CHAPTER XIV
SOME PROPERTIES OF POLYNOMIALS IN GENERAL

60. Factors and Reducibility.
introduce certain conceptions of fundamental importance in our
subsequent work.

DEFINITION 1. By a factor or divisor of a polynomial f in any
number of variables is understood a polynomial ¢ which satisfies an

identity of the form
yr being also a polynomial.

f= ¢y

It will be noticed that every constant different from zero isa

factor of every polynomial; that every polynomial is a factor of &
polynomial which vanishes identically; while a polynomial whieh =

is a mere constant, different from zero, has no factors other than
constants. i

We note also that a polynomial in z;, --- z, which is not identically
zero cannot have as a factor a polynomial which actually contain
any other variables.

The conception of reducibility, which we have already met in =

a gpecial case (§47), we define as follows:

DEFINTTION 2. A polynomial is said to be reducible if it is iden

Acally equal to the product of two polynomials neither of which %@ 3

constant.

In dealing with real polynomials, a narrower determination of
the conception of reducibility is usually desirable. We considety
then, what we will call reducibility in the domain of reals, a cone
ception which we define as follows:

DEFINITION 8. A real polynomial is said to be reducible in the
domain of reals if it is identically equal to the product of two othet
real polynomials neither of which is a constant.
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In the present section we will
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In many branches of algebra still another modification of the
conception of reducibility plays an important part. In order to
gxplain this, we first lay down the following definition:

DEFINITION 4. A set of numbers is said to form a domain of
rationality of, when a and b are any numbers of the set, a+ b,
a—0b, ab, and, so far as b#0, afb are also numbers of the set.

Thus all numbers, real and imaginary, form a domain of ration-
ality, and the same is true of all real numbers. The simplest of all
domains of rationality, apart from the one which contains only the
single number zero, is what is known as the natural domain, that is all
rational numbers, positive and negative. A more complicated domain
of rationality would be the one consisting of all numbers of the form
a+ bV —1, where a and b are not merely real, but rational. These
illustrations, which might be multiplied indefinitely, should suffice to
make the scope of the above definition clear,*

DEFINITION 5. A polynomial all of whose coefficients lie in a
domain of rationality B is said to be reducible in this domain if it is
wentically equal to a product of two polynomials, neither of which is a
constant, whose coefficients also lie in this domain.

It will be noticed that Definitions 2 and 3 are merely the special
cases of this definition in which the domain of rationality is the
domain of all numbers, and the domain of all reals respectively. To
lustrate these three definitions, we note that the polynomial 22+ 1
1§ reducible according to Definition 2, since it is identically equal to
(+v=1)(2— vV =1). It is, however, not reducible in the domain
of reals, nor in the natural domain. On the other hand, 22— 2 is

- teducible in the domain of reals, but not in the natural domain.

Finally, 22 — 4 is reducible in the natural domain.
Leaving these modifications of the conception of reducibility, we
tlose this section with the following two definitions:

DerinitioN 6. Two polynomials are said to be relatively prime i
they have no common factor other than a constant.

*By R (a1,a3,+- a,) is understood the domain of rationality consisting of all
Mmbers which can be obtained from the given numbers @y, - @n by the rational pro-
fesses (addition, subtraction, multiplication, and division). In thisnotation the natural
tomain would be most simply denoted by B (1); the domain last mentioned in the

| lextby B (1, \/:—1) or, even more simply, by B (v —1). This notation would not apply

Dall cases (e.g. the real domain) except by the use of an infinite number of arguments.
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DEeFINITION T. Two methods of factoring a polynomsial shall b “
said to be not essentially different if there are the same number w of
factors in each case, and these factors can be so arranged that the kth
factors are proportional for all values of k, from 1 to n inclusive. *

EXERCISES

1. Prove that every polynomial in (z, y) is irreducible if it is of the form
S(®) + 3

where f (z) is & polynomial in = alone.
‘Would this also be true for polynomials of the form

f@) +y*?
2. If f, ¢,¢ are polynomials in any number of variables which satisfy the |
relation f=oi,

and if the coefficients of fand ¢ lie in a certain domain of rationality, prove that |
the coefficients of ¢ will lie in the same domain provided ¢ = 0.

61. The Irreducibility of the General Determinant and of the Sym-
metrical Determinant.

TaEOREM 1. The determinant
ayy Oy

e Gy Oy

a,,‘l anz

. |
i an irreducible polynomial if its n® elements are regarded as inds 3
pendent variables. ‘
|

For suppose it were reducible, and let |
D=f (o = O) ¢ (@1p ++* Gun) \

where neither f nor ¢ is a constant. Expanding D according to the ' {
elements of the first row, we see that it is of the first degree in ay
Hence one of the two polynomials f and ¢ must be of the fink |
degree in a;;, the other of the zeroth degree. Precisely the samé g
reasoning shows that if a; is any element of D, one of the polyfwf I‘
mials £ and ¢ will be of the first degree in a, while the other will
not involve this variable. :

Let us denote by f that one of the two polynomials which involyés .‘

.
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myolve any element of the ¢th row or the ¢th column. For if it did,
since f is of the first degree in a,; and ¢ is of the zeroth, their product
D would involve terms containing products of the form @y OT
T ‘which, from the definition of a determinant,‘is impossible.
(onsequently, if either one of the polynomials f and ¢ contains any

. ¢lement of the principal diagonal of D, it must contain all the ele-

ments standing in the same row and all those standing in the same
colamn with this one, and none of these can occur in the other
polynomial.

- Now suppose f contains a;; and that ¢ contains any other element
of the principal diagonal, say a;. Then a,; and ay can be in neither f
10t ¢, which is impossible. Hence, if f contains any one of the ele-
ments in the principal diagonal, it must contain all the others, and
hence all the elements, and our theorem is proved.

TeEOREM 2.  The symmetrical determinant

Ay o+ Op

D (a5 =a;)

g " Qo

i an trreducible polynomial if its § n(n + 1) elements be regarded as

independent variables.

The proof given for the last theorem holds, almost word for word,
| in this case also, the only difference being that while D is of the first

degree in each of the elements of its principal diagonal, it is of the
second degree in each of the other elements, The slight changes in
the proof made necessary by this difference are left to the reader.

EXERCISES
1. The general bordered determinant

Ay eve Oy Uil eee Uy

Aplvos Qun Upl ooe Unp

Ul voue Vin 0...0

Upl eosUpn  0.:.0

| Birreducible if p < n, the a's, u’s, and v’s being regarded as independent variables

2. The symmetrical bordered determinant obtained from the determinant in

a4, any element of the principal diagonal of D. Then ¢ does nok I Exercise 1 by letting ay = ay uy = vy is irreducible if p < n.

N




.

178 INTRODUCTION TO HIGHER ALGEBRA

3. If for certain values of ¢ and j, but not for all, ay= ay, but if the a's g '

otherwise independent, can we still say that

Qi1 v e Qg

18 irreducible ? @) -+ Onn

4. Prove that a skew-symmetric determinant (cf. Exercises 2, 3, §20) s alwa |

reducible by showing that, when it is of even order, it is a perfect square.
[Sveeestion. Use Corollary 3, §11, and Theorem 6 and Exercise 1, § 76.]
Does this theorem require any modification if the elements are real and we
consider reducibility in the domain of reals?

62. Corresponding Homogeneous and Non-Homogeneous Polyag-
mials.
mials, one homogeneous and the other non-homogeneous, which

‘bear to one another the same relation as the first members of the

equations of a plane curve or of a surface in homogeneous and non:

homogeneous coérdinates respectively. Such polynomials we will
speak of as corresponding to one another according to the following =

definition:

DEFINITION. If we have a non-homogeneous polynomial of the kth
degree in any number of variables (zy, -, _,) and form a new poly:

nomial - by multeplying each term of the old by the power of a new
variable x, necessary to bring up the degree of this term to k, the home=

geneous polynomial thus formed shall be said to correspond to the given

non-homogeneous polynomial.

Thus the two polynomials
223 + 322y — Hx2?
228 + 32ty — ba2? —

—yz +222 +2 =3y =9,
yzt + 22% 4 2t — 3yt* — 98,

M
2
correspond to each other.

It may be noticed that if ¢ (2, -
polynomial of degree £, the corresponding homogeneous polynomial 3

may be written 5
: 9,-“,(_1, . ..@:1)
By T

only one, homogeneous polynomial.

It is often convenient to consider side by side two polyne= =

-@,_4) is the non-homogeneous =

1

. - l |
To every non-homogeneous polynomial there corresponds one, and |
Conversely, however, to @ §
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u different non-homogeneous polynomials which are obtained by set
fing one of the variables equal to 1. For instance, in the example

given above, to (2) corresponds not only (1) but also

2 +3y
203+ 8a% —ba?—2t + 2224 22—

— 028 —yat+ 22% + 2 — Byt — 96,
32 — 98,

9¢8.

®)
0)
6)

It should be noticed, however, that if one of the variables enters into

288+ 32%y— b2 —yt +2t +at?-8yl—

every term of a homogeneous polynomial, the result of setting this

variable equal to unity is to give, not a corresponding non-homo-
geneous polynomial, but a polynomial of lower degree. In fact, in
the extreme case in which every variable enters into every term of
the homogeneous polynomial, there is no corresponding non-homo-

geneous polynomial; as, for instance, in the case of the polynomial

2%z + zy* + wy2t

TaEoREM 1. If one of two corresponding polynomials s reducible,

then the other 1s, also, and the factors of each polynomial correspond to

the factors of the other.

For let ¢(z;, --x,) be a homogeneous polynomial of degree
(k4 1), and suppose it can be factored into two factors of degrees
kand 7, respectively,

(ﬁ) ﬁbk-H(xp $n)E 1,frk(x1, i

Now suppose the corresponding non-homogeneous polynomial in
question is the one formed by setting z,=1. We have

(7) Bt s(@py -+ Tagy 1) = Yi(2y, - Ty 1).

Z0) Xi(@p *+* Tn)-

Ta-py 1) (%00 -

Since by hypothesis the degree of the polynomial on the left is

unchanged by this operation, neither of the factors on the right:
hand side of (6) can have had its degree reduced, hence neither
of the factors on the right of (7) is a constant. Our non-homo-

. geneous polynomial is therefore reducible; and moreover the two

factors on the right of (7), being of degrees & and 7 respectively,
are precisely the two functions corresponding to the two factors on

homogeneous polynomial in # variables there correspond in general [ the right of (6).
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suppose ]
i @ity Tnyg) = Yy (2 @ny) Xo(Z1r +* By )

where the subscripts denote the degrees of the polynomials.
Gper Vian Xeey b the homogeneous polynomials corresponding fo
@, ¥, X. Then when 2,0, |

@kﬁ(ﬂ,...fm):wk(ﬁ,...%:1)}{1(3?1,...Em). Iri

S Ty &5 Ty Ty L

Multiplying this equation by z;* we have

"

¢’k+l(mp 0 Tnqy wﬂ) = '\h(xls T Ty) x:(mh ot Loy 971:)1

an equation which holds whenever z, # 0, and, therefore, by Theorem
5, § 2, is an identity. Thus our theorem is proved. ‘

As a simple illustration of the way in which this theorem may be
applied we mention the condition for reducibility of a non-home:
geneous quadratic polynomial in any number of variables. By
applying the test of § 47 to the corresponding homogeneous poly-
nomial we obtain at once a test for the reducibility of any nom
homogeneous quadratic polynomial.

TeEOREM 2. Iff and ¢ arenon-homogeneous polynomials, and |
F, ® are the corresponding homogeneous polynomials, a necessary and
sufficient condition that F and ® be relatively prime ds that f and
¢ be relatively prime. "'

For if f and ¢ have a common factor 4 which is not a constau 3§

the homogeneous polynomial ¥ which corresponds to r i, hg'
Theorem 1, a common factor of ¥ and @, and is clearly not a coi_ia |
stant. Conversely, if ¥ is a common factor of F and ® whichis §
not a constants f and ¢ will have, by Theorem 1, a common factor |
which corresponds to ¥ and which therefore cannot be a mém ‘
constant.

63. Division of Polynomials, We will consider first two polynt ‘

mials in one variable: : |
f@)=a,2" + a2 1+ -+ ap
(1)
¢ (z)=be™ + byz™ 14 oo + by
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We learn in elementary algebra how to divide f by ¢, getting a
quotient @ () and a remainder R (z). What is essential here is
contained in the following theorem:

TaroreM 1. If f and ¢ are two polynomials in z of which ¢ 18
wot identicolly zero, there exists one, and only one, pair of polynomials,
Q and R, which satisfy the identity
(2) f(2)=Q(z) $(2) + E(2),
and such that either R=0,% or the degree of R is less than the degree of ¢.

We begin by proving that af least one pair of polynomials @, Bt
exists which satisfies the conditions of the theorem.

If f is of lower degree than ¢ (or if f=0), the truth of this state-
ment is obvious, for we may then let @=0, B=/f.

Suppose, then, that f is of at least as high degree as ¢. Writing
fand ¢ in the form (1), we may assume

a+0, b0, n=2m.

LEMMA. If ¢ 18 not of higher degree than f, there exist two polyno-
mials Q; and R, which satisfy the identity
f(2)= Qy(2) ¢ (2) + By(2),
and such that either R,=0, or the degree of R, 1s less than the degree of f.
The truth of this lemma is obvious if we let

Qy(2)= 20gh-m,
by

These two polynomials @, and R, will serve as the polynomials @
and R of our theorem if R,=0, or if the degree of R, is less than the
degree of ¢. If not, apply the lemma again to the two functions B,

A4, golling R ()= 0,(2) $(a) + Ra(e):
where R, is either identically zero or is of lower degree than B;, We
may then Write.  £(z) = [0y (2) + Q@] $(@) + By (o).

If R,=0, or if the degree of R, is less than the degree of ¢, we may
take for the polynomials @, B of our theorem, @, + @, and Ry, If
not, we apply our lemma again to B, and ¢. Proceeding in this way

# Tt will be remembered that, according to the definition we have adopted, a polyno-
mial which vanishes identically has no degree,
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we get a series of polynomials R, R,, --- whose degrees are con.
stantly decreasing. We therefore, after a certain number of st;epg,
reach a polynomial R, which is either identically zero or of degres
less than ¢. Combining the identities obtained up to this point, we

have F(@)=[ @)+ + @(2)] ¢(2)+ Bi(2),

an identity which proves the part of our theorem which states that |

at least one pair of polynomials @, B of the kind described exists*
Suppose now that besides the polynomials @, R of the theoren:

there existed a second pair of polynomials @', R’ satisfying the sam¢

conditions. Subtracting from (2) the similar identity involving

@', R', we have

®) 0=(Q- @) ¢ +(R—R).
From this we infer, as was to be proved,

Q=¢, R=FR.

For if Q and Q' were not identical, the first term on the right of (3)
would be of at least the mth degree, while the second involves ng
power of z as high as m.

Turning now to polynomials in several variables:
(4) Sy - zi) =@y, - 20t + a2y, - 2]+ - 40,2 o2 S
By -+ 24) = By(@gy «++ 2T + by(@gy o+ T+ oo+ By oo T

the ordinary method of dividing f by ¢ would give us as quotient and
remainder, not polynomials, but fractional rational functions. In
order to avoid this, we state our theorem in the following form:

TaEOREM 2. If f and ¢ are polynomials in (2y, - z;) of which @

is mot identically zero, there exist polynomials Q, R, P, of which the
last is not identically zero and does not involve the variable x,, which
satisfy the identity,

(5) Play - z)f(@y - 2) = Qg - 2)P(2y, -+ ) + By, -
and such that either R=0, or the degree in x; of R 13 less than the degréd
in z; of ¢.

The proof of this theorem follows the same lines as the proof

of Theorem 1.

* The reader should notice that the process just used is merely the ordinary process
of long division.
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If f is of lower degree in &, than ¢ (or if f=0), the truth of the
theorem is obvious, for we may then let P=1, Q=0, R= 7

Suppose, then, that f is of at least-as high degree in =, as ¢.
Writing f and ¢ in the form (4), we may assume

g, %0, b0, n>m.

LeMma. If ¢ is not of kigher degree in z, than f, there exist two
.?olynomz'als €y By which satisfy the identity,

b(@y - ) f(2p - 2)= C z) (@ zg) + B2y - z)y

and such that either R)=0, or the degree of R, in 2, is less than ths
degree of f in x,.

The truth of this lemma is obvious if we let
Q1= @y - 23) zy™™ .

The polynomials @,, R,, b, will serve as the polynomials Q, R, P
of our theorem if R, =0, or if the degree of R, in 2, is less than the

degree of ¢ in ;. If not, apply the lemma again to the two functions
R, and ¢, getting

by(@y - 2)R(z), -+ )= Qy(@ys - 22y - )+ By, -+ @),

where R, is either identically zero or is of lower degree in 2, than R,.
We may then write bng (B,Q1+ Qp)d + R,

If B,=0, or if the degree of R, in, is less than the degree of ¢ in
Z;, we may take for the polynomials @, B, P of our theorem the
functions 5,Q; + @y, Ry, 53. If not, we apply our lemma again to R,
and ¢. Proceeding in this way, we get a series of polynomials
By, Ry, - whose degrees in ; are constantly decreasing. We there

fore, after a certain number of steps, reach a polynomial R, which is

either identically zero, or of degree in z;.less than 4. Combining

the identities obtained up to this point, we have
b= 10+ 8720+ - + Q)9+ B,

an identity which proves our theorem, and which also establishes the

additional result:

CoroLLARY. The polynomial P whose existence is stated in our
theorem may be taken as a power of b,




|
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We note that it would obviously not be correct to add to the
statement of Theorem 2 the further statement that there is only
one set of polynomials @, R, P, since the identity (5) may be multis
plied by any polynomial in (zy, - ,) without changing its form,
Cf,, however, the exercise at the end of § 73.

64. A Special Transformation of a Polynomial. Suppose that
S(#y @5 ;) is & homogeneous polynomial of the kth degree in
the homogeneous coordinates (zy, 2, @ z,), so that the equation
f = 0 represents a surface of the kth degree. If,in f, the term in
zt has the coefficient zero, the surface passes through the origin;
and if the term in z? (or #k or z%) has the coefficient zero, the
surface passes through the point at infinity on the axis of g
(or 2y or z;). It is clear that these peculiarities of the surface
can be avoided, and that, too, in an infinite variety of ways, by sub-
jecting the surface to a non-singular collineation which carries over
any four non-complanar points, no one of which lies on the surface,
into the origin and the three points at infinity on the codrdinate
axes. It is this fact, generalized to the case of n variables, whick
we now proceed to prove.

LeMMA. If Az, - x,) is a homogeneous polynomial of the kih
degree in which the term zf, is wanting, there. exists a non-singulat
linear transformation of the variables (v, -+ z,) which carries f intoa
new form fi, in which the term in m,ﬁf has a coefficient different from
zero, while the coefficients of the kth powers of the other variables have
not been changed.

In proving this theorem there is obviously no real loss of gener-
ality in taking as the variable z,, the last of the variables z,.
Let us then consider the non-singular transformation

z, =z, + az,)

15”:27;

This transformation carries f into
A&y - ) =fz + a2, -

and evidently does not change the coefficients of the terms i
ok ek,

' A,
A X I AN A §
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Now, since every term in f;, except the term in 2%, contains at least
@, _, the coefficient of the term in #/* will

one of the variables 7, ---

be
S0, -+ 0, 1) = flay, -+ 2,y 1).

Our lemma will therefore be proved if we can show that the
gonstants a;, -~ a,_; can be so chosen that this quantity is not zero.

Let us take any point (by, -~ §,) for which 8, 0; and consider
a neighborhood of this point sufficiently small so that z, ‘does
not vanish at any point in this neighborhood. Then, since f
does not vanish identically, we can find a point (e, +-- ¢,) in this
neighborhood (so that ¢,+0) such that

ﬂcl, we cn)¢ 0-

If now we take for a;, ---a,_, the values ¢,/
have, since f is homogeneous,

Aag - a,_4, 1) %0,

Thus our lemma is proved.

Cas ++* Cy—y/Cy» We shall

TaroreM 1. If f(zy,+-2,) (3 @ homogeneous polynomial of the kth

* degree, there exists a non-singular linear transformation which carries

, ; . hr k :
finto a new form f, in which the terms in '}, -+ @', all have coefficients
different from zero.

The proof of this theorem follows at once from the preceding
lemma. For we need merely to perform in succession the trans-
formations which cause the coefficients first of 2% then of z, ele.,
to become different from zero, and which our lemma assures us
will exist and be non-singular, to obtain the transformation we
want. To make sure of this it is necessary merely to notice that
the coefficient of 2% obtained by the first transformation will not
be changed by the subsequent transformations; that the same
will be true of the coefficient of 2% obtained by the second trans-
formation ; ete.

Tarorem 2. If f(z, - z,) is a polynomial of the kth degree
which is not necessarily homogeneous, there exists a non-singular
homogeneous linear transformation of (zy, --- ,) which makes. this
polynomial of the kth degree in each of the variables ), - &, taken
separately.
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If f is homogeneous, this is equivalent to Theorem 1. If fig
non-homogeneous, we may write it in the form

Ry -+ 2) = Gy 2 Ba) + Gy (T - Z0) o0+ (2, “’n)‘*‘%

where each ¢ is a homogeneous polynomial of the degree indicated
by its subscript or else is identically zero. We need now meraly to
apply Theorem 1 to the homogeneous polynomial ¢, which is, of
course, not identically zero.

This theorem, and therefore also Theorem 1, which is merelya
special case of it, admits the following generalization to the case ofa
system of functions :

THEOREM 3. If we have a system of polynomials
Sy - 3, Sowy @

of degrees ky, ky, - k,, respectively, there exists a non-singular homo-

geneous linear transformation which makes these polynomials of degrees
kyy ++ Ky, i each of the variables z;, -

This theorem may be proved either by the same method used i
proving Theorems 1, 2; or by applying Theorem 2 to the produoct

z}, taken separately.

f1f2 "-'fm'

CHAPTER XV

FACTORS AND COMMON FACTORS OF POLYNOMIALS IN ONE
VARIABLE AND OF BINARY FORMS:

65. Fundamental Theorems on the Factoring of Polynomials in
One Variable and of Binary Forms. Theorem 2, § 6 may be stated
in the following form :

TrrorEM 1. A polynomial of the nth degree in one variable is
always reducible when n>1. It can be resolved into the product of n
linear factors in one, and essentially in only one, way.

By means of § 62 we can deduce from this a similar theorem in
the case of the binary form
(1) agry + axilz, + oo + a,28
Let us first assume that @y 0. Then the non-homogeneous poly-
nomial
(2) a7 + e + o + 4,
corresponds to (1), aecording to the definition of § 62. Factoring
(2), we get

a2y — )2 — @) -+ (2 — @)y

or, if we take n constants «f, f, --

(3) (efzy — ay)(eymy — op) - (aazy — o),

- @, whose product is ay,

where for brevity we have written

wo; = o (t=1,2 . a)
By Theorem 1, § 62, we now infer that the binary form (1) is identi-
cally equal to

@ - (ezy —

&y,) (g — ayz,y) - (ehzy — @, %,).
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