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For suppose the form (4) were de:finite and non-singular¡ and 
that ª• = O. Then the forro would vanish at the point 

x1 = .. ,=x,_1 =x,+1 = ... =x.=0, x,=1; 
and this is impossible, since this is not the point (O, O, ... O;. 

EXERCISES 
l. DEFINITION. By an orthogonal trarisformation • is understood a linear tra,.. 

formatfon which carries over the variables ( X11•·· Xn) into the variables ( x{, .. , x,.) in IUC4 
;way that 

x? + x: + ... + x; = xr2 + ".2 + ... + x:. 
Prove that every orthogonal transformation is non-singular, and, in particular, 

that its determinant must have the value + 1 or - l. 

2. Prove that all orthogonal transformations in n variables form a group; and 
that the same is true of all orthogonal transformations in n variables of deter, 

minant + l. 
3. Prove that a necessary and sufficient condition that a linear transform• 

tion_ be orthogonal is that it leave the "distance" 

v(y1 - z1)2 + (y2 - Z2)2 + ... + (y,. - Zn)2 
between every pair of points (yi, ... y,.), (zi, ... z,.) invariant. 

4. Prove that if n = 3, and if x1, x2, xs be interpreted as non,homogeneona 
rectanglar coordiu.ates in space, an orthogonal transformation representa either a 
rigid displacement which lea ves the origin fixed, or such a displacement combined 
with refiection in a plane through the origin. 

Show that the first of these cases will occur when the determinant of the 
transformation is + 1, the second when this determinant is - l. 

5. If the coefficients of a linear transformation are denoted in the usual way 
by ciJ, prove that a necessary and sufficient condition that the transformation be 
orthogonal is that e~, +ci+ ... +e~= t (i = 1, 2, ... n), 

{
i= 1,2, .. ,n. . 
• 1 :P}• 

J = 1,2, .. ,n 

Show that these will still be necessary and suflicientconditionsforan orthogonal 
transformation if the two subscripts of every e be interchanged. t · 

• The matrlx of such a transformation is called an orthogonal matrlx, and lts deter­
tninant an orthogonal determinant. 

t We ha.ve here ½ n (n + 1) relations between the n2 coefflcients of the transfonna­
tion. This suggests that it should be possible to express all the coeflicients in terms of 

2 n(n+l) n(n-1) 
n 2 2 

of them, or lf we prefer in terms of ½ n ( n - 1) other parameters. For Ca.yley's dil­
t:IJi!Sion of this question cf. Pascal's book, Die Determinanten,. § 47. Cayley's formula!, , 
however, do not include ali orthogonal transformations except as limiting cases. 

CHAPTER XII 

TBE SYSTEM OF A QUADRATIC FORM AND ONE OR MORE 
LINEAR FORMS 

53. Relations of Planes and Lines to a Quadric Surface. If th, 
plane 
(\) 

is a true tangent plane to the quadric surface 

(2) 

there will be a point Ü/i, y2, y8, y4) (namely the point of contact' 
lying in (1) and such that its polar plane , 

(3) !ai3-x;y1 = .0 
1 

coincides with (1 ). From elementary analytic geometry we know 
that a necessary and sufficient condition that two equations of the 
first degree represent the same plane is that their coefficients be pro­
portional. Accordingly, from the coincidence of (1) and (3), we 
deduce the equations 

(4) 

1 

ª11Y1 + ª1•iJh + ª1a!Ja + ªuJh - pu1 = O, 
ª21Y1 + ª2?112 + ª2a!Ja + ª2J/4 - puz = O, 
ªs1Y1 + ªw/2 + ªaa!Js + ªaJ/4 - pua = O, 

ª41Y1 + ª4'11f2 + ª4a!fa + ª4J/4 - pu4 = O. 

From the fact that the point y lies on (1), we infer the further 
relation 
(5) 

.. These equat~ons (4) and (5) have been deduced on the suppo-
11t1on that (1) 1s a true tangent plane to (2). They still hold if 
it is a pseudo-tangent plane; for then the guadric must be a cone, 
m_d a vertex of this cone must lie on (1 ). Taking the point y as 
th1s vertex, equation ( 5) is fulfilled. Moreover, since now the first 
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member of (3) is identicaliy zero, equations (4) will also be fulfilled 
if we let p = O. Thus we have shown in ali cases, that if (1) is a 
tangent plane to (2), there exist five constants, y1, y2, y3, y4, p, of 
which the first four are not ali zero, and which satisfy equations (4) 
and (5). Hence 

ª21 ª22 ª2s ª2• U2 

,6) ªs1 ªa2 ªss a34 U3 = o. 
ª•1 ª•2 a43 a44 U4 

U¡ U2 U3 U4 o 

Conversely, if this last equation is fulfilled, there exist five · 
constants, y1, y2, y8, y4, p, not ali zero, and which Sátisfy equations 
( 4) and (5). We can go a step farther and say that y1, y2, y8, y4 
cannot all be zero, as otherwi,se, from equations ( 4) and the fact thaL 
the u's are not all zero, p would also_ be zero. Thus we see that Ü 

equation (6) is fulfilled, there exists a point (y1, y2, y8, y4) in the 
plane (1) whose coordinates, together with a certain constant p, 
satisfy ( 4 ). If p = O, this shows that the q uadric is a con e with g 
as a vertex, and hence that (1) is at least a pseudo-tangent plane. 
If p * O, equations (4) show us that the polar plane (3) of y coin­
cides with the plane (1). Moreover we see, either geometrically, or 
by multiplying equations (4) by y1, y2, y8, y4 respectively and add­
ing, that the point y líes on the quadric; so that, in this case, (1) is 

a true tangent plane. 
We have thus established the theorem: 

THEOREM 1. Equation (6) is a necessary and sufficient conditÍOtt 
that the plane (1) be tangent _to tlie quadric (2). 

It will be seen that this theorem gives us no means of distinguish· 
ing between true and pseudo-tangent planes of quadric eones. ID. 
the case of non-singular quadrics, pseudo-tangent planes are impos• 
sible, and therefore equation (6) may, in this case, be regarded as th• 
equation of the quadric in plane-coordinates. 

In the case of a quadric surface of rank 3, that is, of a cone with 
a single vertex, the coordinates ( u1, u2, u3, u4) of every plane through 
this vertex satisfy equation (6), so that in this case this equatioP 
represents a single point, and not the quadric cone.• 

• In fact a cone cannot be represented by a single equation In plane-co1lrdlnates. 
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lf the rank of (2) is less than 3, the coordinates of every plane 
in space should satisfy (6), since every such plane passes through a 
vertex and is therefore a tangent plane. This fact may be verified 
by noticing that equation (6) may also be written 

f.A¡;U;Uj = 0, 

where the .A's are the cofactors in the discriminant of (2) according 
to our usual notation. 

W e pass now to the condition that a straight line touch the 
quadric (2). This line we will determine as the intersection of the 
two planes (1) and 

(7) V1X1 + V2X2 + VifVa + v4x 4 = 0. 
If the line of intersection of these planes is a true tangent to (2), 

there will be a point (y1, y2, y3, y4} namely the point of contact, lying 
npon it, and such thatits polar plane(3) contains the line. It must there­
fore be possible to write the equation of this polar plane in the form 

(8) ! (µu,+ vv1)x1 = O; 
1 

and, in fact, by properly choosing the constants µ and v, the co­
efficients of (8) may be made not merely proportional, but equal to 
the coefficients of (3): 

(9) 
{

ª11Y1 + ª12'!!2 + ªrnYs + ª14'!/4 - µu1 - vv1=0, 
ª21Y1 + ª22'!!2 + ª23Ys + ª24'!!4 - µu2- vv2= O, 
ªs1'!/1 + ªa2'!!2 + ªssYs + ªs.Y 4- fJ,U3 - VV3 = O, 
ª41Y1 + ª42Y2 + ª4a'!f3 + a44Y4 - µu4 - vv4 =0. 

Since the point y lies on the line of intersection of the planes (1) 
and (7~ we also ha'\te the relations 

(10) { U1'!/1 + U2'!f2 + U?}/3 + U4Y4 = 0, 
V1'!J1 + V?JJ2 + Va'!f3 + V4Y4 = 0. 

Since the six equations (9) and (10) are satisfied by six constants 
U1, Y21 Ya, y4, µ, v not all zero, we infer finally the relation 

ª11 ª12 ª1a a¡4 U1 V1 
ª21 ª22 ªza ª24 U2 V2 

\11) ªa1 ªs2 a33 ªs4 U3 V3 =º· ª41 ail ª•s ª« U4 V4 

U1 U2 U3 U4 o o 

"• Va tia V4 (1 o 
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We have deduced this equation on the supposition that the line of 
intersection of (1) and (7) ~s a true tangent to (2). We lea ve it t.o 
the reader to show that (11) holds if this line is a pseudo-tangent, 
and also if it is a ruling of (2). 

We also leave it for him to show that if (11) holds, the line of 
intersection of (1) and (7) will be either a true tangent, a pseudo­
tangent, ora ruling, and thus to establish the theorero: 

THEOREM 2. A necessary and suificient condition that the line of 
intersection of the planes (1) and (7) be either a tangent ora rulir,g 
of (2) is that equation (11) be fulfilled. 

On expanding tbe determinant in (11 ), it will be seen that it is 
a quadratic form in tbe six line-coordinates qii ( cf. Exercise 3, § 35). 
Equation (11) may tberefore be regarded as the equation of the 
quadric surface in line-coordinates if the surface is not a cone, or is 
a cone with a single vertex. If the rank of (2) ·is 2, so that thi 
quadric consists of two planes, (11) is the equation of the line of 
intersection of these planes. While if tbe rank is 1 or O, (11) is 
identically fulfilled. 

EXERCISES 

l. Two planes a.re said to be conjuga.te with rega.rd to a. non-singular qua.dric 
surface if each passes through the pole of the other. 

Prove that if (2) is a non-singular quadric, a necessary and sufficient con­
dition that the planes (1) and (7) be conjuga.te with regard to it is the vanishing 

of the determinant a
11 

a12 a18 a14 u1 

ª21 ª22 023 ª2• !.12 4 

03¡ 032 033 ª•• tlg = - lAijUi~• 
1 

041 042 043 044 U4 

V¡ v2 Vg v4 0 

How m11St this definition of conjuga.te planes be extended in order that tlm 
theorem be true for singular quadrics also? 

2. Prove that if (2) is a non-singular quadric, a necessary and sufficient con­
diti¡m that the point of intersection of three planes lie on (2) is the vauishing ot 
the seven-rowed determiuant formed by borderiug the discriminant of (2) with the 
coefficients of the three planes. 

3. Admitting it to be obvious geometrically that a necessary and sufficient con­
dition that a line touch a non-singular quadric is that the two tangent planes which 
can be passed through this line should coincide, prove that, if (2) is non-singular, 
a necessary and suflicient condition that the line oí intersection of (1) and (7) 
touch ('>) is • 4 • • (l A;;u¡u;) (l A,;v,11;) - (:S Av11,v;)2 = O. 

1 1 1 

4. Show algebraically that the condition of Exercise 3 is equivalent to (11), 
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54. The Adjoint Quadratic Form and Other lnvariants. Passing 
now to the case of n variables, we begin by considering the systero 
consisting of a quadratic forro and a single linear form 

(1) 

(2) 

The georoetrical considerations of the last section suggest that we 

form the expressi:n 

1 

'.'". ··: a,. ., 

(3) t Ai; u, U; = - ¡ · . . . . . . 
anl ... ann U,_ 

U¡ ... Un 0 

This, it will be seen, is a quadratic forro in the variables ( U¡, ... un) 
whose matrix is the adjoint of the matrix of (1 ). W e will speak of 
(3) as the adjoint of (1 ). 

The invariance of (3) is at once suggested by the fact that in the 
case n = 4 the vanishing of ( 3) gave a necessary and sufficient con­
dition for a projective relation. In fact we will prove tbe tbeorero: 

THEOREM 1. The adjointform (3) is an invariant of weight two oj 
the pair of forms (1), (2). 

Inasmuch as the u's are, as we saw in § 34, contragredient to the 
z's, we roay also call (3) a contravariant (cf. Definition 2, § 34). 

In order to prove this theorem we must subject the z's to a linear 
transformation, 

(4) 
{ 

Z¡ = Cu zj + ... + C¡,_Z~ . . . . . . . . 
:,. ~ Cn: zj 

0

+ :. · ~ Cn~¿ 
whose deterroinant we will call c. Let us denote by a~ and u~ re­
spectively the coefficients of tbe quadratic and linear form into which 
this transformation carries (1) and (2). 

Let us now introduce an auxiliary variable t, and consider the 
quadratic form in :v¡, .. • z,., t, 

(5) 

The discriminant of this forro is precisely the deterroinant in 
(3), that is, the negativa of the adjoint of (1). 
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Let us now perf orm on the variables x,,, .. • x,., t the linear tr&nt 
formation given by formulre ( 4) and the additional formula 

(6) t= t'. 

The determinant of this transformation is e, and it carries over the 
form ( 5) into " 

~ a~jx~x; + 2 t'( ufxr + ... + u~x~). 
1 • 

From the fact that tbe discriminant of (5) is an invariant of 
weight 2, we infer the relation we wished to obtain : 

a,.1 ... a,.,. u,. 
u1 ·"Un Ü 

The method just used admits of immediate extension to the proof 
of the following more general theorem : 

THEOREM 2. If we have a system consisting of a quadratic form itt 
n variables and p linear forms, the ( n + p )-rowed determinant formed bg 
bordering the discriminant of the quadratic form by p rows and p 
columns each of which consists of the coefficients of one of the linea• 
forms is an invariant of weíght 2. 

We leave the details of the proof of this theorem to the reader. 
If the discriminant a of the quadratic form (1) is not zero, we may 

forma new quadratic form whose matrix is the inverse of the matrix 
of (1). This quadratic form, which is known as the inverse or 
reciprocal of (1), is simply the adjoint of (1) divided by the ~iscrimi­
nant a. W e will prove the following theorem concerning it : 

THEOREM 3. Jf the quadratic form (1) is non-singular, it will b, 

carried over into its inverse by the non-singular transf ormation 

(7) ~ = a,1 x1 + ... + ainXn (i= 1, 2, ••• •} 
For we have 

as was to be proved. 
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It will be noticed that if (1) is a real quadratic form, the trans­
formation (7) is real; and from this follows 

THEOREM 4. A real non-singular quadratic form and it8 inverse 
Am,e the same signature. 

EXERCISES 

l. Given a quadratic form la.1x,x¡ and two linear forms lUiX., lv,x,. 
Provethat 

• l Á¡¡U;VJ = - . . . . . . . 
1 

V¡ ... Vn 0 

fe an invariant of the system of weight 2. 

2. Generalize the theorem of Exercise 1 to the case in which we have more 
Uian two linear forms. 

3. Prove that ü a first quadratic forro is transformed into a second by the 
linear transformation of matrix e, then the adjoint of the first will be transformed 
into the adjoint of the second by the linear transformation whose matrix is the 
oonjugate of the adjoint of c. 

4. Prove a similar theorem for bilinear forros. 

5. State and prove a. theorem for bilinea.r forma a.nalogous to Theorem 3. 

55. The Rank of the Adjoint Form. Suppose the discriminant a 
n 

of the quadratic forro la1,i&,x1 is of rank r, and that the discrimi-
1 

" nant A of its adjoint l Á;;u,u; is of rank R. Then, if r < n - 1, ali 
1 

the (n -1)-rowed determinants of a are zero; but these are the ele-
ments of A, hence R = O.· If r = n -1, at least one of the elements 
of .A is not zero, and ali two-rowed determinants of A are zero (since 
by § 11 each of them contains a as .ª factor~ hence R = 1. If r = n, 
R = n; for if R were less than n we should have A= O, and there­
fore a=O (since A=a"-1). But this is impossible, since by hypothesis 
r=n. We have then: 

THEOREM 1. If the rank of a quadratic form in n variabl~s and oj 
its adjoint are r and R respeetively, then 

11 

if r=n, R=n, · 
if r = n - 1, .R ~ 1, 
if r < n - 1, R = O. 
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Let us consider further the case r = n -1. Here we have seen 
that R = 1, that is, that the adjoint is the square of a linear form, 

Comparing coefficients, we see that 

Á.v = C¡C¡, 

All the c's cannot be zero, as otherwise we should have R = O. Lei 
e>- =1= O. Then since AM = cf=I= O 

we sea that not ali the quantities (A>-1, ... A>-n) are zero. Accord­
ingly ( cf. § 44) the point ( A>-1, A>-2, • • • A>-n), and therefore also the 
point ( c

1
, ... en~ is a vertex of the original quadratic forro. Thus we 

ha ve the theorem : 

THEOREM 2. If the ranlc of a quadratic form in n variables is n -1, 
its ad}oint is the square of a linear form, and the coefficients of thia 
linear formare the coordinates of a vertex of the originalform. 

Since, in the case we are considering, all the vertices of the 
quadratic forro are linearly dependent on any one, this theorem com­
pletely determines the linear form in question except for a constan~ 

factor. 

CHAPTER XIII 

PAIRS OF QUADRATIC FORMS 

56. Pairs of Conics. W e will gi ve in this section a short geomet­
rical introduction to the study of pairs of quadt·atic forros, confining 
ourselves, for the sake of brevity, to two dimensions. 

Let u and v be two conics which we will assume to be so situated 
that they intersect in four, and only four, distinct points, A, B, O, ]). 
Consider all conics through these four points. These conics, we wilJ 

eay, form a pencil. It is obvious that there are three and only three 
singular conics ( i. e. conics which consist of pairs of lines) in this 
pencil, namely, the three pairs of lines AB, 01); BO, ])A; A O, BD, 
Let us call the "vertices" of these conics P, Q, and R respectively. 

From the harmonic properties of the complete quadrilateral • we 
see that the secants P AB and POI) are divided harmonically by tha 

• Cf. a.ny book on moqern geométry. 
16.':l 
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line •:J R. Accordingly QR is the polar of P with regard to every 
conic of the pencil. In a similar manner P R is the polar of Q, and 
PQ the polar of R with regard to every conic of the pencil. Thus, 
we see that the triangle PQR is a self-conjugate triangle (see § 41) 
with regard to every conic of the pencil. Accordingly, if we per­
form a collineation which carries over P, Q, R into the origin and 
the points at infinity on the axes of x and y, the equation of every 
conic of the pencil will be reduced to a form in which only the 
square terms enter. We are thus led to the result: 

THEOREM. Jj two conics intersect in four and only four distintC 
points, there exists a non-singular collineation which reduces their 
equations w the normal form 

{ 
A1xi + A2~ + AaXi = O, 
B1xf + Br~ + B3xf = O. 

If we wish to carry through this reduction analytically, we shall 
write the equations of the two conics u and v in the forms 

(1) 

The pencil of conics may then be written 
., 

(2) I( ª•i - ).b,i )x,x1 = O, 
1 

or rather, to be accurate, this equation will represent for differenl 
values of ). ali the conics of the pencil except the conic v. Tb.e 
singular conics of the pencil will be obtained by equating the 
discriminant of (2) to zero, 

ª11 -Abu ª12 - ).b12 ª1a - ).bis 
(3) ª21 - Ab21 ª22- A.b22 ª28 - ;\.b23 =0. 

ª81 - ).blll ª a2 - }..ba2 aaa- }..baa 

This equation we will call the ).-equation of the two conioa. 
When expanded, it takes the form 

(4) 
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where A, 6.1 are the discriminants of u and 11 respectively, and 

a¡¡ ª12 b1a a¡¡ b12 ªis bu ª12 a¡s 
8 = ª21 ª22 b2a + ª21 b22 ª28 + · b21 ª22 ª2s , 

ªs1 ªs2 bss ª:i1 ba2 ªaa ba1 <le2 ªss 

while 0' can be obtained from 0 by an interchange of the letters a 
and b . • It can readily be proved ( cf. the next section) that the co• 
efficients 8 and 8' as well as ti and A' are invariants of weight two. 

Except when the discriminant A' of v is zero, the equation ( 4) 
is of the third degree, and its three roots, which in the case we 
have considered must evidently be distinct, give, when substituted 
in (2~ the three singular conics of the pencil. 

W e will not stop here to show how the theory of any two 
conics, where no restriction as to the number of points of intersec­
tion is made, can be deduced from equation (3). • This will follow 
in Chapter XXII as an application of the method of elementary 
divisors. Our only object in this section has been 'to give a geo­
metrical basis for the appreciation of the following sections. 

57. Invariants of a Pair of Quadratic Forms. Their :>..-Equation. 
We consider the pair of quadratic forms 

11 
q,(X¡, •••x11) = Iaiix,.x1, 

1 
11 

,¡,{x1, ... x11)='fbiix,xi, 

and form from them the pencil of quadratic forms 
11 

cf,- ;\.,fr == I(aii - ;\.bii)x.x1• 
1 

The discriminant of this pencil, 

ª11 - ).bll •.• ª111 - Xb111 

ª111 - A.b111 .. • ªn11 - A.b11n 

is a polynomial in X which is in general of degree n, and which may 

be written Jl'.X) = 9
0 

_ a
1
;\. + ... + {-1)11811}..•. 

• An elementary dlscussion of the X-equation of two conics (l'équation en X) is 
Nguiarly given in French text-books on analytic geometry. See, for instance, Briot 
~ Bouquet, Lev0ns de Géométrie analytique, 14th ed., p. 349, or Niewenglowski, Cour, 
le GéoméJrie analytique, Vol. I, p. 469. 
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The coeffi.cients of this polynomial are themselves polynomials in 
the a,/s and bí/s, 8 0 and 8,. being merely the discriroinants of cf, and 
t respectively, while 8,1: is the sum of all the di:fferent deterroinant.a 
which can be formed by replacing k columna of the discriminant of 
cf, by the corresponding columna of the discriminant of t• 

THEOREM 1. The coefficients ®0, • • • ®n of F('A.) are integral rational 
invariants of weight two of the pair of quadratic forms cf,, t• * 

In order to prove this, let us consider a linear transforroation of 
determinant e which carries over cf, and t into cf,' and t' respec-
tively, where ,,._, _ ~ , 

1 1 
'Y = ., a;j X, X;, 

1 

n 

t' = l b~; ~ ~. 
1 

Let us denote by ®~ the polynoroial in the af s and bf;'s obtained by 
putting accents to the a's and b's in ®•· Our theorem will then be 
proved if we can establish the identities 

(i=0,1, .. ,n) 

This follows at once from the fact that F(X), being the discriminani 
of cf, - Xt, is an in variant of weight two, so that if we denote by 
F'(X) the discriminant of cj,1 

- Xt', we have 

F'(X) = c2 F(X ). 

This being an identity in X as well as in the a's and b's, we can 
equate the coeffi.cients of like powers of X on the two sides, and this 
gives precisely the identities we wished to establish. t 

The equation F('A.) = O 

we will call the X-equation of the pair of forros cf,, ,¡r. Since, as we 
have seen, F is merely multiplied by a constant different from ~ero 
when cf, and tare subjected to a non-singular linear transforroat10n, 

• Cf. Exercise 13, § 90. 
t The method by which we have here arrived at invariants of the system of two 

quadratic forms will be seen to be of very general application. If we have an integral 
rational in variant J of weight µ, of a single form of the kth degree in n variables, we can 
find a large number of invariants of the system t/>i, <1>2, ... <l>v of p forms of the ~th d~gree 
in n variables by forming the invariant Jfor the form X1<1>1 + ... +Xpt/>p• Th1s w1Jl be 
a polymonial in the >.'s, each of whose coefficients is seen, precisely as above, to be aD 

integral rational invariant of the systems of 4>'s of weight ¡,.. 

PAIRS OF QUADRATIC FORMS 167 

the roots of the X-equation will not be changed by such a transfor. 
mation. These roots, however, are irrational functions of the 8's and 
hence of the a's and b's. We may therefore state the result: 

THEOREM 2. The roots of the 'A.-equation of a pair of quadratic 
forms are absolute irrational invariants of tliis pair of forms with 
regard to non-singular linear transformations. 

It is clear that the multiplicity of any root of the X-equation 
will not be changed by a non-singular linear transformation. Hence 

THEOREM 3. The multipliaities of the roots of the 'A.-eq_uation are 
arithmetical invariants of (he pair of quadratia forms with regard to 
flan-singular linear transf ormations. 

If cf, :=: a1x¡ + ... + anx~, 

'Y' = Xf + •• • ;- X~, 

the roots of the A-equation are a1, ... a11• This example shows 
that the absolute invariants of Theorem 2 may have any values, 
and also that the arithmetical invariants of Theorem 3 are subject 
to no other restriction than the obvious one of being positive in­
t.egers whose sum is n. 

58. Reduction to Normal Form when the X-Equation has no Multi­
ple Roots. Although our main concern in this section is with the 
".ase in which the X-equation has no multiple roots, we begin by estab­
lishing a theorem which applies to a rouch more general case. 

THEOREM 1. Jf °A.1 is a simple root of the \-equation of the paÍ1 
4>, ,fr of quadratia forms in n variables, tlzen, by a non-singular linear 
transformation, cf, and t can be reduced respectively to the forms 

(1) 
{

X¡ a1zf + cf,1 (z2, ... z11) 

C1Zf + 'Y't ( Z2, " ' z,.) 

where c1 is a constant not zero and cf,1, t 1 are quadratic forma in thl 
n - 1 variables z2, •• • z,.. 

To prove this, we will consider the pencil of forros 

cf,- \,fr = </> - 'A.1,fr +('A.1 - X},[t. 
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Since X1 is a root of the X-equation of the pair of forros cf,, t, the fona 
cf,-X11/r is singular, and can therefore, by a suitable non-singular linear 
transformation, be written in a form in which one of the variables, say 
xi, does not enter, <j>- Xit=c/>'(x~, ... :t,.). 

lf this transformation reduces t to t', we have 

(3) cf,-Xt=cf>'(~, ··· :t,.)+(X1 - X)t'(Xi, ···:t..). 
The discriminant of the quadratic form which stands here on the 

right cannot contain X1 - X as a factor more than once, sin ce X1 is, by 
hypothesis, not a multiple root of the X-equation of cf, and t• lt 
foliows Írom this that the coefficient of .x? in the quadratic form f 
cannot be zero, for otherwise the discriminant of the right-hand side 
of (3) would have a zero in the upper left-hand corner, and X1 -A 
would be a factor of all the elements of its first row and also of ita 
first column ; so that it would contain the factor (X1 - X 'f. 

Since the coefficient of Xi2 in t' is not zero, we can by Lagrange's 
reduction (Formulai (2), (3), §45) obtain a non-singular linear trans­
formation of the form 

{ 

Z¡ = ,Y¡ Xi + 'Y2~ + "• + 'Y11:t,. 
Z2= ~ . . . . . . . . . . . . . . . . 
Zn= X:. 

which reduces t' to the form 

Cl ~ + ti( Z2, .. ' z,.) 

This transformation carries over the second member of (3) into 

cf,1 (z2, ... z11) + (;>.1 - A) 'o/t (z2, ·· • z11) + (X1 - X )c1~. 

Combining these two linear transformations and writing 

cf/ ( z2, "· Zn) + X1 'f¡ ( z2, • .. z11) = epi( z2, • • • l!:n), ' 

we have thus obtained a non-singular linear transformation which 
effects the reduction, 

cf,(x1, ••• x11)-X,fr(x1, • .. x11) = cf,i(z2, • .. z11)-Xt1 (~, •·· zn) + (Xi-X)c1zf· 

If, here, we equate the coefficients of X on both sides, and the 
terms independent of X, we see that we have precisely the reduc­
tion of the forms et,, vr to the forms (1 ); and the theorem is proved. 
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Let us now assume that the form t is non-singular, thus insur­
ing that the X-equation be of degree n. We will further assume 

1 that the roots X1, ¾• · · · An of this equation are ali distinct. W e can 
then, by the theorem just proved, reduce the forros cf,, t to the forms 
(1) by a non-singular linear transformation. The X-equation of these 
two forms is seen to differ from the X-equation of the pair of forms 
in (n-=1) variables cf,1, t 1 only by the presence of the extra factor 
A¡- X. Accordingly the X-equation of the pair of forms cf,1, 'Yi has 
as its roots ¾• ... Xn and these are ali simple roots. W e may there­
fore apply the reduction of Theorem 1 to the two forros cf,1, ti and 
thus by a non-singular linear transformation of z2, ... Zn reduce them 
to the forros ¾c2z~ + cf,2(z~, ... z~), 

c2z~2 + 'Y2(z~, ... z~). 

This linear transformation may, by means of the additional formula 
,_ 

Z¡ -z1, 

be regarded as a non-singular linear transformation of z1, ... z" which 
carries over cf,, t into the forros 

X1 c1 z~2 + X2c2z~2 + cf,2(z~, •·· z~~ 
c1zi2 + c2z~2 +tiz~, ... z~). 

Proceeding in this way, we establish the theorem: 

THEOREM 2. lf cf,, 'Y are quadraticforms in (x1, ... xn) of which the 
second is non-singular, and if the roots Ai, • •· X11 of their X-equation are all 
distinct, there exists a non-singular linear transformation which carries 

over e/> and 'Y into x1 e¡ i¡2 + x2 c2 ~2 + . . . + Xn e" x~2, 

c1 xi2 + c2x~2 + • • • + cnx~2 

_'eapectively, where c1,··· en are constants all differentfrom zero. 

Since none of the c's are zero, the linear transformation 

xf=vc;~ (i=l,2,·•·R) 

is non-singular. Performing this transformation, we get the further 
result: 

, THEOREM 3. Under the same conditions as in Theorem 2, cf, and 
1'r may be reduced by means of a non-singular linear transformation to 
the normal f orms 

X1 xJ + A2x~ + .. · + An X~, 

xJ + x~ + ... + x¡. 
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From this we infer at once 

THEOREM 4. If in the two pairs of quadratic forms cf,, ,¡r and lf>', 
,¡r' the forms ,¡r and t' are both non-singular, and if the A-equations oJ 
these two pairs of forms have no multiple roots, a necessary and suf­
ficient condition f or the equivalence of tlie two pairs of forms is that 
these two }.,-equations have the same roots; or, what amounts to the same 
thing, that the invariants 8 0, 8 1, • • • e,. of the first pair of forms be pro­
portional to the invariants e~, ei, • • • e~ of the second. 

EXERCISE 

Prove tbat, under the conditions of Theorem 3, tbe reduction to tbe normal 
form can be performed in essentially only one way, the only possible variation 
consisting in a cbange of sign of sorne of tbe x's in the normal forro. 

59. Reduction to Normal Form when "1 is Deñnite and Non­
singular. We now consider the case of two real quadratic forros 
cf,, ,¡r of which ,¡r is definite and non-singular. Our main problem is 
to reduce this pair of forms to a normal form by roeans of a real 
linear transformation. For this purpose we begin by proving 

THEOREM 1. The A-equation of a pair of real quadratic forrris 
cf,, ,¡r can hav~ no imaginar y root if the f orm ,¡r is definite and non 
singular. 

For, if possible, let a + fii ( a and fi real) be an iroaginary root of 
this }..-equation, so that fi * O. Then cf,- ay - ifit will be a singular 
quadratic forro, and can therefore be reduced by a non-singular 

linear transforroation 

l ~ ~~u ~~u):••~ "i ~ ~l•~i~.,)~: 

x!i = (p,.1 + iq w.) x1 + "· + (p,.,. + iq,m)x,. 

to the sum of k squares, where k < n, 

(1) cf,- ay-ifit=x? + x~2 + ... +x'J. 
Let 

(2) 

(3) 

so that 

zl = q11x1 + .. • + q1,.x,., 

:t, = Yz + iz,. 
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By equating the coefficients of ion the two sides of (1) we thus get 

(4) - fit = 2 y1z1 + 2y2 z2 + •·· +2ykzk. 

Let us now determine x1, • • • x,. so as to roake the right-hand side 
of (4) vanish, for instance by means of the equations 

!11 =Y2= ... = Y.t= O. 

A reference to (2) shows that we have here a systero of k real 
homogeneous linear equations in n unknowns, so that real values of 
x1, .. · x,. not all zero can be found satisfying these equations. For 
these values of the variables, we see from ( 4) that ,¡r vanishes ; but 
this is impossible ( cf. the Corollary of Theorem 3, § 52), since ,¡r is by 
hypothesis non-singular and definite. . 

THEOREM 2. JJ ,¡r is a non-singular definite quadratic form and cf, 
is any real quadratic form, the pair of forms cf,, t can be reduced by a 
real non-singular linear transf ormation to the normal f orm 

(5) ¡e/>= ±(Ai2:i2+ ... +}.,,.x'J), 

t=±( x?+ ... + x!i2), 

where 11, .. • X11 are the roots of the A-equation, and the upper or lower 
sign is to be used in both cases according as ,¡r is a positive or a negative 
form. 

The proof of this theorem is very similar to the proof of 
Theorem 2, § 58. W e must first prove, as in Theorem 1, § 58, 
that cf,, ,¡r can be reduced by a real non-singular linear transforma­
tion to the forms ¡ A¡c1 zf + cf,1 (z2, ... z,.) 
(6) 

el zf + t1 (z2, ... z,.). 

To prove this, we consider the pencil of forros 

cf,-At=c/>-A1t+(A1 -}..)y. 

. . Since X1 is real by Theorem 1, cf, - }..1 ,¡r is a real singular quad­
rat1c form, and can therefore by a real non-singular linear trans­
formation be reduced to a forro in which one of the variables does 
not enter, 

1 
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If this transformation reduces t to t', we have 

(7) cf,- >..t = cf,'(x~, .. · x!) + C>-i - A )t' (x'¡, ... x~). 

At this point comes the essential difference between the caae 
we are now considering and the case consi_dered in § 58, as A¡ may 
now be a multiple root of the discriminant of the. right-hand side 
of (7). W e need, then, a different method for showing that the 
coefficient of xi2 in t' is not zero. For this purpose it is sufficient 
to notice that t, and therefore also t', is a non-singular definiu, 
form, and that accordingly, by Theorem 4, § 52, the coefficient of 
none of the square terms in t' can be zero. 

Having thus shown that the coefficient of :,;{2 in t' is not zero, 
we can apply Lagrange's reduction to t', and thus complete the 
reduction of the forms cf,, t to the forms (6) precisely as in the proof 
of Theorem 1, § 58, noticing that the transformation we have to deal 
with is real. 

In (6), cf,i, ti are real quadratic forms in the n-1 variables 
z2' ..• z,i- Moreover, since 

t(xi, ... X11)::: CiZI + ti(Z2' ···Zn) 

is non-singular and definite; it follows that the same is true of ti• 
For, if "Y'i were either singular or indefinite, we could find values 
of z2' • • • zn not all zero and such that ti= O; and these values to­
getber with the value z1 = O would make t = O. This, however, is 
impossible by the Corollary of Theorem 3, § 52. 

The }..-equation of the two forms cf,i, ti evidently diff ers from 
the }..-eq uation of cf,, t onl y by the absence of the factor A - Ai. The 
roots of the }..-equation of cf,i, ti are therefore ¾• •·· An, so that if we 
reduce cf>i and ti by the method already used for cf,, t (we have just 
seen that cf>i, ti satisfy ali the conditions imposed on cf,, t ), we get 

cf,1 (z2, • •· zn) = }..2 c2z? + cf>iz~, • .. z~} 

ti(z2, ... zn) = c2z~2 + tiz~, ... z~). 

Proceeding in this way, we finally reduce cf,, t by a real non-sing& 
lar linear tra'IJ.sformation to the forms 

(8) { 
cf, = Ai Ci!JI + ••· + AnCn!J*• 

'j= Ci!JI + ··· + Cn!J*· 
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Since t is definite, the constants ci, •·· en are all positive or all nega­
tive according as t is a positive or a negative form. By meaos of 
the further non-singular real linear transformation 

the forms (8) may be reduced to the forma (5), and our theorem is 
proved. 

EXERCISES 

l. If q, is a real quadratic form in n variables of rank r, prove thiit it can be 
reduced by a real orthogonal transforrnatiou in n variables to the form 

c,X: + c,x:+ •·· + c,x:., 
Cf. Exercises, § 52. 

2. Sliow tbat tbe determinant of the orthogonal transformat1on of Exercise 1 
may be taken at pleasure as + 1 or - l. 

3. Discuss the metrical classification of real quadric surfaces along tb~ 
following lines·: 

A,ssume tbe equation in non-homogeneous rectangular coordinates, and show 
tbat by a transformation to another system of rectangular coordinates baving the 
aame origin the equation can be reduced to a form w bere the terms of the second 
degree have one or the other of the five forms (the A's being positive constants) 

A 2 A 2 A 2 ♦ 1X1 + 2X2 + 3X3, 

A1xi + A2xi-A8 x:, 

A1xi+A2x:, 

A1xi -A2x:, 

A1.z~. 

Then simplify each of the non-homogeneous equations thus obtained by further 
transformations of coordinates; tbus getting finally the standard forros of the 
equations of ellipsoids, hyperboloids, paraboloids, eones, cylinders, and planes 
whieh are discussed in ali elementary text-books of solid analytic geometry. 


