and only when, at least one of the α 's is equal to one of the β 's. Its vanishing therefore gives a necessary and sufficient condition that f and ϕ have a common factor. Moreover, the product (1), being a symmetrical polynomial in the α 's and also in the β 's, can be expressed as a polynomial in the elementary symmetric functions of the α 's and β 's, and therefore as a polynomial in the a 's and b 's. This will be still more evident if we notice that the product (1) may be written

$$
\phi\left(\alpha_{1}\right) \phi\left(\alpha_{2}\right) \cdots \phi\left(\alpha_{n}\right) .
$$

In this form it is a symmetric polynomial in the α 's whose coefficients are polynomials in the b 's, and it remains merely to bring in the a 's in place of the α 's.

We thus see that the product (1) may be expressed as a polynomial $F\left(a_{1}, \cdots a_{n} ; b_{1}, \cdots b_{m}\right)$ in the a 's and b 's whose vanishing gives a necessary and sufficient condition that f and ϕ have a common factor. In $\S 68$ we also found a polynomial in the a 's and b 's whose vanishing gives a necessary and sufficient condition that f and ϕ have a common factor, namely the resultant R of f and ϕ.

We will now identify these two polynomials by means of the following theorem:

Theorem 1. The product (1) differs from the resultant R of f and ϕ only by a constant factor, and the resultant is an irreducible polynomial in the a 's and b 's.

In order to prove this theorem we will first show that this product (1), which we will call $F\left(a_{1}, \cdots a_{n} ; b_{1}, \cdots b_{m}\right)$, is irreducible. This may be done as follows: Suppose F is reducible, and let
$F\left(a_{1}, \cdots a_{n} ; b_{1}, \cdots b_{m}\right) \equiv F_{1}\left(a_{1}, \cdots a_{n} ; b_{1}, \cdots b_{m}\right) F_{2}\left(a_{1}, \cdots a_{n} ; b_{1}, \cdots b_{m}\right)$, where F_{1} and F_{2} are polynomials neither of which is a constant Then, since the a 's and b 's are symmetric polynomials in the α 's and β 's, F_{1} and F_{2} may be expressed as symmetric polynomials ϕ_{1} and ϕ_{2} ' n the α 's and β 's, and we may write

$$
\begin{aligned}
& \phi_{1}\left(\alpha_{1}, \cdots \alpha_{n} ; \beta_{1}, \cdots \beta_{m}\right) \phi_{2}\left(\alpha_{1}, \cdots \alpha_{n} ; \beta_{1}, \cdots \beta_{m}\right) \\
& \quad \equiv\left\{\begin{array}{l}
\left(\alpha_{1}-\beta_{1}\right)\left(\alpha_{1}-\beta_{2}\right) \cdots\left(\alpha_{1}-\beta_{m}\right) \\
\left(\alpha_{2}-\beta_{1}\right)\left(\alpha_{2}-\beta_{2}\right) \cdots\left(\alpha_{2}-\beta_{m}\right) \\
\left(\alpha_{n}-\beta_{1}\right)\left(\alpha_{n}-\beta_{2}\right) \cdots\left(\alpha_{n}-\beta_{m}\right) .
\end{array}\right.
\end{aligned}
$$

The factors on the right-hand side of this identity being irreducible, we see that $\dot{\phi}_{1}$ must be composed of some of these binomial factors and ϕ_{2} of the others. This, however, is impossible, since neither ϕ_{1} nor ϕ_{2} would be symmetric. Hence F is irreducible.

Now, since $F=0$ is a necessary and sufficient condition tor $f(x)$ and $\phi(x)$ to have a common factor, and $R=0$ is the same, any set of values of the a 's and b 's which make $F=0$ will also make $R=0$. Hence by the theorem for $n+m$ variables analogous to Theorem $7, \S 76, F$ is a factor of R. Also, since F is a symmetric polynomial in the α 's and β 's of degree m in each of the α 's and n in each of the β 's, by Theorem $2, \S 85$, it must be of degree m in the a^{\prime} 's and n in the b^{\prime} s. But R is of degree not greater than m in the a^{\prime} s and n in the b 's, as is at once obvious from a glance at the determinant in $\S 68$. Hence F, being a factor of R, and of degree not lower than R, can differ from it only by a constant factor. Thus our theorem is proved.

Let us turn now to the question: Under what conditions does the polynomial $f(x)$ have a multiple linear factor? Using the same notation as above, we see that the vanishing of the product

$$
\left.\begin{array}{c}
\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right) \cdots\left(\alpha_{1}-\alpha_{n}\right) \\
\left(\alpha_{2}-\alpha_{3}\right) \cdots\left(\alpha_{2}-\alpha_{n}\right) \\
\cdot\left(\alpha_{n-1}-\alpha_{n}\right)
\end{array}\right\} \equiv P\left(\alpha_{1}, \cdots \alpha_{n}\right)
$$

is a necessary and sufficient condition for this. P is not symmetric in the α 's, since an interchange of two subscripts changes P into $-P$. If, however, we consider P^{2} in place of P, we have a symmetric polynominal, which can therefore be expressed as a polynomial in the a 's,

$$
\left[P\left(\alpha_{1}, \cdots \alpha_{n}\right)\right]^{2} \equiv F\left(a_{1}, \cdots a_{n}\right) .
$$

Moreover, $F=0$ is also a necessary and sufficient condition that $f(x)$ have a multiple linear factor.

On the other hand, it is easily seen that $f(x)$ has a multiple linear factor when and only when $f(x)$ and $f^{\prime}(x)$ have a common linear factor. A necessary and sufficient condition for $f(x)$ to have a multiple linear factor is therefore the vanishing of the resultant of $f^{\prime \prime}(-)$ and $f^{\prime}(x)$. This resultant we will call the discriminant Δ of $f(x)$. It is obviously a polynomial in the coefficients of f.

Theorem 2. The polynomials F and Δ differ only by a constant factor, and are irreducible.

The proof of this theorem is similar to the proof of Theorem 1, and is left to the reader.

EXERCISES

1. Compute by the use of symmetric functions the product (1) for the two polynomials

$$
\begin{aligned}
& x^{2}+a_{1} x+a_{2} \\
& x^{2}+b_{1} x+b_{2}
\end{aligned}
$$

and compare the result with the resultant obtained in determinant form.
2. Verify Theorem 2 by comparing the result of Exercise $2, \S 85$, with the discriminant in determinant form of the polynomial

$$
x^{3}+a_{1} x^{2}+a_{2} x+a_{8}
$$

BIBLIOTECA UNIVERSITARIA
 "ALFONSO REYES"

