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For suppose the form (4) were definite and non-singular; and
that @;=0. Then the form would vanish at the point

xl= van =2:‘-_! = xl-+1 ==, = O’ Ti= 1;
and this is impossible, since this is not the point (0,0, ... 0},

EXERCISES

1. DermxitioN. By an orthogonal transformation* is understood a linear frans
formation which carries over the variables (Zyy- ) into the variables (2], %,) in such
& way that

xf s :c§ oE eawi xﬁEz? +a et 23

Prove that every orthogonal transformation is non-singular, and, in particular,
that its determinant must have the value + 1 or — 1. d

2. Prove that all orthogonal transformations in n variables form a group; and
that the same is true of all orthogonal transformations in n variables of deter
minant + 1.

3. Prove thata necessary and sufficient condition that a linear transforma.
tion be orthogonal is that it leave the * distance ”

Vi-2) + (@2 —2) + =+ Un—)*
between every pair of points (31, =+ #); (21, - 2,) invariant.

4. Prove that if n =38, and if 1, 25, 25 be interpreted as non-homogeneous
rectanglar codrdinates in space, an orthogonal transformation represents eithera
rigid displacement which leaves the origin fixed, or such a displacement combined
with reflection in a plane through the origin.

Show that the first of these cases will occur when the determinant of the
transformation is + 1, the second when this determinant is — 1.

5. If the coefficients of a linear transformation are denoted in the usual way
by ¢y, prove that a necessary and sufficient condition that the transformation be
orthogonal is that el 4 vbel=l (i =1,2, 1),

€130y + CaiCyy + v+ + CuiCy =0 {i=1’2""n‘ i
1iC1y 2iCgy niCny = j=1,2,---nhf:].

Show that these will still be necessary and sufficient conditions for an orthogonal

transformation if the two subscripts of every ¢ be interchanged.t

* The matrix of such a transformation is called an orthogonal matrix, and its deter
minant an orthogonal determinant,.

t We have here } n (n + 1) relations between the n? coefficients of the transformae
tion. This suggests that it should be possible to express all the coefficients in terms of
_n(n+l) _n(n-1)

Em

of them, or if we prefer in terms of }n (n — 1) other parameters. For Cayley's diss

n2

eussion of this question cf. Pascal’s book, Die Determinanten, §47. Cayley’s formuley

however, do not include all orthogonal transformations except as limiting cases.

CHAPTER XII

THE SYSTEM OF A QUADRATIC FORM AND ONE OR MORE
LINEAR FORMS

53. Relations of Planes and Lines to a Quadric Surface. If the
plane

(]') ulxl + u‘zxg + usi‘a + u4ﬂ54 — 0

i§ a true tangent plane to the quadric surface

(2) %a@-zixj =0,

there will be a point (yy, ¥, ¥y y,) (namely the point of contact)
lying in (1) and such that its polar plane

(3) éaﬁx,-yj =

eoincides with (1). From elementary analytic geometry we know
that a necessary and sufficient condition that two equations of the
first degree represent the same plane is that their coefficients be pro-
portional.  Accordingly, from the coincidence of (1) and (8), we

deduce the equations
Yy + Yy + Ay + ayy, — puy =0,
@ Uo1Yy + Coglfs + Qogly + gy — puy =0,
Bg1Y1 T Agglfy + Aggls + agy9 s — prg =0,
By + Aglfy + Aygys + ayy, — pu, =0,
From the fact that the point y lies on (1), we infer the further
relation )
(5) UrYy + gl + Uy + ugy, = 0.

A These equations (4) and (5) have been deduced on the suppo-

ffltion that (1) is a true tangent plane to (2). They still hold if

6 is a pseudo-tangent plane ; for then the quadric must be a cone,

ind a vertex of this cone must lie on (1). Taking the point y as

ihis vertex, equation (5) is fulfilled. Moreover, since now the first
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member of (3) is identically zero, equations (4) will also be fulilled"
if we let p=0. Thus we have shown in all cases, that if (1)isa
vangent plane to (2), there exist five constants, y5, ¥a ¥g Ys Py of
which the first four are not all zero, and which satisfy equations (4

and (5). Hence Bo T ey g

gy gy (g3
\6) (g (33 Ogg
Gy Og Oy
Uy Yy Yy

Conversely, if this last equation is fulfilled, there exist ﬁva'

constants, gy, ¥as ¥a Ya P> 0O all zero, and which satisty equations
(4) and (5). We can go a step farther and say that yy, g5 a2y
cannot all be zero, as otherwise, from equations (4) and the fact tha
the w’s are not all zero, p would also be zero. Thus we see thatif
equation (6) is fulfilled, there exists a point (y;, ¥y ¥ ¥,) in the
plane (1) whose coérdinates, together with a certain constant p,
satisfy (4). If p =0, this shows that the quadric is a cone withgy
as a vertex, and hence that (1) is at least a pseudo-tangent plane.
If p + 0, equations (4) show us that the polar plane (3) of y coin:
cides with the plane (1). Moreover we see, either geometrically, or
by multiplying equations (4) by ¥y, ¥a Ys 94 respectively and add=

ing, that the point y lies on the quadric; so that, in this case, (1) 18 =

a true tangent plane.
We have thus established the theorem :

TarorEM 1.  Equation (6) is a necessary and sufficient condition
that the plane (1) be tangent to the quadric (2).

It will be seen that this theorem gives us no means of distinguish

ing between true and pseudo-tangent planes of quadric cones. In 5

the case of non-singular quadrics, pseudo-tangent planes are impos=

sible, and therefore equation (6) may, in this case, be regarded as tha

equation of the quadric in plane-codrdinates.
In the case of a quadric surface of rank 38, that is, of a cone vnth
a single vertex, the codrdinates (uy, uy, tg, uy) of every plane through

this vertex satisfy equation (6), so that in this case this equatior |

represents a single point, and not the quadric cone.*

# In fact a cone cannot be represented by a single equation in plane-cotrdinates.
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If the rank of (2) is less than 3, the coérdinates of every plane
in space should satisfy (6), since every such plane passes through a
vertex and is therefore a tangent plane. This fact may be verified
by noticing that equation (6) may also be written

%Avu,uj —_ 0,

where the A’s are the cofactors in the discriminant of (2) according
to our usual notation.

We pass now to the condition that a straight line touch the
quadric (2). This line we will determine as the intersection of the
two planes (1) and
() vyZy + Vg + Vg + vz, = 0.

If the line of intersection of these planes is a true tangent to (2),
there will be a point (¥, ¥, ¥ ¥,), namely the point of contact, lying
uponit, and such thatits polar plane(8)contains theline. Itmustthere-
fore be possible to write the equation of this polar plane in the form

. 4
(8) El(l-mf +m)z, = 0;
and, in fact, by properly choosing the constants u and », the co-

efficients of (8) may be made not merely proportional, but equal to
the coefficients of (8):

@Yy + Ol + Qigls + 0y, — paty — v, =0,
9) g1y + Gaglfa + Aoglfs + Aoyl — Pty — w0, =0,
g1y + Qo + Aggls + gyl y— ptg — vy =0,
@yly + Cgelfy + Uuglfs + Aygly s — prty— vy =0,
Since the point y lies on the line of intersection of the planes (1)

'a.nd (7), we also have the relations

(10) . [uly1+u9y2+u&y{i+u4y4=0’
V1Y + 55 + v+ vy, = 0.
Since the six equations (9) and (10) are satisfied by six constants
Y Y2 Yo Yu B v 00t all zero, we infer finally the relation

ay
gy
(11) P31
Oy
%
L |
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We have deduced this equation on the supposition that the line of
intersection of (1) and (7) is a true tangent to (2). We leaveitito
the reader to show that (11) holds if this line is a pseudo-tangent,
and also if it is a ruling of (2).

We also leave it for him to show that if (11) holds, the line of
intersection of (1) and (T) will be either a true tangent, a pseudo:
tangent, or a ruling, and thus to establish the theorem:

THEOREM 2. A necessary and sufficient condition that the line of
intersection of the planes (1) and (7) be either a tangent or a ruling
of (2) ds that equation (11) be fulfilled.

On expanding the determinant in (11), it will be seen that it i§
a quadratic form in the six line-codrdinates gy (cf. Exercise 3, § 35)
Equation (11) may therefore be regarded as the equation of the
quadric surface in line-cosrdinates if the surface is not a cone, or i
a cone with a single vertex. If the rank of (2) is 2, so that the
quadric consists of two planes, (11) is the equation of the line of
intersection of these planes. While if the rank is 1 or 0, (11)1s

identically fulfilled.
EXERCISES

1. Two planes are said to be conjugate with regard to a non-singular quadris

surface if each passes through the pole of the other. ;

Prove that if (2) is a non-singular quadric, a necessary and sufficient cons
dition that the planes (1) and (7) be conjugate with regard to it is the vanishing
of the determinant g uy
Gog Uy 4
“&'s o Ug = - %A,‘jﬂily.
Qg u,

v, 0

How must this definition of conjugate planes be extended in order that this =

theorem be true for singular quadrics also?
2. Prove that if (2) is a non-singular quadric, a necessary and sufficient com

dition that the point of intersection of three planes lie on (2) is the va.nis}}ing il
the seven-rowed determinant formed by bordering the discriminant of (2) with the:

coefficients of the three planes.
3. Admitting it to be obvious geometrically that a necessary and sufficient cot:

dition that a line touch a non-singular quadric is that the two tangent planes which =%

can be passed through this line should coincide, prove that, if (2) is non-singular,
a necessary and sufficient condition that the line of intersection of (1) and (7)

9) i - d .
touch (2) is (% Agugg) (; Aoy ~ (}1; Aguw)2=0.

4. Show algebraically that the condition of Exercise 3 is equivalent to (11)-
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54. The Adjoint Quadratic Form and Other Invariants. Passing
now to the case of n variables, we begin by considering the system
consisting of a quadratic form and a single linear form

(l) }1: Qi T35

(2)

The geometrical considerations of the last section suggest that we
form the expression ay 4, U

(8) %A,—j Uy Uy = —
L5

Y

This, it will be seen, is a quadratic form in the variables (u, - u,)
whose matrix is the adjoint of the matrix of (1). We will speak of
(8) as the adjoint of (1).

The invariance of (3) is at once suggested by the fact that in the
case n = 4 the vanishing of (3) gave a necessary and sufficient con-
dition for a projective relation. In fact we will prove the theorem :

TreoreM 1. The adjoint form (8) is an invariant of weight two of
the pair of forms (1), (2).

Inasmuch as the «'s are, as we saw in § 34, contragredient to the
7's, we may also call (3) a contravariant (cf. Definition 2, § 34).

In order to prove this theorem we must subject the #s to a linear
transformation,

(%)

Ty =0y 2] + o+ Cln

Ty = (.‘mx{ e R
whose determinant we will call ¢. Let us denote by af; and uf re-
spectively the coefficients of the quadratic and linear form into which
this transformation carries (1) and (2).

Let us now introduce an auxiliary variable ¢, and consider the
quadratic form in z,, --- z,, £,

(5) 2042254 2t (2 + - + W, 3,).

The discriminant of this form is precisely the determinant in
(3), that is, the negative of the adjoint of (1).
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Let us now perform on the variables ;, -+ z,,¢ the linear trans
formation given by formula (4) and the additional formula
(6) t=1,
The determinant of this transformation is ¢, and it carries over the
into
form (5) n % a{jxém} +2 t’(u{x{ et u:‘z;).
From the fact that the discriminant of (5) is an invariant of
weight 2, we infer the relation we wished to obtain :
@y O Uy By e Gy Sy
a:l], e a’:m u:'t

The method just used admits of immediate extension to the proof

of the following more general theorem:

THEOREM 2. If we have a system consisting of a quadratic form i
n variables and p linear forms, the (n+ p)-rowed determinant formed by
bordering the discriminant of the quadratic form by p rows and p
columns each of which consists of the coefficients of one of the linea®
Sforms 18 an twariant of weight 2.

We leave the details of the proof of this theorem to the reader.

If the discriminant a of the quadratic form (1) is not zero, we may

form a new quadratic form whose matrix is the inverse of the matrix

of (1). This quadratic form, which is known as the inverse or
reciprocal of (1), is simply the adjoint of (1) divided by the discrimis

nant @. We will prove the following theorem concerning it:

TaeorEM 3. If the quadratic form (1) is non-singular, it will be

carried over into its inverse by the non-singular transformation
(M) Th= 2 + o+ 0T,

For we have

But from (T) we have
zi= 405 4 o 4 Bl

and thgrefore % 0,07 = % = i)
a

as was to be proved.

(i=1,2,-m) |
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It will be noticed that if (1) is a real quadratic form, the trans-
formation (7) is real; and from this follows

THEOREM 4. A real non-singular quadratic form and s inverse
have the same signature.

EXERCISES

1. Given a quadratic form Zayz;z; and two linear forms Jujz;, Jvyz;

Prove that

G ot G Y

"
f Aguipy=—
[
|
i8 an invariant of the system of weight 2.

2. Generalize the theorem of Exercise 1 to the case in which we have more
than two linear forms.

8. Prove that if a first quadratic form is transformed into a second by the
linear transformation of matrix ¢, then the adjoint of the first will be transformed
into the adjoint of the second by the linear transformation whose matrix is the
conjugate of the adjoint of c.

4, Prove a similar theorem for bilinear forms.
5. State and prove a theorem for bilinear forms analogous to Theorem 8.

65. The Rank of the Adjoint Form. Suppose the discriminant
of the quadratic form %a,-jm,-xj is of rank », and that the discrimi-

nant 4 of its adjoint % Ayup; is of rank B. Then, if r<n—1, all
the (n — 1)-rowed determinants of o are zero; but these are the ele-
ments of A, hence BR=0. If »r=mn—1, at least one of the elements
of 4 is not zero, and all two-rowed determinants of A are zero (since
by § 11 each of them contains a as a factor), hence B=1. If r=mn,
R=mn; for if B were less than n we should have 4 =0, and there-
fore a=0 (since A=a""1). But this is impossible, since by hypothesis
r=n. We have then:

TarorEM 1. If the rank of a quadratic form in n variables and of
#s adjoint are r and R respectively, then
; if r=n, RB=mn,"
ifr=n—1, R=1,
ifr<n—1, B=0.
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Let us consider further the case »=n—1. Here we have seen
that R =1, that is, that the adjoint is the square of a linear form,

7 3 L]
% A,Ju,uJ E(% C',‘-u,‘)z e % G.icju,-uj.

Comparing coefficients, we see that
Ay = cip

All the ¢'s cannot be zero, as otherwise we should have B =0. Let
¢, 0. Then since = ot
AL = VA

we see that not all the quantities (4,5, --- A,,) are zero. Accord:
ingly (cf. §44) the point (A, A g -+ 4;5), and therefore also the
point (e, ++ ¢,), is a vertex of the original quadratic form. Thuswe

have the theorem :

TrEOREM 2. IF the rank of a quadratic form in n variables isn—1,

its adjoint is the square of a linear form, and the coefficients of this

linear form are the codrdinates of a vertez of the original form.

Since, in the case we are considering, all the vertices of the
quadratic form are linearly dependent on any one, this theorem com-
pletely determines the linear form in question except for a constant
factor.

CHAPTER XIII
PAIRS OF QUADRATIC FORMS

56. Pairs of Conics. We will give in this section a short geomet-
rical introduction to the study of pairs of quadratic forms, confining
ourselves, for the sake of brevity, to two dimensions.

Let % and v be two conics which we will assume to be so situated
that they intersect in four, and only four, distinet points, 4, B, €, D.
Consider all conics through these four points. These conics, we will

/

Q

sfs\y, form a pencil. It is obvious that there are three and only three
smglilla,r conics (4.e. conics which consist of pairs of lines) in this
pencil, namely, the three pairs of lines AB, CD; BC, DA; AC, BD.
Let us call the “vertices” of these conics P, @, and R respectively.

From the harmonic properties of the complete quadrilateral* we
8é¢ that the secants PAB and PCD are divided harmonically by the

# Cf. any book on madern geométry.
163
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line @R. Accordingly @R is the polar of P with regard to ever,j;itl

conic of the pencil. In a similar manner PR is the polar of @, and"
PQ the polar of R with regard to every conic of the pencil. Thus
we see that the triangle PQR is a self-conjugate triangle (see §41)
with regard to every conic of the pencil. Accordingly, if we per
form a collineation which carries over P, @, B into the origin and
the points at infinity on the axes of z and y, the equation of every
conic of the pencil will be reduced to a form in which only the
square terms enter. We are thus led to the result:

THEOREM. If two conics intersect in four and only four distine
points, there exists a non-singular collineation which reduces thei
equations to the normal form

{AI:J:% + A3 4+ Apad=0,
B} + By} + By =0.

If we wish to carry through this reduction analytically, we shall
write the equations of the two conics # and v in the forms

The pencil of conics may then be written

or rather, to be accurate, this equation will represent for different
values of A all the conics of the pencil except the conic ». The
singular conics of the pencil will be obtained by equating the
discriminant of (2) to zero,

ay —Aby @y — by, a3 —Abyg

g =My A =Ny a— by
This equation we will call the A-equation of the two conics

When expanded, it takes the form

(4) AN 4+ 87— @1 +A =0,

ks ‘W
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where A, A' are the discriminants of » and v respectively, and
@y A by

B=lq, ay by|+

g1

ay b A by @y ay

g by g | + by gy gy,

a5 by ag by agy ag

while ®' can be obtained from ® by an interchange of the letters a
and . « It can readily be proved (cf. the next section) that the co-
gfficients ® and @' as well as A and A’ are invariants of weight two.

Except when the discriminant A’ of v is zero, the equation (4)
is of the third degree, and its three roots, which in the case we
have considered must evidently be distinct, give, when substituted
i (2), the three singular conics of the pencil.

We will not stop here to show how the theory of any two
gonics, where no restriction as to the number of points of intersec-
fion is made, can be deduced from equation (8).* This will follow
in Chapter XXII as an application of the method of elementary
divisors. Our only object in this section has been to give a geo-
metrical basis for the appreciation of the following sections.

gy bgg

57. Invariants of a Pair of Quadratic Forms. Their A-Equation.

We consider the pair of quadratic forms

Hay--2) = 3oy,

Wz, ez,)= %lbij;rixj,
and form from them the pencil of quadratic forms
¢ _— 7\,‘# == lz(a"j == bej)zixju

The discriminant of this pencil,
By —.M‘zu R

=H\),

Oy — 7\6,,1 0t Oy — A'brm
i8 8 polynomial in \ which is in general of degree n, and which may
bewritten  F(r)=@, - O\ + -+ (— 17O,

* An elementary discussion of the h-equation of two conics (I'équation en \)is
regularly given in French text-books on analytic geometry. See, for instance, Briot
&t Bouquet, Legons de Géoméirie analytique, 14th ed., p. 349, or Niewenglowski, Cours
de Géoméprie analytique, Vol. I, p. 459.
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The coefficients of this polynomial are themselves polynomials in
the a;’s and b;’s, ©, and @, being merely the discriminants of ¢ and
4 respectively, while 8, is the sum of all the different determinants
which can be formed by replacing % columns of the diseriminant of
¢ by the corresponding columns of the discriminant of .

TrEOREM 1. The coefficients @, --- O, of F(\) are integral rational
invariants of weight two of the pair of quadratic forms ¢, \r.*

In order to prove this, let us consider a linear transformation of
determinant ¢ which carries over ¢ and 4 into ¢' and 4 respec-

tively, where n
P = % a2 )y

=382,
Let us denote by ®} the polynomial in the a/’s and 8/’s obtained by

putting accents to the a’s and #’s in ®;. Our theorem will then be
proved if we can establish the identities

0= 0, (i=0,1, n)

This follows at once from the fact that F()), being the discriminant
of ¢ — A\, is an invariant of weight two, so that if we denote by
F'()) the discriminant of ¢' — A+, we have

Fi(\) = 2 F(\).

This being an identity in A as well as in the o’s and b’s, we can
equate the coefficients of like powers of A on the two sides, and this
gives precisely the identities we wished to establish.}

The equation F(A\)=0

we will call the A-equation of the pair of forms ¢,4. Since, as we
have seen, F' is merely multiplied by a constant different from 7610
when ¢ and y are subjected to a non-singular linear transformation,

#* Cf, Exercise 13, § 90.

{ The method by which we have here arrived at invariants of the system of W0
quadratic forms will be seen to be of very general application. If we have an integral
rational invariant I of weight u of a single form of the kth degree in » variables, we cal
find a large number of invariants of the system g1, ¢s, -+ ¢, of p forms of the kth d(-agrﬁe
in n variables by forming the invariant I for the form gy + - +Xy¢p. This will be

a polymonial in the N’s, each of whose coefficients is seen, precisely as above, t0 be an

integral rational invariant of the systems of ¢’s of weight p.
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the roots of the A-equation will not be changed by such a transfor
mation. These roots, however, are irrational functions of the @’s and
hence of the a's and §’s. We may therefore state the result:

TeEOREM 2. The roots of the N-equation of a pair of quadratie
Jorms are absolute irrational invariants of this pair of forms with
regard to non-singular linear transformations.

It is clear that the multiplicity of any root of the A-equation
will not be changed by a non-singular linear transformation. Hence

TrroreyM 3. The multiplicities of the roots of the N-equation are
arithmetical invariants of the pair of quadratic forms with regard to
aon-singular linear transformations.

i ¢ =i+ - + gl
Y= 2} + -+ 22

the roots of the A-equation are ay,:--a, This example shows
that the absolute invariants of Theorem 2 may have any values,
and also that the arithmetical invariants of Theorem 3 are subject
tono other restriction than the obvious one of being positive in-
tegers whose sum is #.

58. Reduction to Normal Form when the A-Equation has no Multi-
ple Roots. Although our main concern in this section is with the
sase in which the A-equation has no multiple roots, we begin by estab-
lishing a theorem which applies to a much more general case.

TueoreM 1. If X\, is a simple root of the \-equation of the pair
. ¥ of quadratic forms in n variables, then, by a non-singular lineas
trangformation, ¢ and r can be reduced respectively to the forms

. {M + (e - 20)
et + (2 -+ 2,)
where ¢, is a constant not zero and ¢y, 'y are quadratic forms in the
=1 variables zy, -+ 2,
To prove this, we will consider the pencil of forms

b=Mp=¢— A+ (A — A
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Since A, is a root of the A-equation of the pair of forms ¢, v, the form
é—\y issingular, and can therefore, by a suitable non-singular linear
transformation, be written in a form in which one of the variables, say

2!, does not enter, ¢ — A= ¢/(al, - al).

If this transformation reduces 4 to v, we have
(®) $—Mp=¢/(2 - 2) + (A — )P (2, - 20)-

The discriminant of the quadratic form which stands here on the
right cannot contain A, —\ as a factor more than once, since A, is, by
hypothesis, not a multiple root of the A-equation of ¢ and 4. If =
follows from this that the coefficient of zj? in the quadratic form ¥
cannot be zero, for otherwise the discriminant of the right-hand side
of (3) would have a zero in the upper left-hand corner, and A; =&
would be a factor of all the elements of its first row and also of lts
first column ; so that it would contain the factor (A; — A )%

Since the coefficient of /2 in 4 is not zero, we can by Lagrange’s
reduction (Formule (2), (3), §45) obtain a non-singular linear trans
formation of the form

=77+ N+ o + %

By = A

which reduces ¥/ to the form
ey2] + ¥y (25, -+ 2,) (e, #0):
This transformation carries over the second member of (3) into
¢ (2 2) + (M = M) ¥y - 2) + (M — M)y
Combining these two linear transformations and writing
¢ (2 20) + My ¥y (2 = 20) = il2 2y *

we have thus obtained a non-singular linear transformation which
effects the reduction,

G (@ys - ) =My, -

zu) = (A’l = k’) 4312{-

2,)—Mry(2g, +*

If, here, we equate the coefficients of A on both sides, and the
terms independent of A, we see that we have precisely the redut- ¥
tion of the forms &, 4 to the forms(1); and the theorem is proved. §

|

Za) = (2, -

Tespectively, where ¢y,
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Let us now assume that the form 4 is non-singular, thus insur-
ing that the A-equation be of degree n. We will further assume
that the roots Ay, A, - A, of this equation are all distinct. We can
then, by the theorem just proved, reduce the forms ¢, ¢ to the forms
(1) by a non-singular linear transformation. The \-equation of these
two forms is seen to differ from the A-equation of the pair of forms
in (n—1) variables ¢,, ¥; only by the presence of the extra factor
M—A. Accordingly the X-equation of the pair of forms ¢, ¥, has
a8 its r00ts Ay, -+ A, and these are all simple roots. We may there-
fore apply the reduction of Theorem 1 to the two forms ¢, 4, and
thus by a non-singular linear transformation of 2, .- z, reduce them
to the forms Ay a2 + o2l -+ 2L)

0y’ + Yra(2g, - 24):
This linear transformation may, by means of the additional formula
2 =12y
be regarded as a non-singular linear transformation of 2, ...
carries over ¢, 4 into the forms
Mo + Agey2d + By(2p - 23),
o2+ ey (2, - 2)).
Proceeding in this way, we establish the theorem:

TaroreM 2. If ¢,y are quadratic forms in (2, -+- 2,) of which the
second 18 mon-singular, and if the roots N, -+ N, of their N-equation are all
distinet, there exists a non-singular linear transformation which carries

; i

gver ¢ and r into AR+ Agly @R 4 oo 4 N0, 22,
12 /9

Clxl 3 5'2332 + +

¢, are constants all different from zero.

2, which

e, w2

Since none of the ¢’s are zero, the linear transformation
= Ve, &} (i=1,2 --n)

18 non-singular. Performing this transformation, we get the further

result:

TaporEM 8. Under the same conditions as in Theorem 2, ¢ and
‘k may be reduced by means of a non-singular linear transformation to

the normal forms M2+ N2 4+ -+ N, 22,
o3+ x%-{- STk
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From this we infer at once

TaEoREM 4. If in the two pairs of quadratic forms ¢, ¥ and ¢y
A the forms vy and ' are both non-singular, and if the \-equations of
these two pairs of forms have no multiple roots, a mecessary and suf-
ficient condition for the equivalence of the two pairs of forms is that
these two N-equations have the same roots ; or, what amounts to the same
thing, that the invariants 8, ©,, .. ©, of the first pair of forms be pro-
portional to the invariants 8, O}, --- @, of the second.

EXERCISE

Prove that, under the conditions of Theorem 3, the reduction to the normal
form can be performed in essentially only one way, the only possible variation
consisting in a change of sign of some of the &’s in the normal form.

59. Reduction to Normal Form when { is Definite and Non-
singular. We now consider the case of two real quadratic forms
&, ¥ of which 4 is definite and non-singular. Our main problem i§
to reduce this pair of forms to a normal form by means of a real
linear transformation. For this purpose we begin by proving

TueoreM 1. The A-equation of a pair of real quadratic forms
¢, ¥ can have no imaginary root if the form \r is definite and nomn
singular.

For, if possible, let « + B¢ (« and B real) be an imaginary roo of
this A-equation, so that 8= 0. Then ¢— ey — By will be a singular
quadratic form, and can therefore be reduced by a non-singular
linear transformation

o = (P +1911) 21+ + + (P1at1910) Two

T‘:’i > (pnl % ?:in)xl By (Pml + ian)xn
to the sum of % squares, where k < n,
) $— o —ifgp=al + 2 + -+

Let
@) Yi="Pu® + -+ Py

(3) g =% 4 e +9'!nwﬂ

s0 that 3’5 =1+ iz,
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By equating the coefficients of ¢ on the two sides of (1) we thus get
4) —BY=2yz+ip2+ - +24.

Let us now determine z,, --- 2, s0 as to make the right-hand side
of (4) vanish, for instance by means of the equations

; Nn=p=-

A reference to (2) shows that we have here a system of % real
homogeneous linear equations in # unknowns, so that real values of
2, -+ 2,00t all zero can be found satisfying these equations. For
these values of the variables, we see from (4) that 4 vanishes; but
this is impossible (cf. the Corollary of Theorem 8, § 52), since ¥ is by
hypothesis non-singular and definite. :

=yk=0'

THEOREM 2. If v is a non-singular definite quadratic form and ¢
18 any real quadratic form, the pair of forms ¢, yr can be reduced by a
real non-singular linear transformation to the normal form
¢=+ (M2f + - +020),
y=2( a4t ),

(3)

where Myy -+« Ny, are the roots of the M-equation, and the upper or lower
sign i to be used in both cases according as \r 18 a positive or a negative
Jorm.

The proof of this theorem is very similar to the proof of
Theorem 2, § 58. We must first prove, as in Theorem 1, § 58,

that ¢, ¥+ can be reduced by a real non-singular linear transforma-
tion to the forms Ay 22 (
683+ (25 +--2,)
(6) ; (¢,#0)
e8] + ¥y (2 -+ 20)-

To prove this, we consider the pencil of forms
p—Mp=¢ =2+ — M)y

._Since A, is real by Theorem 1, ¢ — A4 is a real singular quad-
tatic form, and can therefore by a real non-singular linear trans-
formation be reduced to a form in which one of the variables does

1ot enter, Sy
¢ =My =922 %)
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If this transformation reduces ¥ to ¥/, we have

(M ¢—Mp=9/(ah - 2,) + M = M)P' (@), - 22)-

At this point comes the essential difference between the case

we are now considering and the case considered in § 58, as A may
now be a multiple root of the discriminant of the. right-hand side
of (7). We need, then, a different method for showing that the
coefficient of 22 in 4 is not zero. For this purpose it is sufficient

to notice that v, and therefore also ¥, is a non-singular definife" "
form, and that accordingly, by Theorem 4, § 52, the coefficient of

none of the square terms in 4 can be zero.

Having thus shown that the coefficient of #2 in v'is not zero,
we can apply Lagrange’s reduction to 4, and thus complete the
reduction of the forms ¢, y» to the forms (6) precisely as in the proof
of Theorem 1, § 58, noticing that the transformation we have to deal
with is real.

In (6), ¢y, ¥, are real quadratic forms in the n—1 variables
Moreover, since :

Y2y - 7)== + Yy (2 -+ 2,)

is non-singular and definite, it follows that the same is true of ¥
For, if 4, were either singular or indefinite, we could find values
of 2y, -+ 2, not all zero and such that 4, =0; and these values to-
gether with the value 2, =0 would make y=0. This, however, 18
impossible by the Corollary of Theorem 3, § 52.

The A-equation of the two forms ¢,, Y, evidently differs from

By *** e

the A-equation of ¢, y» only by the absence of the factor A —,. The.

roots of the A-equation of ¢,, Y, are therefore Ay, -+ A,, so that if we

reduce ¢, and 4, by the method already used for ¢,y (we have just |

seen that ¢,, Y, satisfy all the conditions imposed on ¢, y), we get

b1 -+ 2) = Mg €252 + Py (25, -+ 2,),
Vieg - 2)= G+ Pz - 2,).

Proceeding in this way, we finally reduce ¢, Y by a real non-singw |

lar linear transformation to the forms

{QbEllcly% sl +7“ncny%1

o Y= ettt gk
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Since ¥ is definite, the constants ¢, --- ¢, are all positive or all nega-
tive according as v is a positive or a negative form. By means of
the further non-singular real linear transformation

7= '\/l?al Y
the forms (8) may be reduced to the forms (5), and our theorem is

pr_pved. :

(2':17 21 "'n)e

EXERCISES

1. If ¢ is a real quadratic form in n variables of rank r, prove that it can be
rednced by a real orthogonal transformation in n variables to the form
€% + C x4 e + ¢k
(f. Exercises, § 52.

2. Bhow that the determinant of the orthogonal transformation of Exercise 1
may be taken at pleasure as +1 or —1.

3. Discuss the metrical classification of real quadric surfaces along the
following lines:

Agsume the equation in non-homogeneous rectangular coérdinates, and show
that by a transformation to another system of rectangular cosrdinates having the

‘same origin the equation can be reduced to a form where the terms of the second

degree have one or the other of the five forms (the A’s being positive constants)
: Ala:f-i—Agxg-?-Agxg,

Ay + Ayl — Agai,

A12i + Asz,

A7)~ Ay,

A4,

Then simplify each of the non-homogeneous equations thus obtained by further
transformations of codrdinates; thus getting finally the standard forms of the
equations of ellipsoids, hyperboloids, paraboloids, cones, cylinders, and planes
Which are discussed in all elementary text-books of solid analytic geometry.




