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TeEOREM. A necessary and sufficient condition for two binany
forms to have a common factor other than a constant t8 that thep
resultant be zero.

If a, and b, are both different from zero, the non-homogeneous
polynomials # and @ correspond to the forms f and ¢ according te
the definition of § 62. Accordingly, by Theorem 2 of that section
1 necessary and sufficient condition that f and ¢ have a common
factor other than a constant is, in this case, the vanishing of their
resultant.

On the other hand, if ¢y=05,=0, f and ¢ have the common factor

vy, and the resultant of f and ¢ obviously vanishes.

A similar remark applies to the case in which all the a’s or all
the b’s are zero.

There remain then only the following two cases to be considered,

D a0 by=by= e == 0, 5,20 (k<m)

:2) 6(]#0; Ay=0q;= ==+ =ak=0’ a,m:,t:O (k<ﬂ).

In Case (1), F corresponds to f, and, if we write
W2y, 25) = 25" by(2y ),

® corresponds to ¢, Now we know in this case (cf. § T1) that
- R0 is a necessary and sufficient condition that F and @ be rela:
tively prime. Accordingly, by Theorem 2, § 62, it is also a necessary
and sufficient condition that f and ¢, be relatively prime.. But since
7y 18 not a factor of f, the two forms f and ¢ will be relatively prime

when and only when f and ¢, are relatively prime. Thus our theo:

rem is proved in this case.
The proof in Case (2) is precisely similar to that just given.

CHAPTER XVI
FACTORS OF POLYNOMIALS IN TWO OR MORE VARIABLES

73. Factors Involving only One Variable of Polynomials in Two
Variables. We have seen in the last chapter that polynomials in
one variable are always reducible when they are of degree higher
than the first. Polynomials in two, or more, variables are, in gen-
eral, not reducible, as we have already noticed in the special case of
quadratic forms.

Let f(z, y) be any polynomial in two variables, and suppose it
arranged according to powers of 2,

f(.’E, y)Eaﬂ(y)xn+ al(g)x”—l e +t§!ﬂ_1(y)$+ a’u(y)’

| the o being polynomials in y.

TraeorEM 1. A mecessary and sufficient condition that a poly-
nomial in y alone, Y(y), be a factor of f(z, y) is that it be a factor of
all the a's.

The condition is clearly sufficient. To prove that it is necessary,

. le6 us suppose that y(y) is a factor of f(z, y). Then

D) o)+ +a() =W bH)2* + - +5,@)],

Where the &’s are polynomials in y. For any particular value of Y

we deduce from (1), which is then an identity in =, the following

équations :
a)(y) =¥ ()b,
a,(y) =v(y)b,(y),

4 (3) =¥ @)EAT).

. Since these equations hold for every value of #, they are identities,

and y(y) is a factor of all the a’s.
203
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TarorEM 2. If f(2,y) and (=, y) are any two polynomials in »
and y, and ¥(y) is an irreducible polynomial in y alone™ which isq

Sactor of the product f, then  is a factor of f or of ¢.

Let  f(o9)=a(y)e"+ ay)2* "+ -~ +a.(y),
and B y)=b(y)en + ()1 e+ by
then

J@ P)$(2, y) = aghya™ ™ + (@b, + aybye"* "
+ (aydy + ay by + agb )"t~ 2 4 oor + /.

In order to prove that v is a factor either of for of ¢ we must
prove that it is either a factor of all the a’s or of all the &'s. If this
were not the case, we could find a first @ in the sequence ag, a;, <@
of which ¥is not a factor. Call this function @ There would alsg
be a first & in the sequence of 8y, b;, -+ b,, which is not divisible by ¥
Call this function 8. Our theorem will be proved if we can show
that this assumption, that e; and &; are not divisible by ¢~ while all
the functions ay, -« @;_;, by, - bj_, are divisible by 4, leads to &
contradiction. For this purpose let us consider in the product fé
the coefficient of 2~ 9+ ™), which may be written

Aol t oo G b + @b+ Gy by + -+ iyl

provided we agree that the ’s and &’s with subscripts greater than
n and m respectively shall be identically zero.
hypothesis divisible by 4, it follows from Theorem 1 that the last
written expression must be divisible by 4. This being obviously
the case for all the terms which preceed and for all which succeed
the term a;b;, it follows that this term must also be divisible by yu
so that among the linear factors of the function a; must be found
4. But by Theorem 1, § 65, the function a; can be resolved into
its linear factors in essentially only one way, and one way of so e

solving it is to resolve ; and &; into their linear factors. Since Y18

not one of these factors, we are led to a contradiction, and our

theorem is proved.
An important corollary of our theorem is:

CoroLLARY. Let f(z,y) and ¢ (z, y) be polynomials in (z,y), and
let P(y) be a polynomial in y alone. If \r 18 a factor of the product of
o but is relatively prime to ¢, then yr isra factor of f.

* That is, a linear polyno.aial

Since fé is by
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If 4 is irreducible, this corollary is identical with the theorem.
Let us suppose yr resolved into its irreducible factors none of which
are constants, that is, into its factors of the first degree :

W) =vi(y) ¥) - - Yly)-

Now consider the identity which expresses the fact that v is a factor
of fob:
) J(@, 1)@ )= V(9)¥9) - ily)F o, y)-

This shows that ¥r(y) is a factor of f¢ and hence, by Theorem £,
it is a factor either of f or of ¢. Since Y and ¢ are relatively
prime, Yr; cannot be a factor of ¢. It must then be a factor of f:

J(& y)=v()filz, y)-

Substituting this in (2), and cancelling out v, as we have a right to
do since it is not identically zero, we get

(3) Ji@ 9) 8 )= ¥oy) - ¥ y) F(z, ).
From this we infer that r,, being a factor of f;$, must be a factor

of £ ¢
A £ ) =) f 9)

We substitute this in (3) and cancel out ¥, Proceeding in this way

e = S, ) =9i(y)¥a(9) = Vi) Sl 9)= V)l v),

an identity which proves our corollary.

EXERCISE

If f(z, y) and ¢(z, y) are polynomials, then any two sets of polynomials

Pi(y); Qi(=2, 9), By(z, v),
P(), Q(z, y), By, 9),
will be proportional to each other provided,
(a) they satisfy the identities
Pi()f(x ) =Qu(, y)d(2 ) + By(% 3),
Py(9) S (2 )= Q@ 1 d(z, y) + By(2, 9);
5 #
() there is no factor other than a constant common to Py, Qi, and also no
factor other than a constant common to Qs

(¢) R, and R, are both of lower degree in x than ¢.
(Cf. Theorem 2, § 63.)
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74. The Algorithm of the Greatest Common Divisor for Polynp.

mials in Two Variables. We will consider the two polynomials iy

zad g fi )= eyt + o+ - + aly),
8(z, 9) =B,y + by + o+ (),

and assume a,%0, b, 0, n = m >0,

Theorem 1 of the last section in combination with the results of
§ 67 enables us to get all the common factors of fand ¢ whichin.
volve y only; for such factors must be common factors of all thea’s
and all the 0's.

It remains, then, merely to devise a method of obtaining the com:
mon factors of f and ¢ which do not themselves contain factors iny
alone. We will show how this can be done by means of the alge-
rithm of the greatest common divisor.

Dividing f by ¢ (cf. § 68, Theorem 2), we get the identity

Py(y)f(@ )= 9)d(, ¥) + B y),

when R, is either identically zero, or is of lower degree in  than ¢.
If B, #0, divide ¢ by B, getting the identity

P(y)d(2, y)= (= 9)B{(= 9) + By, y),

where R, is either identically zero, or is of lower degree in z than

Ry If R,%0, divide R, by R,. Proceeding in this way, we get the |

following system of identities in which the degrees in z of E;, Ry
continually decrease, so that after a certain number of steps we reach
an R, say R,,,, which is independent of  :

( P)f (@ y)= Oz 9)d(2 ) + By 9),

Py)d(z, )= Oy, y)By(, y)+ By y),
Pyy)R (2, y)= Q@ y) Bz, y) + B2, ),

I.) p—l'(y ).Rpiz(ﬂ;’ 3’). = 'Qp_.l(:r, DB, (2, 9)+ Rz, y)
| Py(9) B2, y) = Q2 9)B(2 §) + Byn(9)-

‘ .
TaEoREM 1. A necessary and sufficient condition that f and ¢ hatd

a common factor which involves x is
R, (y)=0.

| of fand o,
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In order to prove this theorem we first note that, by the first of the
identities (1), any common factor of f and ¢ is a factor of R, hence,
by the second of the identities, it is a factor of Ry, etc. Finally we
see that every common factor of f and ¢ is a factor of all the R's. But
R,, does not contain 2. Hence if fand ¢ have a common factor
which contains z, R,,,(y)=0.

Now suppose conversely that R,.,,(y)=0, and let

(2) Bz, y)= 8 (y)G (=, y),
where G has no factor in y alone.* The last identity (1) then tells
us that P,(y) is a factor of

(=, ¥)8(9) G (=, y),

and since by hypothesis @ has no factor in y alone, P(y) must, by
the Corollary of Theorem 2, § 73, be a factor of @,8, that is

(3) Qo y )S (n)=P p(y)H(xv ¥ )

Substituting first (2) and then (3) in the last identity (1), and cancel-
ling out the factor P,(y) from the resulting identity, as we have a
Tight to do since Py(y)# 0, we get the result

B,_(z, y)= H(z, y)G(z, y).

That is, G is a factor not only of R, but also of B, ;. Accordingly
we may write the next to the last identity (1) in the form

Py (9) B2, y)=J (2, y) & y)-

| By the corollary of Theorem 2, § 73, we see that P _1(%) is a factor
L ofd; 50 that P,_,(y) can be cancelled out of this last written identity,
"1 find we see that G is a factor of R,_,.

Proceeding in this way, we see that G is a factor of all the R's,
and therefore, finally, of fand ¢. Moreover, we see from (2) that
G is of at least the first degree in 2, as otherwise R, would not con-
tain 2, while R,,, was assumed to be the first of the R's which did
not involve 2.

Thus our theorem is proved.

Since, as we saw above, every common factor of £ and ¢ is also a
factor of all the R’s, it follows from (2) that, if 4 isa common factor

G y)3(y) = ¥ (= y) K(=, ).

¥ If B, has no factor in y alone, § reduces to a constant.
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If then 4 contains no factor in y alone, § must, by the Corollary of
Theorem 2, § 73, be a factor of K. Consequently by cancelling out
§ from the last written identity, we see that 4 is a factor of G
That is,

THEOREM 2. If in Euchd's algorithm R, , =0, the greatest come
mon divisor of f and ¢ which contains no factor in y alone is the poly.
nomial ({z,y) obtained by striking from Rz y) all factors in g
alone.

We note that if R, is a constant different from zero, f and ¢
are relatively prime; but that the converse of this is not true as the

simple example
o=z
shows.
Going back to the identities (1), we get from the first of these
identities, by mere transposition, the value of R, in terms of f and
¢ (and P,, Q). Substituting this value in the second identity, we

get a value for R, in terms of f, ¢, and certain P’s and ¢'s. Pro-
ceeding ip this way, we finally get the formula

©) RB,.(y)=F(z, y)f(z: y) + (2, y)¢(2 ¥)
where F and @ are polynomials in (z, y).

f =222+ 3¢,

75. Factors of Polynomials in Two Variables.

TaroreM 1. If f(z, y) and ¢z, y) are any two polynomials in @
and y, and Yz, y) 18 an irreducible polynomial which is a factor of

the product f, then \p is a factor of f or of ¢.

)
If 4 does not contain both  and y, this theorem reduces t0

Theorem 2, § 73. It remains, then, only to consider the case that §

involves both variables. In this case, at least one of the polynomials
£, ¢ must be of at least the first degree in z. Without loss of gener-
ality we may assume this to be f. If 4 is a factor of f, our thseor_em
is true. Suppose ¥ is not a factor of £ then, since 4 is irreducible, f
and 4 are relatively prime, and if we apply the algorithm of the

greatest common divisor to f and y (as we did in the last section 0

£ and &) the first remainder R,,, (y) which does not involve = is nof
identically zero. . The identity«(4) of the last section now becomes

(1) B,.(5) = F(z, )z, 3)+ Yz, y)¥(=, 9)-

‘may be seen as follows.

ressed as the product of three or four factors.
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[f we multiply this by ¢(z, y), the second member becomes a poly-
nomial which has yr as a factor, since, by hypothesis, fé has ¥ as a
factor. We may therefore write

®) Ry (9)8(2: 9)=%(2, y)x(a, 9)-

Now no factor other than a constant of R,,, can be a factor of ¥,
since yr is irreducible. Consequently, by the Corollary of Theorem
2,§73, B, is a factor of y(2, y). Cancelling out R,,, from (2),
as we have a right to do since it does not vanish identically, we get
an identity of the form

¢z 1) =9(2 ¥ xi= 1)

that is, 4 is a factor of ¢, and our theorem is proved.
By applying this theorem a number of times, we get the

CorOLLARY. If the product of any mumber of polynomials in two
e, Sz, 9)fo(z y) - fil y),

i8 divisible by an irreducible polynomial (z, y), then v is a factor of
at least one of the fs.

We come now to the fundamental theorem of the whole subject
of divisibility of polynomials in two variables.

TrEOREM 2. A polynomial in two variables which is not identically
aero can be resolved into the product of irreducible factors no one of
which 18 a constant in one, and essentially in only one, way.

That a polynomial f(z, y) can be resolved into the product of
irreducible factors no one of which is a constant in at least one way
If f is irreducible, no factoring is possible
If f is reducible, we have

f& 9)=F( 9)f 9)

Wwhere neither f; nor f, is a constant. If £, and f, are both irredu-
cible, we have a resolution of f of the form demanded. If not, resolve
such of these polynomials f; and £ as are reducible into the product
of two factors neither of which is a constant. We thus get fex-
This is the resolu-
tion of f demanded if all the factors are irreducible. If not, resolve
such as are reducible into the product of two factors, ete. This pro-
tess must stop after a finite number of steps, for each time we factor

2

OF necessary.
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a polynomial into two factors, the degrees of the factors are lowes
than the degree of the original polynomial. We shall thus ulfi.
mately resolve f by this process into the product of irreducible
factors, no one of which is a constant.

Suppose now that f can be resolved in two ways into the produc
of irredueible factors none of which are constants,

S y)=11(@ )@ ) - fil2, ¥)
=1( 9)do(@ 9) -+ bl Y)-
Since ¢, is a factor of f, it must, by the Corollary of Theorem,
be a factor of one of the polynomials fi, f5, -+ fi. Suppose the f'8
arranged that it is a factor of f;. Then, since f is irreducible, f; and
¢, can differ only by a constant factor, and since ¢,%0, we may cancel
it from the identity above, getting

e fofs o Se= oty - b1

In the same way we see from this identity that f; and one of the =

¢'s, say ¢, differ only by a constant factor. Cancelling ¢,, we get
glnga ﬂ5¢3 ¢1_

Proceeding in this way, we should use up the ¢'s before the fsif
1<k, the f's before the ¢’s if > k. Neither of these cases is possiblé,
for we should then have ultimately a constant on one side of the

identity, and a polynomial different from a constant on the other
Thus we must have k=1. Moreover we see that the f’s can be
arranged in such an order that each f is proportional to the corré:

sponding ¢, and this is what we mean (cf. Definition 7, § 60) by =

saying that the two methods of factoring are not essentially different:
Thus our theorem is proved.

THEOREM 3. If two polynomials f and ¢ in (z, y) are relatively
prime, there are only a finite number of pairs of values of (2, y) Joi

which f and ¢ both vanish.*
For if f and ¢ both vanished at the points

:3) (2 91)s (2’2’ Yo s

and if these points were infinite in number, there would be among
them either an infinite number of distinet #’s or an infinite number ok 5

# Stated geometrically, this theorem tells us that two algebraic plane curves:

f(x, ¥) =0, ¢(z, y) =0 can intersect in an infinite number »f points only when they
have an entire algebraic curve in common,

| 2 constant facter
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distinct y's. By a suitable choice of notation we may suppose that
there are an infinite number of distinet y’s. Then it is clear that b
and ¢ must be of ab least the first degree in 4, since a polynomial in y
alone which does not vanish identically cannot vanish for an infinite
number of values of y. We may then apply to f and ¢ the algorithm
of the greatest common divisor as in § T4, thus getting (cf. (4),
§74) an identity of the form

() Bz, y)f(z, 9)+ (2, 9)d(2, y) = B, () £0.

Bince the first member of (4) vanishes at all the points (3), B, (y)
would vanish for an infinite number of distinet values of 4, and this
1§ impossible.

An important corollary of the theorem just proved is that if f and
¢ are two irreducible polynomials in (=, ¥), and if the equations
f=0and ¢ =0 have the same locus, then f and ¢ differ merely by

- a constant factor. This would, however, no longer be necessarily

true if f and ¢ were not irreducible, as the example,

f=ayh, =2y,
shows; for the two curves f=0 and ¢ =0 are here identical, since
ﬂle curve in each case consists of the two codrdinate axes, and yet f
and ¢ are not proportional. By means of the following convention,

however; the statement made above becomes true in all cages:
Let f be resolved into its irreducible factors,

Fefufy iy
where fi, --- f; are irreducible polynomials in (z, y), no two of which
are proportional to each other. The curve f= 0 then consists of the

EpiEGGS, .f1=0’f2=01 f:%:O'

To each of these pieces we attach the corresponding ‘positive integer
% which we call the multiplicity of this piece; and we then regard
iwo curves given by algebraic equations as identical only when they
consist of the same irreducible pieces, and each of these pieces has
the same multiplicity in both cases. With this convention we may
say :

CoroLLARY. Iff and ¢ are polynomials in (z, y) neither of which
W identically zero, a necessary and sufficient condition that the two curves
I=0, ¢ =0 be identical is that the polynomials f and ¢ differ only by
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EXERCISES

1. Let f(z), ¢(), y(z) be polynomials in x whose coefficients lie in & certain
domain of rationality, Then if  is irreduecible in this domain and is a factor of
the product f ¢, prove that ¢ is a factor of f or of ¢.

2. Let f(2) be a polynomial in #, which is not identically zero, and whose
coefficients lie in a certain domain of rationality. Prove that fcan be resolved
into a product of polynomials whose coefficients lie in this domain, which ar
irreducible in this domain, and no one of which is a constant, in one and essen
tially in only one way.

3. Extend the results of this section to polynomials in two variables whoss
coefficients lie in & certain domain of rationality.

76. Factors of Polynomials in Three or More Variables. The re-
sults so far obtained in this chapter may be extended to polynomialg
in three variables without, in the main, essentially modifying the
methods already used. We proceed therefore to state the theorems
in the order in which they should be proved, leaving the proofs of
most of them to the reader. The extension to the case of » variables
then presentr no difficulty, and is left entirely to the reader (e
Exercise 1).

Let f(#, g 2) be any polynomial in three variables, and suppose it
arranged according to powers of z,

f(@ gs2)=a)(y, 2)2" + ay(y, )1 + - + a3, 2),
the a’s being polynomials in (y, 2).
Corresponding to Theorems 1, 2 of § 73 we have

TrEOREM 1. A necessary and sufficient condition that a polynomial
in (y, #) be afactor of f is that it be a factor of all the a's.

TuroreMm 2. If f(x, y, 2) aend ¢z, y, 2) are any two polynt:
mials in (z, ¥, 2) and Y(y, 2) is an irreducible polynomial in (y, 2)only
which is a factor of the product £, then 4 is a factor of f or of ¢.

Let f(z, y, 2) and &z, y, 2) be polynomials i
(2, y» 2), and let Y(y, 2) be a polynomial in (y, z) alone. If 158
factor of the product of f,but is relatively prime to ¢, then it is a fue
tor of f.

To find the greatest common divisor of two polynomials in threé =
variables we proceed axactly as in the case of two variables, getting

COROLLARY.
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a set of identities similar to (1), § 74, the P’s and B, ., being now
functiqns of (y,2), while the other R’s and the §’s are functions of
(# 9,2). Corresponding to Theorems 1, 2 of § 74 we now have
THEOREM 3. A necessary and sufficient condition that Sz, y,2), and
&2, y, 2) have a common factor which involves z is that R o, 2)=0.
THEOREM 4. If R,.(y, 2)=0, the greatest common divisor of
f(x, Y, &) and §(z, y, z) which contains no factor in (¥, 2) alone s
the polynomial G(z, y,2) obtained by striking out from Bz, y, 2)
all factors in (y, 2) alone.
From the algorithm of the greatest common divisor for the two
polynomials f(z, y, 2), ¢(z, y,2) we also deduce the identity
O B ))=F(2y,2) f(29,2) + B, 9, 2)p(, 9, 2),
similar to (4), § 74.
Corresponding to Theorems 1, 2 of § 75 we have

TeEOREM 5. If f(2 9, 2) and ¢(, y, 2) are any two polynomials
and(z, y, 2)is an irreducible polynomial which is a factor of the prod-
uct fo, then r is o factor of f or of ¢.

CoroLLARY. If the product of any number of polynomials

i@ s 2) fi@s 9y 2) - film, 9, 2),

8 divisible by an irreducible polynomial vz, y, 2), then v is a factor

of at least one of the fs.

Tarorem 6. A polynomial in three variables which is not idents-
eally zero can be resolved into the produet of irreducible factors o one of
which is a constant in one, and essentially in only one, way.

When we come to Theorem 3, § 75, however, we find that it
does not admit of immediate extension to the case of three vari-
ables ; for RB,.{(y) which came into the proof of that theorem,
becomes now R, ,(y,2), and we can no longer say that this does not
vanish at an infinite number of points (y,2). Not only is the proof
thus seen to fail, but the obvious extension of the theorem itself is
seen to be false when we recall that two surfaces intersect, in gen-
eral, in a curve.

This theorem may, however, be replaced by the following one:

TaeorREM 7. If f(2, ¥, 2) and §(z. y, 2) are any two polynomials in
three variables of which & 8 irveducible, and if f vanishes at all points
(@.9.2) at which ¢ vanishes, then b s a factor of f.
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In proving this theorem we may, without loss of generality,
assume that ¢ actually contains one of the variables, say z; for
if ¢ confains none of the variables #, y, 2, the theorem is trivial
and obviously true.

Suppose ¢ were not a factor of f. Then, since ¢ is irreducible,
S and ¢ are relatively prime. Hence, in the identity (1) aboye,
R, (9, 2)%£0. Let us write

(@)  d@y2)=b(y, 22" +b(y,0) 2" + -+ b,(92) (m21)
where, without loss of generality, we may assume b(y, 2)#0. " Then
(3) By(9 2)b (9, 2) £ 0.
Accordingly we can find a point (y;, z,) such that
(4) Rpy(gp 2)# 0, by(gpp2) #0.
Consequently ¢(2, ¥y, 2;) is a polynomial in 2 alone which is of af
least the first degree, and which therefore (Theorem 1, § 6) vanishes
for some value 2, of . That is

$(2p Y1 2) = 0.
Accordingly, by hypothesis,

S (@ 91 2)=0.
Referring now to the identity (1), we see that

Bory (91 2)=0.

This, however, is in contradiction with (4). Thus our theorem i

proved.
If to each part of a reducible algebraic surface we attach a multi-

plicity in precisely the same way as was explained in the last section
for plane curves, we infer at once the

COROLLARY. Iff and ¢ are polynomials in (=, y, 2) neither of which
18 identically zero, a mecessary and sufficient condition that the two sur-
Saces F=0,¢=0
be identical 13 that the polynomials f and ¢ differ only by a constant
Sactor. :

Theorem T admits also the.following generalization :

Tarorem 8. If f(z, y, 2) and $(z, y, 2) are any two polynomials i
three variables which both vanish at the point (zy, Yy, 2,) and of which ¢

18 trreducible, and if in the neighborhood N of (zy Yy 2,) Jf vanishes ak

all points at which ¢ vanishes, then ¢ is a factor of f.
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We assume, as before, that ¢ contains z and can therefore be
written in the form (2). Let us first consider the case in which
bo(yy 7)) #0. Here the proof is very similar to the proof of
Theorem T.

We obtain relation (3) precisely as above, and from it we infer
that a point (y;, 2;) in as small a meighborhood M of (y,, 2,) as
we please can be found at which the relations (4) are true,

Now consider the equation

(9) &z, Yy, 21)=0.

By writing ¢ in the form (2), we see that by taking the neighbor-
hood M of (y,, z,) sufficiently small, we can make the coefficients
of (6) differ from the coefficients of

() $(2: Yo 20)=0

by as little as we please (cf. Theorem 3, § 5). Now z, is by hy-
pothesis a root of equation (6). Consequently by taking M suffi-
ciently small, we can cause (5) to have at least one root z; which
differs from z, by as little as we please (ef. Theorem 4,§ 6). Thus
we see that a point (#y,y;,2,) in the given neighborhood N of
5 Ve %) can be found at which

o2y Y1 2)=0.

Accordingly, by hypothesis,
J (311 Y zl)= 0.

From the identity (1) we have then
B, (91 2)=0,

which is in contradiction with (4). Thus our theorem is proved on
the supposition that by(y,, 2,) #0.*

* The proof just given will, in fact, apply to the case in which not all the b’s in (2)
vanish at the point (yo, 2o), if we use the extension of Theorem 4, § 6, which is there
mentioned in a footnote. It is only the extreme case in which all the b’s vanish at this
point which requires the special treatment which we now proceed to give. The reader
i advised to consider the geometrical meaning of this extreme case.

i
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k the degree of ¢(z,y,2), and let us subject this polynomial to g
non-singular linear transformation

In order to treat the case in which 5y(yy2,)= 0, let us denote by

=7 + By +v,7
Y= 2 + By + v,
2= ug2 + Byy' + 75¢/

(1)

which makes the degree of ¢ in # equal to the total degree % of ¢
(cf. Theorem 2, §64).

Suppose that this transformation carries over the point (2, In?)
into the point (f, yg, 2f). Then it is possible, since (7) is nop
singular, to take such a small neighborhood N’ of (zf, /, 2!) that
all points in this neighborhood correspond to points in the given
neighborhood N of (z, y,, 7).

Moreover, by means of (T), ¢ has gone over into

(8) ¢' (2, ¥, #) =82 + by, )2 + o+ By, ),

where ) is a constant different from zero. Let us denote by
f(«, y', ") the polynomial into which f is transformed. Then it

1s clear that, since, in the neighborhood N, f vanishes whenever ¢

does, in the neighborhood N' (which corresponds to a part of V), f!
vanishes whenever ¢’ does. Accordingly we can apply the part of

the theorem already proved to the two polynomials f’ and ¢', since

the first coefficient of ¢' in the form (8), being a constant different
from zero, dees not vanish at (y/, 2}). We infer that ¢' is a factor

l}
Off i f’(a:"., yr, z’) E(ﬁ'(ﬂ, yf’ z’)'qf"(x’, yr, z').

If here we replace #/, g/, 2' by their values in terms of z, g, 2 from
(T), we see that ¢ is a factor of f; and our theorem is proved.

EXERCISES

1. State and prove the eight theorems of this section for the case of polyno-
mials in n variables.

2. Extend the result of the eXercise at the the end of §73 to the caseof
polynomials in n variables. ' '

3. Extend the results of the two preceding exercises to the case in which we
consider only polynomials whose coefficients lie in a certain domain of ration:
ality.

|
|
|
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4, The resultant of two polynomials in one variable

S (@) =a@" + a@" 4. + ay,
¢ (2) =bgom+ bzm1+ o 4 by,

1§ sometimes defined as the polynomial R in the a’s and b’s of lowest degree which
satisfies an identity of the form Ff + 0=R,

where F and @ are polynomials in (g, «+- @a; by, -+ bu; #), and the identity is an
identity in all these arguments. Prove that the resultant as thus defined differs
only by a constant factor different from zero from the resultant as we defined it
in § 68,
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