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If f is homogeneous, this is equivalent to Theorem 1. If fig
non-homogeneous, we may write it in the form

Ry -+ 2) = Gy 2 Ba) + Gy (T - Z0) o0+ (2, “’n)‘*‘%

where each ¢ is a homogeneous polynomial of the degree indicated
by its subscript or else is identically zero. We need now meraly to
apply Theorem 1 to the homogeneous polynomial ¢, which is, of
course, not identically zero.

This theorem, and therefore also Theorem 1, which is merelya
special case of it, admits the following generalization to the case ofa
system of functions :

THEOREM 3. If we have a system of polynomials
Sy - 3, Sowy @

of degrees ky, ky, - k,, respectively, there exists a non-singular homo-

geneous linear transformation which makes these polynomials of degrees
kyy ++ Ky, i each of the variables z;, -

This theorem may be proved either by the same method used i
proving Theorems 1, 2; or by applying Theorem 2 to the produoct

z}, taken separately.

f1f2 "-'fm'

CHAPTER XV

FACTORS AND COMMON FACTORS OF POLYNOMIALS IN ONE
VARIABLE AND OF BINARY FORMS:

65. Fundamental Theorems on the Factoring of Polynomials in
One Variable and of Binary Forms. Theorem 2, § 6 may be stated
in the following form :

TrrorEM 1. A polynomial of the nth degree in one variable is
always reducible when n>1. It can be resolved into the product of n
linear factors in one, and essentially in only one, way.

By means of § 62 we can deduce from this a similar theorem in
the case of the binary form
(1) agry + axilz, + oo + a,28
Let us first assume that @y 0. Then the non-homogeneous poly-
nomial
(2) a7 + e + o + 4,
corresponds to (1), aecording to the definition of § 62. Factoring
(2), we get

a2y — )2 — @) -+ (2 — @)y

or, if we take n constants «f, f, --

(3) (efzy — ay)(eymy — op) - (aazy — o),

- @, whose product is ay,

where for brevity we have written

wo; = o (t=1,2 . a)
By Theorem 1, § 62, we now infer that the binary form (1) is identi-
cally equal to

@ - (ezy —

&y,) (g — ayz,y) - (ehzy — @, %,).
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188 INTRODUCTION TO HIGHER ALGEBRA

Moreover, there cannot be any way essentially different from this of
factoring (1) into linear factors, for if there were we should, by
setting #, = 1, have a way of factoring (2) into linear factors essen-
tially different from (3). Thus our theorem is proved on the suppe-
sition that a; = 0.

Turning now to the case a, = 0, let us suppose that

a0= e = ak_l =2 0, a,,ﬁq&l),

where £ < n., The form (1) then has the form
By a2y bk 4 e 4 agal,

which is equal to the product of % factors z, and the binary form

R SR

of degree n — k. Since the first coefficient in this form is not zere,
it can, as we have just seen, be factored into » — k linear factors.
Thus, here also, we see that the binary form can be written in the
form (4), the only peculiarity being that in this case k of the con
stants o' are zero. We leave it to the reader to show that this
factoring can be performed in essentially only one way. This being
done, we have the result:

THEOREM 2. A binary form of the nth degree is always redue-
ible when n>1. It can be resolved into the product of n linear
factors in one, and essentially only one, way.

EXERCISES

1. Prove that every real polynomial in one variable of degree higher than fwo "

is reducible in the domain of reals, and can be resolved into irreducible factors in
one, and essentially only one, way.

2. Prove the corresponding theorem for real binary forms.

66. The Greatest Common Divisor of Positive Integers.* We
will consider in this section the problem of finding the greatest coms
mon divisor of two positive integers @ and b, which has the closest

#In this section we use the term divisor in the arithmetical,sense, not in the

algebraic sense defined in §60. An integer b is said to be a divisor of an integer @ it

an integer ¢ exists such that ¢ = be.
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analogy with the algebraic problem of the next section. The solu-
jion of this problem, which was given by Euclid, is as follows:
If we divide a by 6* and get a quotient g, and a remainder 7, we

may write a=qb+rp

- where, if the division is carried out as far as possible, we have ry<b.

Then divide b by » getting a quotient ¢; and a remainder 7,
which, if the division is carried out as far as possible, is less than #,.
Proceeding in this way, we get the following system of equations,
in which, since the remainders 7, r,, .-~ are positive integers which
continually decrease, we ultimately come to a point where the divi-
gion leaves no remainder :

a= gob —]' ?‘1
b=gyr +my
rI=qryt 1y

r<b
Tg<Tp
e

Tog = Qo1Tp-1 + 75 -

o1 = %l

Yo < Tppy
0<r,

From the first of these equations we see that every common factor
of @ and b is a factor of r,; from the second, that every commen
factor of b and r, is a factor of r,; etc.; finally, that every commen
factor of r,_, and r,_, is a factor of r,. Hence every common factor
of o and b is a factor of r,.

On the other hand, we see from the last equation (1) that every
factor of , is a factor of #,_;; from the next to the last equation, that
every common factor of », and »,_, is a factor of 7, ,; ete.; finally,
that every common factor of #, and r, is a factor of &, and that
every common factor of r, and b is a factor of a. Hence every factor
of 1, 18 @ common factor of a and b.

Since the largest factor of 7, is r, itself, we have the result :

TrarorEM 1. In Buclid's algorithm (1), the greatest common divisor
of @ and b is 7,

In particular, a necessary and sufficient condition that @ and & be
relatively prime is that r,= 1.

~ *This is possible even if a < b, the only peculiarity in this case being that the
fquotient is zero and the remainder equal to q-
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We will next deduce from the equations (1)an important formula
by means of which r, is expressed in terms of g, b, and the ¢'s.
From the first equation (1) we have

r = — qb.

Substituting this value into the second equation, we get fors
Bheinaine n=— g+ (@ + )b

Substituting the values for r; and r, just found in the third
S0, we got ry=(q192 + 1)@ — (%08 + % + 0)-

Proceeding in this way, we can express each of the s, and theres
fore ultimately 7, in terms of @ and 5. In order to express coms
veniently the general formula here, we introduce the following
notation :

’ [ J=1

[e] =y
[y o] = oy 0y + 1,
@) 1 [yt 5] = oty + g +

[ oo @] = Loy -+ oy J 0 + [0, -+ g

Tt will be seen that the values of r,, 7y, 7, found above are included
in the formula

3) re= (= 1" [g1 G = Ge-1] a4+ (= 1) [900 0004 -+ Q110

By the method of mathematical induction this formula will therefore
be established for all values of % < p if, assuming that it holds when
k< ky, we can show that it holds when £=#%;+1. This follows ab
once when, in the formula

Th1 = Th-1— T Theo
we substitute for 7, and ,_; their values from (3) and reduce the

resulting expression by means of the definitions (2).
We have therefore established the formula

4 r,= Aa + Bb,
where A=(—1"[g49 1], B=(=1Y[909 = %]

Since the ¢’s are integers, it is clear that 4 and B will be integers.
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The most important application of the result just obtained is to
the case in which a and b are relatively prime. Here 7,=1, and we
have
(5) Aa+ Bb=1.

(Conversely, if two integers 4 and B exist which satisfy (5), a and &

are relatively prime, as otherwise the left-hand side of (5) would
have a factor greater than 1.

THEOREM 2. A necessary and sufficient condition for a and b to be

relatively prime 18 that there ewist two integers A and B such that
Aa+ Bb=1.

EXERCISES

1. Prove that [ot1, g, =+ @] = [@ny ttn—1; =+ 01].

[BuceesTion. Use the method of mathematical induction.]

2, Prove that the numerical values of the integers 4 and B found above are
respectively less than 15 and }a.

[SveeEstioN. Show that a/b =[qe ]/ [1; -+ go) and that this second
fraction is expressed in its lowest terms.] '

, 3. Prove that there can exist only one pair of integers 4 and B satisfying the
relation Aa 4 Bb =1 and such that 4 and B are numerically less than 1 b and 1 a
respectively. :

67. The Greatest Common Divisor of Two Polynomials in One
Variable. In place of the integers a and & of the last section, we
consider here the two polynomials:

@

{f(:ﬂ) = g 4 a2 1+ - +a,,
He)=bm 4B 4 - 4D

By the greatest common divisor of these two polynomials is
meant their common factor of greatest degree.* It will turn out in
the course of our work that (except in the case in which fand ¢ are
both identically zero) this greatest common divisor is completely
determinate except for an arbitrary constant factor which may be
introduced into it.

¥ Many English and American text-books use the term highest common factor ; but
a8 there is not the slightest possibility that the word greatest, here, should refer to the
value of the polynomial, since the polynomial has an infinite number of values for dif-
ferent values of the argument, it seems better to retain the traditional term.




192 INTRODUCTION TO HIGHER ALGEBRA

We will assume that neither f nor ¢ is a mere constant, and that
the notation has been so introduced that f is of at least as high
degree as ¢ ; that is, we assume

a%0, b#0, n>m>0.

Let us apply Euclid's Algorithm to f and ¢ precisely as in § 66 we
applied it to @ and b. We thus get the system of identities
([ (2)= Q2)() + By(),
¢ (2)= Qy(2) B (2) + Bo(2),
) Ry(z)= Q)B2)+ By2)

L R,1(2)= Q@) B () + Bosy.
For the sake of uniformity we will write
$(2)= B ().
Then Ry, By, R, - are polynomials of decreasing degrees, so that
after a finite number of steps a remainder is reached which is a con-
stant. This remainder we have indicated by E, ..

From this algorithm we infer, as in §66, that every common
factor of fand ¢ is a factor of all the R’s, and, on the other hand,
that every common factor of two successive R's is a factor of all the
preceding R’s and therefore of f and ¢. Accordingly, if fand ¢
have a common factor which is not a constant, this common factor
must be a factor of the constant B, ., and therefore E,,,=0. Con-
versely, if R,.,= 0, the polynomial B, () is itself a common factor
of R, and R,.,, and therefore of f and ¢. Hence the two theorems:

TaeorEM 1. A necessary and sufficient condition that two poly-
nomials n one variable f and &, neither of which is a constant, be
relatively prime is that in Buclid’s algorithm, (2), By +#0.

TaEOREM 2. If in Buclid’s algorithm, (2), B, ., =0, then R(z) #

the greatest common divisor of f and ¢.

By means of this theorem we are in a position to compute the
greatest common divisor, not only of two, but of any finite number, of
polynomials in one variable. Thus if we want the greatest common
divisor of f(z), ¢(z), ¥(z), we should first compute, as above, the

greatest common divisor B,(z) of f and ¢, and then, by the samé

method, compute the greatest common divisor of R,(z) and (z)-
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From the identities (2) we can compute the value of each of the
remainders in terms of f, ¢, and the quotients Q. The formulm
here are precisely like those of § 66, and give for R, the value

)  Bo=(-1y[0(2) @2, - Qua)]S(2)
+(=1y" [Q@), €i(@), -+ 2)]$(®).

Suppose, now, that f and ¢ are relatively prime. We may then
divide (8) by R,,; and get

(4) Ra)fia)+ Dpp(a)=1,

where e
F = — T wes r)|?
(5) (m) (RFI;P+wQ]( )’ Qz(x)’ QP( )]
=7 | e} o) o))

: From the definitions (2), § 66, we see that F and ® are polyno-
mials in 7. The existence of two polynomials F and ® which satisfv
(4)is therefore a necessary condition that f and ¢ be relatively prim{;
It is also a sufficient condition ; for from (4) we see that every com:
mon factor of f and ¢ must be a factor of 1, that is, must be a con-
stant. Thus we have proved the theorem:

TarOREM 3. A necessary and sufficient condition that the polyno-
mials f(x) and §() be relatively prime is that two polynomials F(x) and
D(z) exist which satisfy (4).*

We can make this statement a little more precise by noting the
degrees of F and ® as given by (5). For this purpose let us first
n.otice that if @, ... ®, are polynomials of degrees k,, --- &, respec-
fively, [, -.. «,] will, by (2), § 66, not be of degree greater than
ky+ - +k, Now let the degree of B{z) be m, and, as above, the
degrees of f'and ¢, n and m respectively. Then (cf. (2)) the degrees
of @, Qs @y -+ will be n — m, m — my, my —m,, - respectively. Ac-
cordingly, by (5), the degrees of ¥ and @ are respectively not greater

th .
- (m— my) + (my — my) + -« +(m, — Mp) =M — 1My
and (n — m) + (m — m,) + (m; — my) + - + (m,_y — m,) = n— 1M,

I‘}Ilence, since m, > 0, F is of degree less than m, and ® of degree less
than n.

*The proof we have given of this theorem applies only when neither fnor 4 is a
tonstant, The truth of the theorem is at once obvious if f or ¢ is a constant.
o
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Conversely, we will now show that if 7, is a polynomial of degreg
less than m, and ®, a polynomial of degree less than n, and if

(6) F(2)f (2)+ @,(2)d(2) =1,
then F(z)=F(z), Pyz)= P(a).

To prove this, subtract (6) from (4), getting
(F - F)f=(2,— D).

If we resolve the two sides of this identity into their linear fag:
tors, we see that, since f and ¢ are relatively prime, f must be a
factor of ®; — ® and ¢ a factor of F— F,. This, however, is pos.
- sible only if ®,—® and F— F; vanish identically, as otherwise
they would be of lower degree than f and ¢ respectively. We
have thus proved the theorem :

TrrorEM 4. If f(z) and () are relatively prime, and neither i
a constant, there exists one, and only one, pair of polynomials F(z)
® (), whose degrees are respectively less than the degrees of ¢ and i
and which satisfy the identity (4). :

Before proceeding to the general applications of the prineiples
here developed which will be found in the next section, the reader
will do well to familiarize himself somewhat with the ideas involved
* by considering the special case of two polynomials of the second

degree: flxy=ay2+ a2+ a, aoabﬂ.,
Hz)=bya?+ bz +b, by # 0.
If the condition that these two polynomials be relatively prime
be worked out by a direct application of Euclid’s algorithm, it
will be found necessary to consider separately the cases in which
ab, — aghy is or is not zero. By collating these results it will be
found that in all cases the desired condition is:
' (aghy — aghg)? + (ady — agby)ayby — agby) # 0.
This condition may be found more neatly and quickly by obtaining
the condition that two polynomials of the form
F(z)=p+ Py
D(z) =9+ %
exist which satisfy the identity (4).
It is this last method which we shall apply to the general case i
the next section.

) 1_“M+IP0 + Pyt o+ APy
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68. The Resultant of Two Polynomials in One Variable. Let
Jf@)=ag" +a@* 1+ - ta,_z+a, a,+0, n>0,
P (z)=ba™ + bam 14+ ... +b, x+5b, by#0, m>0.
The condition that these polynomials be relatively prime consists
as we see from Theorem 4, § 67, in the existence of constants Pe
Po ++ Pm-p Q0 Q1> -+ Gy Such that
(Poxm_lj‘f’lxm_z'f' w0+ P X0 + @@ 4 e toa,)
+ (7" + ?lxn_z . +g,‘,_1)(boxm P blxm_l e e bm)E L
Equating coefficients of like powers of z, we see that the followihg
gystem of equations is equivalent to the last written identity:

'%Po '

. +8y4y
& Po+ 2Py

+0190+ 8y

Py + Cp1PrF =+ O Py F bugot b ygy+ o B4
+ by + :
+bugs-m+
+bmgn-m+1 goree bzqn—1= 0

GoPot Xy P+ Qi Py
@, Py b Ay migPm-1

.
L] .

4 P~y +0,g,-1=1
11.1 writing these equations we have assumed for the sake of

de-ﬁnlteness that n Zm, though the change would be immaterial if

this were not the case. This is a system of m +n linear equations

in t.he m -+ n unknowns pg, =+ Pp_1 @y *** ¢n_p» Whose determinant, after
an interchange of rows and columns and a shifting of the rows, is

e Do Sl l

ao .
0" a Sl e mnn sl

'

.

NN B
8 determinant which, it should be noticed, has m+n rows and columns




196 INTRODUCTION TO HIGHER ALGEBRA

If R+0, the set of equations (1) has one and only one solution,
and fand ¢ are relatively prime. If B=0, two cases seem at first
sight possible (cf. § 16): either the system of equations has no solus
«tion, or it has an infinite number of solutions. This latter alterng-
tive cannot, however, really arise, for we have seen «in Theorem 4,
§ 67, that not more than one pair of polynomials F and @ can exist
which satisfy formula (4) of that section and whose degrees do not
exceed m—1 and » —1 respectively. Accordingly, if E=0, the
set of equations has no solution and f and ¢ have a common factor.

R is called the resultant of f and ¢.*

The term resultant has thus been defined only on the suppositi-on
that f and ¢ are both of at least the first degree. -It is desirable to
extend this definition to the case in which one or both of these
polynomials is a constant. Execept in the extreme case m= n =10
we will continue to use the determinant R as the definition of the
vesultant. Thus when m =0, n>0 we have

R(o™ ) =(~ 1),
0

If b,#0 we have R0, and moreover in this case S and ¢ are =

relatively prime since the constant ¢ has no factors other than
constants. If, however, b,= 0, we have B =0, and every factor of
f is a factor of ¢, since ¢ is now identically zero.

Similarly when n=0, m >0, we have

(s )
by

and we see that a necessary and sufficient condition that f and ¢ be

relatively prime is that B=0.

Finally, when n=m =0, we define the symbol (ao)’ which we I‘

still use to denote the resultant, by the formula 0

R (a0> - {1 when a, and b, are not both zero,
b, 0  when a,=0,=0. ‘
We may now say with entire generality:
TrEOREM. A necessary and sufficient condition for two polynomials
in one variable to be relatively prime is that their resultant do not vanish.
For another method of approach to the resultant, cf. Exercise 4
at the end of §T6.

* Tt should be noticed that the resultant of ¢ and f may be the negative of thf
resultant of fand ¢. This change of sign is of no consequence for most purposes.
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69. The Greatest Common Divisor in Determinant Form.

DEFINITION. By the ith subresultant R, of two polynomials in
one variable is understood the determinant obtained by striking out the
first @ and the last i rows and also the first ¢ and the last i columns from
the resultant of these polynomials.

Thus if the polynomials are of degrees 5 and 3 respectively, the
resultant B is a determinant of the eighth order, R, of the sixth,
R, of the fourth, and R of the second, as indicated below :

a5 0 ]

0 0 0

We now state the following results, leaving their proof to the
reader:

LevmA. If fi(z) and ¢,(2) are polynomials, and
flz)=(e—a)fiz)  H2)=(z—a)p(2),

the resultant of f, and ¢, and their successive subresultants are equal
respectively to the successive subresultants of f and ¢.

TuaroreMm 1. The degree of the greatest common divisor of f(z)
and @(z) is equal to the subscript of the first of the subresultants
B,=R, R, R, ---which does not vanish.

TrEOREM 2. If i is the degree of the greatest common divisor of
two polynomials f(z) and ¢(z), then this greatest common divisor may
be abtained from the ith subresultant of f and & by replacing the last




198 INTRODUCTION TO HIGHER ALGEBRA

element in the last row of coefficients of f by f(), the element just aboye
this by xf(x), the element above this by 2*f(z), ete.; and replacing

the last element in the first row of coefficients of ¢ by §(z), the element |

below this by z¢(z), ete.

If, for instance, the degrees of fand ¢ are 5 and 3 respectively,

and ¢ =1, the greatest common divisor is

a3 %y zf(z)
dg s S(@)
by b P(z)
b by op(z) |
b by ¥’ P(z)
by 0 2()

70. Common Roots of Equations. Elimination. Consider the

equations f@)=a@"+ a2 1+ +a,=0 a, %0,

Hz)=bge"+ ba™ 14 . 3 0,=0 by#0,

whose roots are e, ¢, --a, and B;, B, -+ B,, respectively; and
suppose f(z) and ¢(z) resolved into their linear factors:

J@)=ay(z— a2 — ) (2 —a,),
$(z)= bz — BNz — By) -+ (2 — By)-

Since, by Theorem 1, § 65, these sets of factors are unique, it 1 |

evident that the equations f(z)= 0 and ¢(z)= 0 will have a common
root when, and only when, f(z) and ¢(z) have a common factor,
that is, when, and only when, the resultant R of f and ¢ is zero.

To eliminate  between two equations f(z)=0 and ¢(z)=0,18

often taken in elementary algebra to mean: to find a relation between

the coefficients of f and ¢ which must hold if the two equations are

both satisfied; that is, to find a necessary condition for the two ¥

equations to have a common root. For most purposes, however
- when we eliminate we want a relation between the coefficients which

not only holds when the two equations have a common root, but

such that, conversely, when it holds the equations will have &
common root. From this broader point of view, to eliminate #

between two equations f(z)=0 and ¢(z)=0 means simply to find

a mecessary and sufficient condition that these equations have &

common root. Hence the result of this elimination is R=0. Lef

us, however, look at this question from a little different point of view.
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In the equations
(6] ag® + at + a,2® + agi® + a4+ a; =0 a, %9,

o)) by® + bia? + bz + by =0 by# 0,

let us consider the different powers of z as so many distinet un-
knowns. We have, then, two non-homogeneous, linear equations in
the five unknowns z, 2% 2% 2%, 2%. Multiplying (1) through by #
and then by 22, and (2) by z, 2% 2% 2*, in turn, we have
ag?" + 0,28 + ap® + agtt + a2® + a2 =0,
ag?® + a,2° + a2t + a2t + a0 + agw =,
a?® + a@t + a;2® + agg® + az + a; =0,
b+ b+ bz + by =0,
byt + bya® + b2 + by =0,
b2 + byt + by2® + ba? =0,
bo2® + by + byt + bga? =0,
by + byaf + byr® + byat =0,
a system of eight non-homogeneous, linear equations in seven
unknowns.
If a value of z satisfies both (1) and (2), it will evidently satisfy

all the above equations. These equations are therefore consistent,
80 that by Theorem 1, § 16, we have.

0 0
a; 0
a2y

L0
%
@y
0

0
b
b

By B, 0 W B

Hence the vanishing of this determinant is a necessary condition for

(1) and (2) to have a common root.

This device is known as Sylvester’s Dialytic Method of Elimina-

tion, *
* For the sake of simplicity-we have taken the special case where n =05 and m =3
The method, however, is perfectly general.

I
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The above determinant is seen to be exactly the same as the
resultant B of (1) and (2), so that Sylvester’s method leads to the
same condition for two equations to have a common root as thag
found above, namely B=0. It does not prove, however, that this
condition is sufficient, but merely that it is necessary. Thus Syl-
vester’s method, while brief, is very imperfect.

The number of roots common to two equations, f(z)=0 and
¢(z)=0, and also an equation for computing the common roots,
may be obtained at once from § 69.

71. The Cases a,=0 and 6,=0. It is important for us to note
tha,t according to the definitions we have given, the determinant
R m) will be the resultant of the two polynomials

J@)=ay" + a2+ -t ay,
¢(a:) =byz™ + bzl oo by
only when f and ¢ are precisely of degrees m and m respectively,
that is, only when a,+0, b,0. Thus, for instance, the resultant of
the polynomials f@)= a2 + a2 2+ - +
¢>(m)_bom 5 by 14 o by,
is not the (m+ n)-rowed determinant R(O’ Gis =
o B

“ﬂ) but, if a, %0,

by# 0, the (m+n—1)-rowed determinant R (“1’ “:) or, if a, or b,
is zero, a determinant of still lower order.* o

Let us indicate by R the (m + n)-rowed determinant B (;0» :n)
0 " P,

and by r the resultant of f and ¢, and consider the case a;=0,

a;#0, b, 0. Since every element of the first column of A except
the last is zero, we may write

R =(— 1y,
In a similar way we see that if the degree of f is n — ¢, and ;= 0, we
may write R=1bir
and if the degree of ¢ is m — ¢, and a,+0, we have
R=qar,

Accordingly, except when a,=b8,=0, R dlffers from » only by &

non-vanishing factor.
# Ag an illustration take the two polynomials f(z)=(a+p)2*4+2—8 and

o(@)=ax+1. If a4+B#0 and a0, the resultant here is (a2—1)p. But it

a=~8=0, the resultant is 1—a?
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TaEoREM. Although R (go’ ;:) is the resultant of f and ¢ only
et

when ay=0 and by#=0 (or when m=0 or n=10), nevertheless its
yanishing still forms a necessary and sufficient condition that f and ¢

lave @ common factor even when ay=0 or by= 0, provided merely that

both @, and by are not zero.

That this last restriction can not be removed is at once evident;
for, if @,=>4,=0, every element in the first column of the determinant
i zero, and hence the determinant vanishes irrespective of whether
fand ¢ have a common factor or not.* All that we can say, if we
do not wish to make this exception, is, therefore, that in all cases the
yanishing of R forms a necessary condition that f and ¢ have a
gommon factor.

72. The Resultant of Two Binary Forms.
the binary forms
f(zy 2) = g2} + 0,27 Y0y + - + 2,25 (n21)
P21, ) = by + by 2] 7y + - + Oy (mz1).
By the side of these forms we write the polynomials in one
variable F(2)=aya"+ a;2% ' + -+ +
D(2)=bya™ + byt - by
R Qgy =+ aﬂ)
(bo, by
will be the resultant of # and @ only when neither a, nor b, is zero.

We will, however, call it the resultant of the binary forms f and ¢
in all cases.

Let us now consider

The determinant

*By looking at the question from the side of the theory of common roots of two
equations (cf. § 70), and by introducing the conception of infinite roots, we may avoid
even this last exception. An equation

agrt + 4121 4 e 0, =0
has % Toots, distinct or coincident, provided ap==0. If we allow g, to approach the value
zero, otie or more of these roots becomes in absolute value larger and larger, as is seen
by the transformation 2! =1/x. Hence it is natural to say that if ¢;=0 the equation
has an infinite root. If then we consider two equations each of which has an infinite
Toot as having a common root, we may say :
A necessary and sufficient condition that the equations
a4 @0t 4 e 2, =0 n>0,
b + byl 4 e+ b =0 m >0

bave a common root s in all cases the vanishing of B (g: ;:)
2]
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TeEOREM. A necessary and sufficient condition for two binany
forms to have a common factor other than a constant t8 that thep
resultant be zero.

If a, and b, are both different from zero, the non-homogeneous
polynomials # and @ correspond to the forms f and ¢ according te
the definition of § 62. Accordingly, by Theorem 2 of that section
1 necessary and sufficient condition that f and ¢ have a common
factor other than a constant is, in this case, the vanishing of their
resultant.

On the other hand, if ¢y=05,=0, f and ¢ have the common factor

vy, and the resultant of f and ¢ obviously vanishes.

A similar remark applies to the case in which all the a’s or all
the b’s are zero.

There remain then only the following two cases to be considered,

D a0 by=by= e == 0, 5,20 (k<m)

:2) 6(]#0; Ay=0q;= ==+ =ak=0’ a,m:,t:O (k<ﬂ).

In Case (1), F corresponds to f, and, if we write
W2y, 25) = 25" by(2y ),

® corresponds to ¢, Now we know in this case (cf. § T1) that
- R0 is a necessary and sufficient condition that F and @ be rela:
tively prime. Accordingly, by Theorem 2, § 62, it is also a necessary
and sufficient condition that f and ¢, be relatively prime.. But since
7y 18 not a factor of f, the two forms f and ¢ will be relatively prime

when and only when f and ¢, are relatively prime. Thus our theo:

rem is proved in this case.
The proof in Case (2) is precisely similar to that just given.

CHAPTER XVI
FACTORS OF POLYNOMIALS IN TWO OR MORE VARIABLES

73. Factors Involving only One Variable of Polynomials in Two
Variables. We have seen in the last chapter that polynomials in
one variable are always reducible when they are of degree higher
than the first. Polynomials in two, or more, variables are, in gen-
eral, not reducible, as we have already noticed in the special case of
quadratic forms.

Let f(z, y) be any polynomial in two variables, and suppose it
arranged according to powers of 2,

f(.’E, y)Eaﬂ(y)xn+ al(g)x”—l e +t§!ﬂ_1(y)$+ a’u(y)’

| the o being polynomials in y.

TraeorEM 1. A mecessary and sufficient condition that a poly-
nomial in y alone, Y(y), be a factor of f(z, y) is that it be a factor of
all the a's.

The condition is clearly sufficient. To prove that it is necessary,

. le6 us suppose that y(y) is a factor of f(z, y). Then

D) o)+ +a() =W bH)2* + - +5,@)],

Where the &’s are polynomials in y. For any particular value of Y

we deduce from (1), which is then an identity in =, the following

équations :
a)(y) =¥ ()b,
a,(y) =v(y)b,(y),

4 (3) =¥ @)EAT).

. Since these equations hold for every value of #, they are identities,

and y(y) is a factor of all the a’s.
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