CHAPTER XVII

GENERAL THEOREMS ON INTEGRAL RATIONAL
INVARIANTS

77. The Invariance of the Factors of Invariants. Let us com
sider the general m-ary form of the kth degree which we will rep-
resent by f(zy « 2,3 @y, ag -+-), the 2’s being the variables and the
a’s the coefficients. By suitably changing the a's, this symbol may
be used to represent any such form. Hence, if we subject such a
form to a linear transformation, the new form, being n-ary and of
the same degree as the old, may be represented by the same fune
tional letter : f (2}, - o, ; al, a}, ). This new form will evidently
be homogeneous and linear in the a’s; that is, each of the a"sisa
homogeneous linear polynomial in the a’s. It is also clear that each
of the a”s is & homogeneous polynomial of the %th degree in the
noefficients of the transformation.

It follows from the very definition of invariants that if we have
a number of integral rational relative invariants of a form or system
of forms, their product will also be an integral rational relative ine
variant. It is the converse of this that we wish to prove in this
section. We begin by stating this converse in the simple case of a
ringle form.

TaroreM 1. If I(ay, ay ---) 18 an integral rational tnvariant of
the n-ary form f(z
1

t By 3 Oy Qgy "‘)a
and 18 reducible, then all its factors are invariaats.

It will evidently be sufficient to prove that the irreducible factors
of I areinvariants. Let f}, f;, -+ f; be the irreducible factors of L.
Subjecting f to the linear transformation

— !
&y = oy + o+ Gy

@

T, = 6',,1’.'7'1 = cﬂﬂx:l"
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whose determinant we call ¢, and denoting the coefficients of the
transformed form by aj, aj, ---, we have

(1) I(a;,’ a;! ) = CAI(‘IP gy "')3

an identity which may also be written
S0 @ ) o J( @ @y ) = S0y Ay ++0) Sy gy ).

We have here a polynomial in the ¢’s and a’s which, on the
gecond side of the identity, is resolved into its irreducible factors,
since by Theorem 1, §61, the determinant ¢ is irreducible. Hence
gach factor on the first side is equal to the product of some of the
factors on the second. That is

(2) f,-(a,i, af’gs )= i ay, a,, )
where the ¢'s are polynomials.
Now let

oy =ty==ly=1,

and let all the other ¢’s be zero. Our transformation becomes the
identical transformation, the determinant ¢ = 1, and each a' is equal
to the corresponding a. The identities (2) therefore reduce to

f;(a]s oy )E (ﬁ,(al, Ay ) (z =12 Z),

Substituting this value of ¢, in (2), we see that f; is an invariant,
and our theorem is proved.
The general theorem, now, is the following :

THEOREM 2. If I (ag, g v+ by bgy oo
wwariant of the system of forms

;-++) 18 an integral rational

-fl(xl‘ e T3 Ay Ay, ...)

Sy o 25 by by o)

and 8 reducible, then all its factors are invariants.

The proof of this theorem is practically identical with that of
Theorem 1.
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EXERCISE

IE I(ay, asy -5 by by e ooes Y1y o0 Yt 21y 0o 2,5 ++) i3 am integral rational co.
variant of the system of forms
fl(-rh s Xy y Q1 G2, "')r
fz(ﬂ«"h ree gy blv bﬂ; e

and the system of points (y1, - ya), (21, *=2,), -, and is reducible, then all its
factors are covariants (or invariants).

78. A More General Method of Approach to the Subject of Rela
tive Invariants. We have called a polynomial I in the coefficients
of an n-ary form f a relative invariant of this form if it has the
property of being merely multiplied by a power of the determinant
‘of the transformation when f is subjected to a linear transformation,
It is natural to inquire what class of functions I we should obtain if
we make the less specific demand that I be multiplied by a poly-
nomial in the coefficients of the transformation. We should expect
to get in this way a class of functions more general than the invari-
ants we have so far considered. As a matter of fact, we get precisely
the same class of functions, as is shown by the following theorem:

TaroreM. Let I be a polynomial not identically zero in the eo-
efficients (ay, ay, ) of an n-ary form f, and let (a},al, ) be the co-
efficients of the form obtained by subjecting f to the linear tramsformation

} )
Ty = ey + -+ e

Ty = Coy) + -+ + €l

I L@, a3y ) =(erys - an) L(ty, g, ),
where r is a polynomial in the ¢’s, and this is an iaentity in the @’s and
¢'s, then v is a power of the determinant of the transformation.

We will first show that yr+0 when ¢= 0. If possible let dy;, -+ duy
be a particular set of values of the ¢,’s such that

'z"‘(dm d,m) =0,

while
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Then the transformation

r i '
2= dygy + - + dpaty

! /
&= dy{+ o« + d el

has an inverse

.’E; —_— 811311 + =Ll "l"' Binfﬂm

sc; = 5,,:111.-% + Sﬂ;xﬂ.
Let us‘ consider a special set of a’s such that I(ay, @y -)#0. Then
I(ay, @y, ) = Y(dyyy -+ dun) (g, gy ) = 0.
Now apply the inverse transformation, and we have
I(ay G - ) = Y(Oyys -+ Oun) (), @)y ) = 0,

which is contrary to our hypothesis.
Having thus proved that 4 can vanish only when ¢=0, let us
break up 4 into its irreducible factors,

Wers+ Cun) = Yol C1pr ++ Can) Yol O35+ Cun) = Ya(C115*+* Can)-

Since y» vanishes whenever v, =0, 4, can vanish only when ¢=0.
Hence by the theorem for n variables which corresponds to Theorem T,
§ 76, y, must be a factor of e. But e is irreducible. Hence ; can
differ from ¢ only by a constant factor, and we may write

Y= Ke

It remains then merely to prove that the constant K has the value 1
For this purpose consider the identity

Tlat a;, )= Ke'\I(aP y ),

and give to the ¢;’s the values which they have in the identical
transformation. Then ¢=1, and the /s are equal to the correspond-
mg g’s. The last written identity therefore becomes

Ty ay )= KI(ay, a3 );
from which we infer that K= 1.
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EXERCISES

X. Provethatif a polynomial / in the coefficients a1, 4z, +-+ of an n-ary form and
the cobrdinates (- y,) of a point has the property of being merely multiplied
by a certain rational function y of the coefficients of the transformation when the
form and the point are subjected to a linear transformation, then y is a positive or
negative power of the determinant of the transformation, and I is a covariant.

2. Generalize the theorem of this section to the case of invariants of a system
of forms.

3. Generalize the theorem of Exercise 1 to the case of a system of forms and
a system of points.

4. Prove that every rational invariant of a form or system of forms is the
ratio of two integral rational invariants.

5. Generalize the theorem of Exercise 4 to the case of covariants.

79. The Isobaric Character of Invariants and Covariants. In
many investigations, and in particular in the study of invariants and
covariants, it is desirable to attach a definite weight to each of the
variables with which we have to deal. To a product of two or more
such variables we then attach a weight equal to the sum of the
weights of the factors, and this weight is supposed to remain
unchanged if the product is multiplied by a constant coefficient.
Thusif 2,,2,, 2, are regarded as having weights w;, w,, w, respectively,
the term 55,2, 2

would have the weight  w; + w, + 2wy,

If, then, having thus attached a definite weight to each of the varis
ables, we consider a polynomial, each term of this polynomial will be
of a definite weight, and by the weight of a polynomial we understand
the greatest weight of any of its terms whose coefficient 18 not zero. If
moreover all the terms of a polynomial are of the same weight, the
polynomial is said to be isobaric.

It may be noticed that, according to this definition, a polynomial
which vanishes identically is the only one which has no weight, while
a polynomial which reduces to a constant different from zero is of
weight zero. Moreover if two polynomials are of weights w, and wy,
their product is of weight w, + w,.*

* The conception of degree of a polynomial is merely the special case of the cons
ception of weight in which all the variables are supposed to have weight 1. The cons
eeption of being isobatic then reduces to the conception of homogeneity.
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We will apply this conception of weight first to the case in which
the variables of which we have been speaking are the coefficients
dyy g, - of the m-ary form

f(xp O A R X
We shall find it desirable to admit  different determinations of the
weights of these a’s; one determination corresponding to each of the
variables z; -+ z,.
DEFINITION 1. If a, is the coefficient of the term
axhiahe - 2hn

in an n-ary form, we assign to a; the weights p;, py--- p, respectively
with regard to the variables z,, z,, - 2,

In the case of a binary form,
Qo+ a7 My + o a1,
the subscripts of the coefficients indicate their weights with regard
10 z,, while their weights with regard to »; are equal to the differences

betiveen the degree of the form and these subseripts.
As a secend example, we mention the quadratic form

n
Ela,-j T

Here the weight of any coefficient with regard to one of the vari-
ables, say z;, is equal to the number of times j occurs as a subscript
to this coefficient.*

In connection with this subject of weight, the special linear
transformation

1) (i)

is useful. If g, is a coefficient which is of weight A with regard to
@;, the term in which this coefficient occurs contains a;, and therefore

ol =k*a,

# For forms of higher degree, a similar notation for the coefficients by means of
multiple subscripts might be used. The weight of each coefficient could then be af
once read off from the subscripts.
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That is

TaroreM 1. The weight with regard to z; of a coefficient of an
n-ary form is the exponent of the power of k by which this coefficient is
multiplied after the special transformation (1).

From this it follows at once that an isobaric polynomial of
weight A with regard to z; in the coefficients (a,, a,, ~+-) of an n-ary

form is simply multiplied by %* if the form is subjected to the linear
transformation (1).

Moreover, the converse of this is also true. For if @}y By -+ AT
the coefficients of the n-ary form after the transformation (1), and if
$(ay, a3, ---)is a polynomial which has the property that

$lay, ag, ) = B $lay, ay ---),

this being an identity in the ’s and also in , we can infer, as fol-
lows, that ¢ is isobaric of weight . Let us group the terms of ¢
together according to their weights, thus writing ¢ in the form

Py, g, )= ¢y Uy ) + bo(@ps gy o) + o

where ¢y, b, ---are isobaric of weights A, Ay, ---. We have then

$(ay, “év "')Eka"f’l(av By +-) + Ky (ay, g, ) e
But on the other hand
$(ay, @ ) =BGy, ay, ) =y (ay, ay, )+ kP, (ay, ay, oY s

Comparing the last members of these two identities, we see that
A=)h=h=
as was to be proved. We have thus established the theorem:
THEOREM 2. A mecessary and sufficient condition that a poly-
nomial ¢ in the coefficients of an n-ary form be simply multiplied by B

when the form is subjected to transformations of the form (1) ¢s that ¢
be isobaric of weight N\ with regard to .

By means of this theorem we can show that the use of the word
weight intreduced in §381 is in accord with the definition given in
the present section. For an integral rational invariant of an n-ary
form which, according to the definition of § 81, is of weight A will, if
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the form is subjected to the transformation (1), be merely multiplied
by % and must therefore, according to Theorem 2, be isobaric of
weight A with regard to ;. That is:

TaeoreM 8. If I is an integral rational invarient of a form f
which according to the definition of § 81 is of weight A, it will also be of
weight N with regard to each of the variables x; of f according to the
definitions of this section, and it will be isobaric with regard to each of
these variables. :

As an illustration of this theorem we may mention the discrimi-

nant Siaa
Aytty — O3

of the binary quadratic form

9 2
a7} + 2a, 27, + 373

which is isobaric of weight 2 both with regard to 2, and with regard
to z,. :

The reader should consider in the same way the discriminant of
the general quadratic form.

All of the considerations of the present section may be extended
immediately to the case in which we have to deal, not with a single
form, but with a system of forms. We state here merely the
theorem which corresponds to Theorem 3.

TaeoreM 4. If I is an integral rational invariant of o system of
Jorms which according to the definition of §81 is of weight ), it will also
be of weight N with regard to each of the variables z; of the system, and
it will be isobaric with regard to each of these variables.

The reader may consider as an illustration of this theorem the

‘resultant of a system of linear forms, and also the invariants obtained

in Chapters XII and XIII.

We saw in Theorem 5, § 31, that the weight of an integral rational
invariant cannot be negative. This fact now becomes still more
evident, since the weight of no coefficient is negative. Moreover,
we can now add the following further fact:

TuEOREM 5.  An integral rational invariant of a form or system
of forms cannot be of weight zero.

For consider any term of the invariant whose coefficient is not
zerd. This term involves the product of a number of coefficients of
the system of forms. Since none of these coefficients can be of nega-

e
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tive weight, the weight of the term will be at least as great as the
weight of any one of them. But any one of them is at least of
weight 1 with regard to some one of the variables. Hence the in-
variant is at least of weight 1 with regard to some one of the
variables, and hence with regard to any of the variables.

In order, finally, to be able to extend the considerations of this
section to the case of covariants, we must lay down the following
additional definition:

DErINITION 2. If the sets of variables (5, -+ g,), (2, -~ 2, ) ooe
are cogredient with the variables (z,, - z,) of a system of n-ary forms,
we will assign to y;, 2, --- the weight — 1 with regard to x,, to all the
other y's, 2's, ete. the weight 0.

It will be noticed that here too, when we perform the transforms
ation (1), each of the variables is multiplied by a power of & whose
exponent is the weight of the variable. It is therefore easy* to
extend the considerations of this section to this case, and we thus
get the theorem : '

TarOREM 6. If I is an integral rational covariont of a system
of forms and a system of points which is of weight according to the
definition of §31, it will also be of weight X with regard to each of the
variables of the system, and it will be isobaric with regard to each of
these variables.

As an example of this theorem we note that the polar
412y + @ (Y123 + Ya21) + 2352,

of a binary quadratic form is isobaric of weight zero. The reader

may satisfy himself that the same is true of the polar of the general
quadratic form.

80. Geometric Properties and the Principle of Homogeneity It
is a familiar fact that many geometric properties of plane curves or
surfaces are expressed by the vanishing of an integral rational fune-
tion of the coefficients of their equations. Take, for instance, the
surface

(1) S(@ 9 25 ay, ay, 1) =0,

* Slight additional care must be taken here on account of the possible presence of
terms of negative weight.

INTEGRAL RATIONAL INVARIANTS 221

where f is a polynomial of the %th degree in the non-homogeneous
gobrdinates =, y, 2, and a,, a,, -~ are the coefficients of this polyno-
mial ; and consider the relation

(2) d(ay ay ) =0,

wherg ¢ is a polynomial, which we will assume to be of at least
the first degree, in the coefficients ay, ay, . By Theorem 3, § fi,
there are an infinite number of polynomials of the kth degree in
(z, 9, 2) whose coefficients satisfy the relation (2) and ?,lso an infinite
number whose coefficients do not satisfy this relation. In other
words, all polynomials of the kth degree in (z, y, 2) may be divided
into two classes, 4 and B, of which the first is characterized by con-
dition (2) being fulfilled, while the second is characterized by .this
gondition not being fulfilled. 'We may therefore say that (2)is a
necessary and sufficient condition that f have a certain property,
namely, the property of belonging in class A.

The simplest examples, however, show that this property of f
need not correspond to a geometric property of the surface (1).
To illustrate this, let k=1, so that we have

S vt ay+azz+ay

end consider first the polynomial in the a’s :
d=a,

The vanishing of ¢ gives a necessary and sufficient condition that f
belong to the class of homogeneous polynomials of the first degre:e
in (2, y, ), and thus expresses a property of the polynomial. This
same condition, @,=0, also expresses a property of the plane f=0,
namely, the property that it pass through the origin.

Suppose, however, that instead of the function ¢ we take the
polynomial b=, =1,

The vanishing of this polynomial also gives a necessary and suffi
cient condition'that the polynomial f have a certain property, namely,
that its constant term have the value 1. It does nof serve to dis
tinguish planes into two classes, since we may write the equation of
any plane (except those through the origin) either with the constant
term 1 or with the constant term different from 1 by merely multi
plying the equation through by a constant.
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From the foregoing it will be seen that saying that a surface hag
a certain property amounts to the same thing as saying that it
belongs to a certain class of surfaces.*

THEOREM 1. The equation (2) expresses a mecessary and sufficient
condition for a geometric property of the surface (1) when, and only.
when, the polynomial ¢ is homogeneous.

For if ¢ is non-homogeneous, let us wriie it in the form
¢=¢,+bpyt -+ b+ ¢y

where ¢, is a homogeneous polynomial of the nth degree and each
of the other ¢’s which is not identically zero is a homogeneous poly-
nomial of the degree indicated by its subscript. Let af, al, .- bea
set of values of the a’s for which ¢, and at least one of the other ¢i's
is not zero, and consider the surface

(3) Sy, 2; cal, eal), -.-)=0.

The condition (2) for this surface is

cn‘f"n(a;’ aé’ i) cﬂ_l‘#ﬂ—l(a;e aés v ) e o cg{)l(a;, a;, )

+ ol ap ) =0.

This is an equation of the nth degree in ¢, and since at least one
of the coefficients after the first is different from zero, it will have
at least one root ¢;#0. On the other hand, we can find a value
¢3# 0 which is not a root of this equation. Hence the surface (3)
satisfies condition (2) if we let ¢ =¢, and does not satisfy it if e= Gy
But a change in the value of ¢ merely multiplies the equation (8)
by a constant and does not change the surface represented by it.
Thus we see that one and the same surface can be regarded both as
satisfying and as not satisfying condition (2). In other words, if ¢
is non-homogeneous, (2) does not express a property of the surface (1).

Assume now that ¢ is homogeneous of the mth degree, and
consider the class A of polynomials f whose coefficierits satisfy equa-
tion (2) and the class B whose coefficients do not satisfy this equa-
tion. Our theorem will be proved if we can show that we have
hereby divided the surfaces (1) into two classes, that is, that if

* This brief explanation must not be regarded as an attempt to define the concep-
4don property, for no specific class can be defined without the use of some property-
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ly @, -+ are the coefficients of a polynomial of class A and af, af, .-

the coefficients of a polynomial of class B, then the two surfaces
f(x; ¥ 2; aia aés )=Ov
S, 9, 2; af, af, --)=0,
cannot be the same. If they were the same, the coefficients af, @y
would be proportional to af, a}, --- (cf. Theorem 7, Corollary, § 76),
i = ed, a}=cal, .
$ay, ay )= "p(a}, ay, --).
But this is impossible since by hypothesis
P(ay, a, -)=0, ¢(a], af, ) 0.
Thus our theorem is proved.

This theorem admits of generalization in various directions.
duppose first that instead of a single surface (1) we have a system
‘of algebraic surfaces, and that ¢ is a polynomial in the coefficients of
all these surfaces. Then precisely the reasoning just used shows that
the equation ¢=10 gives a necessary and sufficient condition for a
geometric property of this system of surfaces when and only when ¢
18 homogeneous in the coefficients of each surface taken separately.

On the other hand, we may use homogeneous cobrdinates in
writing the equations of the surfaces, and the results so far stated
will obviously hold without change:

and therefore

TrEOREM 2. Let

fl(ms Y 2 t; qy Aoy )1 fg(ma Ys 2 b5 bp bga ), nes
b a system of homogeneous polynomials in (2, y, 2, t) whose coefficients
dre ay, dg, -5 by, by, -5 eles; and let

G (ay, by o5 by by, oo e00)
b a polynomial in the a’s, b's, ete. Then the equation ¢ =0 expresses

| @necessary and sufficient condition that the system of surfaces

f1= 1 f2= 0, .-
have a geometric property when, and only when, the polynomial ¢ s
homogeneous in the a's alone, also in the b's alone, ete.
In conclusion we note that all the results of this section can be

extended at once to algebraic curves in the plane ; or, indeed, to the
tase of space of any number of dimensions.
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EXERCISE

Tf, in Theorem 2, besides the surfaces fi =0, fa =0, - we also have a system

of points (21 1, 215 1)y (%25 Yo 22y tz); +*

and if ¢ is a polynomial not merely of the a's, b's, etc., but also of the codrdinates
of these points, prove that ¢ =0 expresses a necessary and sufficient condition
that this system of sarfaces and points have a geometric property when and
only when ¢ is homogeneous in the a's alone, in the bs alone, etc., aund also in
(1, 31, 21, 1) alone, in (23, ¥z, 22, ta) alone, ete.

81. Homogeneous Invariants. From the developments of the last
section it is clear that the only integral rational invariants which
will be of importance in geometrical applications are those which are
homogeneous in the coefficients of each of the ground-forms taken
separately.* Such invariants we will speak of as homogeneous in-
variants. 1t will be found that all the invariants which we have
met so far are of this kind. ;

An important relation between the weight and the various de-
grees connected with a homogeneous invariant is given by the follow:
ing theorem :

TaEOREM 1. If we have a system of n-ary forms,
fl(xl’ s Ty Ay Aoy )‘
(l) Jol@y o 245 by, by, ),

.

respectively, and if
I(al’ Ggy -> 3 bl’ 52’ ere s ...)

* This statement must not be taken too literally. It is true if in the geometrical
application in question we consider the variables as homogeneous codrdinates and if
we have to deal with the loci obtained by equating the ground-forms to zero. While
this is the ordinary way in which we interpret invariants geometrically, other inters
pretations are possible. For instance, instead of interpreting the variables (2, ¥) 8
homogeneous coérdinates on a line and equating the binary quadratic forms

fisaw? + 2 agry + asy’
fo=b12? + 2 baxy + by,
to zero, thus getting two pairs of points on a line, we may interpret (z, y) as mom:
homogeneous codrdinates in the plane, and consider the two conics fi =1, fi=1. With
this interpretation, the vanishing of the invariant
a3 — a + bibs — b,

of degrees my, my, -+

which is not homogeneous in the @’s alone or in the b's alone, has a geometric meaning
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18 @ homogeneous tnvariant of this system, of weight N, and of degree o
inthe a’s, B in the b’s, ete., then

(2) mla-f-mzﬁ-}- ves = NN,

Subjecting the forms (1) to the linear transformation

!
4 Cintny

o J
T Tt

L)

- . .

Ty =Gty + - + Cuthy

whose determinant we will denote by ¢, we get

fip s @y, @y ),
Sa(@yp - w5 Uy By ),

and, since by hypothesis I is an invariant of weight 2,
(8 T(ap, ay -5 by by -oo5 o)=L (ay ay oo By by voes oor)e

Every @ is a homogeneous polynomial in the ¢;’s of degree my, every
B of degree m,, ete. ; and since I is itself homogeneous of degree
in the a’s, 8 in the s, ete., we see that the left-hand side of (4) is a
homogeneous polynomial of degree mye+ m,8+ ---in the e¢'s.
Equating this to the degree of the right-hand side of (4) in the ¢;'s,
which is evidently nA, our theorem is proved.

An additional reason for the importance of these homogeneous
invariants is that the non-homogeneous integral rational invariants
¢an be built up from them, as is stated in the following theorem:

TarEOREM 2. If an integral rational invariant I of the system (1)
be written in the form
L O SN IR

where each of the I's is o polynomial in the a's, b's, ete., which is
homogeneous in the a's alone, and also in the b's alone, ete., and such
that the sum of mo two I's has this property, then each of the functions

Ldok

| 18 a homogeneous invariant of the system (1).

| ’I“
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This theorem follows immediately from the definition of an
For from the identity,

By By oer 5 ) o o Dy @y 5 By Bl oee s oet)
(T I B |

RS +Ik(a1, Qgs *** 5 bl, bza L "')]s

invariant.

My
I(d), ag -+ 3

we infer at once the identities,

'I;l(a”l’ a; e} bi‘ er" sweld ...)Egk_ﬁ(al, Ay ++ 3 619 62, can

I;s(a"v a’z’ v g E);’ 6’2’ ver g ‘")EGAIk(a’],! Aoy 7 3 bl" bz_’ cer D oase ),

In the case of a single n-ary form, but in that case only, we have
the theorem :

THEOREM 8. An integral rational invariant of a single n-ary form
i8 always homogeneous.

Let J(zgs

Bt Gy gy ssn)

be the ground-form, and let I be the invariant. By Theorem 2 we

may write I=L+ L+ +1

where I, - I, are homogeneous invariants. Let the degrees of these
homogeneous invariants in the &’s be e, -+ @, respectively. Their
weights are all the same as the weight of I, which we will call h
If, then, we call the degree of f, m, we have, by Theorem 1,

Moty = NNy Moty = NN,y == Mty = NN\,

from which, since m > 0, we infer
al=a2;—_ see = ﬂk.

That is, I, -+- I, are of the same degree, and I is homogeneous.

THEOREM 4. If we have a system of n-ary forms fi, fo -+ and

a polynomial ¢ in their coefficients, the equation ¢ =0 gives @ mecessary

and sufficient condition for a projective property of the system of loci, i
space of m— 1 dzmenswns,

when, and only when, ¢ s a komogeneous invariant of the system of

Jorms f.

. which we will denote by A’s, B’s, .-
‘vanish ; and consider a neighborhood IV of the point
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If ¢ is a homogeneous invariant, its vanishing gives a necessary

- and sufficient condition for a geometric property (cf. § 80), and this

property must be a projective property since when we subject the
Joci to a non-singular collineation, ¢ is merely multip}ied by a non-
vanishing constant.

On the other hand let ¢ =0 be a necessary and sufﬁcwnt condi-
tion for a projective property. In order to prove that ¢ is an
invariant (it must be homogeneous by § 80) let a;, a,, - be the
coefficients of f;5 b, by, -+ the coefficients of f, ete.; and suppose
that the linear transformation,

oy = oy + o +
() - il dee- AT e
T, = cn]‘_xi T st +cﬂﬂx;n
; J into f} with coeffi-
The polynomial ¢ formed for the transformed
¢((I;, a‘;s =0 bi! b;'y A "')s
and may, since the a'’s, §'’s, +- are polynomials in the o’s, &'s, --- and
the ¢’s, be itself regarded as a polynomial in the a's, ’s, --- and the

o

¢s. Looking at it from this point of view, let us resolve it into its
irreducible factors,

(6)  ¢(ay, ag, -5 by, Bl -

carries over f into f] with coefficients aj, aj, -+

z ! I .
cients b}, bf, -+ ; ete.
forms is

oo )= (@ gy o5 by gy e o Oy o Cn)
ﬁbk(ap Oy ++° bp bgs fae adas o s cvm)'

It is clear that at least one of the factors on the right must con-
fain the ¢’s. Let ¢, be such a factor, and let us arrange it as a poly-
nomial in the ¢’s whose coefficients are polynomials in the a's, b’s,

ete. Let Wy, gy ov 3 byy By oee 5 -02)

be one of these coefficients which is not identically zero and which is
the coefficient of a term in which at least one of the ¢’s has an expo-
nent greater than zero. We can, now, give to the a’s, &', --- values
such that neither ¢ nor
(A ok, 0 By By oih )
throughout which

(T) Py, ay -5
(8) V(ap ay -3

bp 621 Ty '_")-.+-05
b b siiid 20,
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Let us now restrict the a's, &’s, -+ to the neighborhood N and agk
ourselves under what circumstances we can have ¢;=0. If this
equation is fulfilled, we see from (6) that ¢ vanishes for the trans-
formed loci, while, by (7), it does not vanish for the original loei,
Since, by hypothesis, the vanishing of ¢ gives a necessary and
sufficient condition for a projective property, a transformation (5)
which causes ¢ to vanish when it did not vanish before must be a
singular transformation. That is, if the a’s, bs, .- are in the neigh-
borhood N, whenever ¢, vanishes the determinant ¢ of (5) vanishes,
Moreover, ¢, does vanish for values of the a’s, &’s, «-+ in NN, for if we
assign to the a's, b's, -+ any such values, ¢, becomes a polynomial in
the ¢;'s, which, by (8), is of at least the first degree, and ther?fore
vanishes for suitably chosen values of the ¢;'s. We can therefore
apply the theorem for more than three variables analogous to Theorem
8, § 76, and infer that ¢, is a factor of the determinant ¢ ; and conse-
quently, since this determinant is irreducible (Theorem 1, § 61), that
¢, is merely a constant multiple of c. :

The reasoning we have just applied to ¢, applies equally to any
of the factors on the right of (6) which are of at least the first degree
in the ¢;’s. Accordingly (6) reduces to the form

(9) ‘f)(a;, a;, wes 3 6;, 612 ok § "')E&X(ap Qgy "+ 3 bp bgs F g ),

where y no longer involves the ¢g's. To determine this polynomial
x> let us assign to the ¢;’s the values 0, 1 which reduce (5) to the
identical transformation. Then the a’s, ¥'’s, --- reduce to the a%
b's .-, while ¢=1; so that from (9) we see that

¢(ar Qgy ++ 3 bp bg wsw ...)Ex(g,p g+ 3 bl" 52, v .)

Substituting this value of y in (9), we see that ¢ is really an ins
variant. _

In order to avoid all misunderstanding, we state here explicitly
that if we have two or more polynomials, ¢;, ¢y, -+ in the coefficients
of the forms f;, the equations ¢, =d,= --- =0 may be a necessary and
sufficient condition for a projective property of the loci f;= 0, evel
though ¢, ¢,, -+~ are not invariants. For instance, a necessarv and
gufficient condition that the two lines

&7y + ay7y + ag23 =0,
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goincide is the vanishing of the three two-rowed determinants of
the matrix T .[
” by by byl

none of which is an invariant. Or, again, a necessary and sufficient
gondition that a quadric surface break up into two planes, distinct
or coincident, is the vanishing of all the three-rowed determinants
of its matrix, and these are not invariants. In this case we can also
gxpress the condition in question by the identical vanishing of a
gertain contravariant, namely, the adjoint of the quadratic form;
and this—a projective relation expressed by the identical vanish-
g of a covariant or contravariant —is typical of what we shall

s usually have when a single equation ¢=0 is not sufficient to express

the condition. There are, however, cases where the condition is given
by the vanishing of two or more invariants; cf. Exercise 6, §90.

EXERCISES

1. Prove that if in Theorem 1 our system consists not merely of the ground-
forms (1) but also of certain points

(1= Yn)s (R1s++2n)y s

and we have not an inyariant 7 but a covariant of weight A, and of degreea in the
a5, B in the b8, etc., 5 in the y's, { in the 2’s, etc., then

mia + mgf + co=nd + g+ L 4 oo

2. Extend Theorem 2 to the case of covariants. Does Theorem 3 admit of
such extension ? :

3. Extend Theorem 4 to the case of covariants.

4. Show that an integral rational invariant of a single binary form of odd
degree must be of even degree.

5. Show that the weight of an integral rational invariant of a single binary
form can never be smaller than the degree of the form.

6. Express the condition that (a) two lines, and (%) two planes coincide, in
the form of the identical vanishing of a covariant or contravariant.

7. Prove that a polynomial in the coefficients of asystem of n-ary forms which
18 homogeneous in the coefficients of each form taken by themselves, and which is

| unchanged when the forms are subjected to any linear transformation of determis

fant 4 1, is an invariant of the system of forms.

8. Generalize Exercise 7 to the case of covariants.
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82. Resultants and Discriminants of Binary Forms. If we inter
pret (z, 7,) as homogeneous codrdinates in one dimension, the equa
tions obtained by equating the two binary forms

S@pty) = 2} + 0,277 2y + - + 4,25,
b2y ) = bg2] + b2 Moy + - + b2y

to zero represent sets of points on a line. The points given by the
equation f= 0 are the points at which the linear factors of f vanish,
and the points corresponding to ¢ =0 are the points at which the
linear factors of ¢ vanish. Since two binary linear forms obviously
vanish at the same point when, and only when, these linear forms are
proportional, it follows that the loci of the two equations f=0, ¢ =0
have a point in common when, and only when, f and ¢ have a commor »
factor other than a constant. Hence, by § 72, a necessary and suff-
cient condition that the two loci =0, ¢ =0 have a point in common 18
. that the resultant R of the binary forms f, ¢ vanish.

The property of these two loci having a point in common is,
however, a projective property. Thus, by Theorem 4, § 81,

TurorEM 1. The resultant of two binary forms is a homogeneous
invariant of this pair of forms.

From the determinant form of R given in § 68 it is clear that &
is of degree m in the a's and of degree n in the b’s. Hence by
formula (2), § 81,

A = mn.

TreoreM 2. The weight of the resultant of two binary forms of
" degrees m and n 18 mn.

The following geometrical problem will lead us to an important
invariant of a single binary form.

Let us resolve the form f, which we assume not to be identically
zero, into its linear factors (cf. formula (4), § 65),

Sy, 29) = (ellzy — ey (e — #yzy) - (a)z;— o y)-

The equation f =0 represents » distinct points provided no two of
these linear factors are proportional to each other. If, however, two
of these factors are proportional, we say that f has a multiple linear
factor, and in this case two or more of the » points represented by
the equation f=0 coincide. Let us inquire under what conditions
this will oceur.
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" Form the partial derivatives :

of
(;;1 = o (g 2y — 0y -+ (o2, — 042)

+ el (o 0y — oy ) (@l ) — ey o (olzy— o2,)
+ oty (o7 — ey 2p) =+~ (o2 — :zu1$2)1
oz, = — o (g7 —aymy) - (w2 — a1y
— (o) — iy ) (a7 — 2, - (02— e 2y)

— oo — ol (o2 —ajzy) - (o yzy—al_jz5).

From these formul® we see that any multiple linear factor of
fis a factor of both of these partial derivatives.

Conversely, if these partial derivatives have a common linear
factor, it must be a factor of f on account of the formula,

arf ar 4§
2 —= — =nf,
16211+x2622 .

a formula which follows immediately from the expressions,

6_;_17_ =naypy 1+ (n— Dag; 2, + - +a,257Y
1

f
e AT =1 n—9 e -
S agry 1 4 2 a2y 20, + + na 2371

But, by (1), no linear factor of f can be a factor of d//dz, unless

it is a multiple factor of f. Thus we have proved

THEOREM 3. A necessary and sufficient condition that f have a
multiple linear factor is that the resultant of df/dz, and df/dx, vanish.
&

DrrINITION,

The resultant of 8f/dx, and 0f/dz, is called the dis-
eriminant of f.

From (2) we see that the discriminant of f may be written as a
determinant of order 2n — 2 whose elements, so far as they are not
zero, are numerical multiples of the coefficients a,, ay, --- a, of f.
That is, this discriminant is a polynomial in the &'s. Moreover, its
vanishing gives a necessary and sufficient condition that the locus
JS=0 have a projective property (namely, that two points of this
locus coincide). Hence, by Theorem 4, § 81, this discriminant is a

# This is merely Euler’s Theorem for Homogeneous Functions.
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homogeneous invariant, whose degree and weight are readily deter-
mined. Thus we get the theorem :

TuroreM 4. The diseriminant of a binary form of the nth
degree is a homogeneous invariant of this Jorm of degree 2(n — 1) and
of weight n(n — 1).

A slight modification in the definition of the discriminant is often
desirable. Let us write the binary form £, not in the above form
where the coefficients are ay ay,---a,, but, oy the introduction of
binomial coefficients, in the form

Flay ) = s 4 nagi oyt 20 gt 4 ooy

Then we may write
- -2
g+ (o= gzt + B0 g 4
vt Gy 2y
1 (n— Dty + 00— g 4y gl
We may then define the discriminant of f as the resultant of the two
binary forms just written. We thus get for the discriminant a
polynomial in the o’s which differs from the discriminant as above
defined only by a numerical factor, and for which Theorems 3 and 4
obviously still hold. If this last definition be applied to the case of
a binary quadratic form, it will be seen that it leads us precisely to
what we called the discriminant of this quadratic form in the earlier
chapters of this book.

EXERCISES

1. Prove that the resultant of two binary forms of degrees n and m respecs
tively is irreducible. -

[Suceesriox. When b, =0, B is equal to g, times the resultant of two binarf
forms of degrees n and m — 1 respectively. Show that if this last resultant is irredu-
cible, R is also irreducible, and use the method of induction, starting with the case
n=1, m=1.]

2. Prove by the methods of this chapter that the bordered determinants of
Chapter XII are invariants of weight 2.

3. The following account of Bézout’s method of elimination is sometimes
given:
If £ and ¢ are polynomials in z which are both of degree n, the expression

S(=)$(2) —$(2)/(9)
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vanishes, independently of g, for a value of z for which both fand ¢ vanish, and
ip:divisible by z — y, since it is zero for z =y. Hence

F(59) =f(z)¢(yl = ;b(r)f(y)

is a polynomial of degree (n—1) in 2 which vanishes for all values of y when z is
acommon root of £ and ¢. Arranging F' according to the powers of y, we have
the ﬂpress:@ F= oyttt cuihah oo + g1 2

+y(cn + o2+ epa®+ o+ o2

+ 92 (et 2 + €T + e + 6y 017"7)

+ . . . . il . " . 2

+ Yy = (cn—l,u+ Ca-1,17 o Ca-1, 21'2 G Cn-1,n-1 x"-l)°

If this function is to vanish independently of y, the coefficient of each power
of y must be zero. This gives n equations between which we can eliminate the n
quantities, 1 z, %, ..- 2*-1, obtaining the resultant in the form of the determinant,

COD COI sen ca.’\-l

o fn Chnd

R=

Cp—1,0 €a-1,1 " Cn-1, n-1

With the help of the auxiliary function F we have, in this case, reduced the
sesultant to a determinant of the nth order, while that obtained by the method of
Sylvester was of order 2n.

Criticise this treatment and make it rigorous, applying it, in particular, to the
ease of homogeneous variables.

4. If fand ¢ are polynomials in (z, y) of degrees n and m respectively and
are relatively prime, prove that the curves /=0, ¢ =0 cannot have more than mn
points of intersection.

[Suecrstion. Show first that the coordinate axes can be turned in such a way that
10 two points of intersection have the same abscissa, and that the equations of the two
wurves are of ‘degrees n and m respectively, after the transformation, in y alone. Then
eliminate y between the two equations by Sylvester's dyalitic method. ]

5. Prove that every integral rational invariant of the binary cubic is a con-
stant multiple of a power of the discriminant.
) [Sueerstios. Show that if the discriminant is not zero, every binary cubie can
be reduced by a non-gingular linear transformation to the normal form 3 — 2§. Then
83in'§48.)




