
CHAPTER XI 

REAL QUADRATIC FORMS 

5(). The Law of Inertia. W e come now to the study of reai 
quadratic forms and the effect produced on them by real linear 
transformations. 

We notice, here, to begin with, that the only operations involved 
1D the last chapter are rational operations ( i.e. addition, subtraction, 
multiplication, and division) with the single exception of the radicals 
which come into formula (2), § 46. In particular the reduction of 
§ 45 ( or the alternativa reduction of § 49) involves only rational oper• 
ations. Consequently, since rational operations performed on real 
quantities give real results, we have 

THEOREM l. .A real quadratic form of rank r can be reduced by 
mea ns of a real non-singular linear transf ormation to the f orm 

(1) 

where c1, · · · cr are real constants none of which are zero. 

As we saw in the last chapter, this reduction can be performed ina 
variety of ways, and the values of the coefficients c1, ••• crin the reduced 
form will be different for the different reductions. The signs of these 
coefficients, apart from the order in which they occur, will not depend 
on the particular reduction used, as is stated in the following im• 
portant theorem discovered independently by Jacobi and Sylvester 
and called by the latter the Law of Inertia of Quadratic Forms: 

THEOREM 2. lf a real quadratic f01·m of rank r is reduced by two 
real non-singular linear transf ormations to the f orms (1) and 

(2) k1x'f2 + k2x~2 + ... + k,x~2, 

respectively, then the number of positive c's in (1) is equal to the number 
of positive k's in (2). 

In order to prove this, let us suppose that the x''s and x"'s have 
been so numbered that the first µ of the c's and the :first v of the i's 
are positive while all the remaining c's ami k's are negative. Out 
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theorem will be established if we can show that µ = v. If this is 
not the case, one of the two integers µ and v must be the greater, 
and it is merely a matter of notation to assume that µ > v. W e will 
prove that this assumption leads to a contradiction. 

If we regard the x"s and x"'s simply as abbreviations for certain 
linear forros in the x's, (1) and (2) are both of them identically equal 
to the original quadratic form, and hence to each other. This iden­
tity may be written 

(3) ª1 xi2 + ... + e µ.xJ2 - leµ.+ 1IX:.2+1 - ... - lcrlx:2 

E k1 xr2 + ... + k. x't2 - !kv+ 11 x~t l - ... - lkrl~12• 

Let us now consider the system of homogeneous linear equations 
in (x1, .. • Xn), 

(4) 

We have here v + n - µ < n equations. Hence, by Theorem 3, 
Corollary 1, § 17, we can find a solution ot these equations in which 
all the unknowns are not zero. Let (y1, • • • '!In) be such a solution and 
denot:e by ~:, y~' the values of ~. x~' when the constants y1, , .. '!In are 
subst1tuted m them for the variables :e¡, ... xn. Substituting the y's 
for the x's in (3) gives 

ª1'!/i2+ ... +c¡,.'!J~= -lkv+1/Y~i1 - ... - lkrlY~2• 

The expression on the left cannot be negative, and that on the right 
cannot be positive, hence they must both be zero; and this is pos­
eible only jf 

That is, (y11 ""Yn) is a solution, not composed exclusively of zeros, of 
the system of n homogeneous linear equations in n unknowns, 

Xi = 0, ~ = 0, ... X~= 0. 

The determinant of these equations must therefore be zero that is 
th l. ' ' e mear transformation which carries over the x's into the x''s must 
be a singular transformation. W e are ·here led to a contradiction. 
an~ our theorem is proved. 

L 
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W e can thus associate with every real quadratic forro two in, 
tegers P and N, namely, the number of positive and negative eoefti. 
cients respecti vely which we get when we reduce the forro by any 
real non-singular linear transformation to the forro (1 ). These two 
numbers are evidently arithmetical invariants of the quadratic form 
with regard to real non-singular linear transformations, since two 
real quadratic forros which can be transformed into one another by 
means of such a transformation can obviously be reduced to the aam, 
expression of form (1 ). * 

The two arithmetical invariants P and N which we have thua 
arrived at, and the arithmetical invariant r which we had before, are 
not independent since we have the relation 

W P+N=~ 

One of tbe invariants P and N is therefore superfluous and either 
might be dispensed with. It is found more convenient, however, 
to use neither P nor N, but their difference, 

(6) s=P-N, 

which is called the signature of the quadratic forro. 

DEFINITION. By the signature of a real quadratia form is under 
stood the diff erence between tlie number of positive and tlie number oJ 
negative coeffieients which we obtain when we reduce the fotm by any 
real non-singular linear transformation to the form (1 ). 

Since the integers P and N used above were arithmetical invari• 
ants, their difference s will also be an arithmetical invariant. It 
should be noticed, however, that s is not necessarily a positive in­
teger. W e have thus proved 

THEOREM 3. The signature of a quadratic form is an arithmetical 
ínvariant with regard to real non-singular linear transformations. 

EXERCISES 

l. Prove that the rank r and the signatura s of a quadratic form are either 
both even or both odd ; and that -r::s :;;r. 

2. Prove that any two integers r and s (r positive or zero) satisfying th~ COII' 

ditions of Exercise 1 may be the rank and signature respectively of a quadratil 
form. 

• Pis sometimes called the index of inertia of the quadratlc form. 
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3. Prove that a necessary and sufficient condition that a real quadratic form 
olrank r and signaturas be factorable into two real linear factors is that 

either r<2; 
or. r=2, s=O. 

4. A quadratic form of rank r shall be said t.o be regularly arranged ( cf. § 20, 
Theorem 4) ü the x's are so numbered that no two consecutive A 's are zero in the set 

a a 1 ª11 ... ªir 

A -lA- A ¡ 1112 A .. . 
O - • l - ªu• 2 = , ... r = 

ª21 ª22 ' • • ' 

a,.¡ ... arr 

and that Ar =I=, O. Prove that ü the form is real ancl any one of these A's is zero 
the two adjacent A's have opposite signs. ' 

[SuooESTION. In this exercise and the following ones, the work of § 49 should be 
coDSUlted. J 

5. Prove that the signature of a regularly arranged real quadratic form is 
equal to the number of permanences minus the nnmber of variations of sign in the 
aeqnence of the A's, ü the A's which are zero are counted as positive or as neg&­
üve at pleasure. 

6. Defining the e:x:pression sgn x (read signum'x) by the equations 

sgnx= +1 x>O, 
sgnx= O x=O, 
sgnx= - 1 x<O. 

ehow that the signatura of a regularly arranged real quadratic form of rank r is 

sgn (A 0A1) + sgn (A1AJ + ... + sgn (Ar-1Ar)• 

51. Classification of Real Quadratic Forms. We saw in the last 
aection that a real quadratic forro has two invariants with regard to 
real non-singular linear transformations, - its rank and its signa­
ture. The main result to . be established in the present section 
(Theorem 2) is that these two invariants forro a complete system. 

If in § 46 the c's and k's are real, the transformation (2) will be 
real when, but only when, each e has the same sign as the corre­
sponding k. Ali that we can infer from the reasoning of that section 
now is, therefore, that if a real quadratic forro of rank r can be 
reduced by a real non-singular linear transformation to the form 

C1Xf+ ••• +c,x~ 

it can also be i;educed by a real non-singular linear -transformation to 
the form k1x¡,:- ... +k,.xh 
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where the k's are arbitrarily given real constants, not zero, subject 
to the condition that each k has the same sign as the corresponding t. 
Using the letters P and N for the number of positive and negative c's 
respectively, the transformation can be so arranged that the first 
p c's are positive, the last N negative. Accordingl~ the first P k's 
can be taken as + 1, the last Nas - l. From equat10ns ( 5) and (6) 
of § 50, we see that P and N may be expressed in terms of the rank 
a.nd signat11re of the forro by the formulre 

(1) 
r+s N= r-s, P--- 2 ' 2 

Thus we bave the theorem : 

THEOREM l. .A. real quadratic form of rank r and signature s can bt 
reduced by a .-ea!, non-singular linear transformation to the normal form 

(2) x¡ + •·· + x1, - 4+1 - ··· -x~ 
where P is given by (1 ). 

W e are now able to prove the fundamental theorem : 

THEOREM 2. .A. necessary and sujficient condition that two real 
quadratic forms be equivalent with regard to real non-singul~r linear 
transformations is that they have the same rank and the same signature. 

That this is a necessary condition is evident from the invariance 
of rank ~nd signature. That it is sufficient follows from the fact 
that if the two forms have the same rank and signature, they can 
both be reduced to the same normal form (2). 

DEFINITION. All real quadratic forms, equivalent with regard to 
real non-singular lineP-r transf ormations to a given f orm, and therefore to 
each other, are said to f1>rm a elass. * 

Thus, for instance, sjuce every real non-singular quadratic form 
in four variables can be \"educed to one or the other of the ñve 

normal forros, 

(3) 

:>:t + X~ + X§ + x¡, 
x! + a;~ + xi - x¡, 
a:¡ -t· ~~ - xj - xi, 
a:¡ - x¡ - xi - x¡, 

- x¡ - x¡ - xj - x~, 
• This term may be used in a similar manner ~henever the conception of equita 

lence is involved. 
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,re see tbat all such forms belong to one or the other of five classes 
characterized by the values 

8 = 4, 2, o, - 2, - 4, r = 4. 

lf, however, as is the case in many problema in geometry, we are 
concerned not with quadratic forms, but with the equations obtained 
by equating these forms to zero, the number of classes to be distin­
guished will be reduced by about one half, since two equations are 
the same if tbeir first members differ merely in sign. 

Thus there are only three classes of non-singular quadric surfaces 
with real equations, whose normal forros are obtained by equating 
the first three of the forms (3) to zero. These equations written in 
non-homogeneous coordinates are 

x2 + y2 + z2 = - 1, 
x2+ y2+ Z2= 1, 
x2+ y2_v=1. 

The first of these represents an imaginary sphere, the second a real 
sphere, and the third an unparted hyperboloid generated by the revolu­
tion of a rectangular hyperbola about its conjugate axis. I t may readil:y 
be proved that this last surface may also be generated by the revolution 

of either of the lines y= 1, X = ± z 

about the axis of Z. W e may therefore say: 

THEOREM 3. There are three, and only three, classes of non-singular 
quadric surfaces with real equations. In the first the surfaces are imag­
inary; in the second real, but their rulings are imaginary; in the third 
~!J are real, and the rulings through their real points are real.* 

This classification is complete from the point of view we have 
adopted of regarding quadric surfaces as equivalent if one can be 
transformed into the other by a real non-singular collineation. The 
more familiar classification does not adopt this projective view, but 
distinguishes in our second class between ellipsoids, biparted hyper­
boloids, and elliptic paraboloids ; and in the third class between un­
parted hyperboloids and hyperbolic paraboloids. 

• If, ea here, we consider not real quadratic forms, but real homogeneous quadratic 
equations we mnst use, not s, but lsj as an invariant. In place of lsl we may use what is 
known as the characteristic of 111.e quadratic form, that is the smaller of the two in­
~rs P N This charac•.eristic is simply ½ (r - lsl). 
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EXERCISES 

l. Prove that there are ½(n + 1) (n + 2) classes of real quadratic forma in 1 

variables. 
2. Give a complete classification of singular quadric surfaces with real eqlll' 

tions from the point of view of the present section. 

52. Definite and lndefinite Forms. 
DEFINITION. By an inde_finite quadratia form is understood a real 

quadratia form suah that, when it is reduaed to the normal form (2~ 
§ 51, by a real non-singular linear transformation, both positive and mu· 
ative signs oaaur. All other real quadratia forms are aalled definite; • 
and we distinguish between positive and negative definite forms aaaord­
ing as the terms in the normal f orm are all positive or all negative. 

In other words, a real quadratic form of rank r and signatura• 
is definite if s = ± r, otherwise it is indefinite. t 

The names definite and inde.finite have been given on account of 
the following fundamental property: 

THEOREM l. An inde.finite quadratia form is positive for some real 
values of the variables, negative f or others. A positive definite form ÍI 
positive or zero for all real values of the variables; a negative definiú 
form, negative or zero. 

The part of this theorem which relates to definite forms follows 
directly from the definition. To prove the part concerning indefi• 
nite forms, suppose the form reduced by a real non-singular linear 
transformation to the normal form 

Regarding the x''s as abbreviations for certain real linear forms in 
the x's, let us consider the system of n-P homogeneous linear equa­
tions 
(2) 

Since these equations are real, and their number is less than the 
number of unknowns, they have a real solution not consisting 

• Sorne writers reserve the name deflnite for non-singular forms, and call the 
singular definite forms semideflnite. 

t Otherwise stated, the condition for a definiteJorm is that the characteristic be 
zero. Cf. the footnote to Theorem 3, § ól. 

REAL QUADRATIC FORMS 151 

exclusively of zeros. Let (y1, • • • y,.) be such a solution. This 
solution cannot satis{y ali the eq uations 

(3) 

for equations (2) and (3) together form a system of n homogeneous 
linear equations in n unknowns whose determinant is not zero, since 
it is the determinant of the linear transformation which reduces the 
given quadratic form to the normal form (1). Accordingly, if we 
substitute (y1, •·· y .. ) for the variables (x1, •·· x-,.) in the given quad­
ratic form, this form will have a positive value, as we see from the 
reduced forro (1 ). 

Similarly, by choosing for ~he x's a real solution of the equations 

Xi = 0, • .. Xj> = 0, x¡.+1 = 0, · · · X~= 0, 

which does not consist exclusively of zeros, we see that the quad­
ratic form takes on a negative value. 

W e pass now to sorne theorems which will be better appreciated 
by the reader if he considera their geometrical meaning in the 
case n= 4. 

THEOREM 2. Jj an indefinite quadratia form is positive at the real 
point (y1, ... Yn) and negative at the real point (i1, •·· zn), then there 
are two real points linearly dependent on these two, but linearly inde­
pendent of eaah other, at whiah the quadratia form is zero, and neither 
of whiah is a vertex of the f orm. 

(4) 

The condition that the quadratic form 

" Ia--x-x-1 V 1 , 

vanish at the ¡ioint (y1 + AZ1, ... y,. + Xzn) is 

ti " " 
rª;1Y,Yi + 2 X'fa;1Y;Z¡ + A2fªi;Z;Z¡ = o. 

This quadratic equation in X has two real distinct roots, since, 
from our hypothesis that (4) is positive at y and negativa at z, it 
follows that 

( fªvY1ZJ r -( fªvY,Yi) ( fa,1z,z¡) >O. 

Let us call these roots :\.1 and °½· Then the points 

(5) (y1 + :\.1z1, ... y,. + A1Zn), (y¡ + Af¡, ... !In + AqZ,.) 
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are two real points linearly dependent on the points y and z at whícla 
( 4) vanishes. · 

N ext notice that 

(6) 
1 

y, + A¡Z, '!/; + A¡Z; 1 = ¡ 1 A¡ l · I '!/' '!/¡ I · 
y, + ~z, '!J; + X.¡; 1 X~ z, Z; 

Since the points y and 1- are linearly independent, the integers i,j 
can be so chosen that the last determinant on the right of (6) is no\ 
zero. Then the determinant on the left of (6) is not zero; and, 
consequently, the points (5) are linearly independent. • 

In order, finally, to prove that neither of the points (5) is a 
vertex, denote them for brevity by 

Letting X1 - ~ = 1/µ,, we have 

z, = µ,Y; - µ,Z, 

Therefore 

(7) 

(i = 1, 2, ... n). 

Since the points Yand Z have been so determined that (4) vanishes 
at them, the first and last terms on the right of (7) are zero. lf 
either Y or Z were a vertex, the middle term would also be zero; 
but this is impossible since the left-hand member of (7) is, by 
hypothesis, negative. Thus our theorem is proved. 

For the sake of completeness we add the corollary, whose trutb 
is at once evident. : 

CoROLLARY. The only points linearly dependent on y and z at 
which the quadratic form vanishes are points linearly dependent on one 
or the other of the points rejerred to in the theorem; . and none of the,, 

are vertices. 

W e coroe now to a theorem of fundamental importance in the 
theory of quadratic forms. 

THEOREM 3. A necessary and sufficient condition that a real 
quadratic f orm be definite is that it vanish at no real points except it1 
vertices and the point (O, O, ... O). 
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Suppose, first, that we have a real quadratic form which vanishes 
at no real points except its vertices and the point (O, O, ... O). If it 
were indefinite, we could (Theorem 1) find two real points y, z, at 
one of which it is positive, at the other, negative. Hence (Theorem 
2) we could find two real points linearly dependent on y and z, at 
which the quadratic form van~shes. Neither of these will be the 
point (O, O, •·· O), since, by Tbeorem 2, they are linearly independ­
ent. Moreover, they are neither of them vertices. Thus we see 
that tbe form must be definite, and the sufficiency of the condition 
is established. 

It remains to be proved tbat a de:finite form can vanish only at 
its vertices and at the point (O, O, ... O). 

Suppose ( 4) is definite and that (y1, .. . y,.) is any real point at 
which it vanishes. Then, 

n n n 

fa¡/x¡.+ Xy;)(x; + Xy;) = rª;;X¡X; + 2 Xfa11X;,1/j' 

If y were neither a vertex nor the point (O, O, ... O), "'ia/Jx,y1 would 
not vanish identically, and we could find a real point (z1, .. • z,.) such 
that " 

k = "ia,1z¡,y1 * O. 
1 

If we let 
we have 

. (8) 

For a given real value of X, the left-hand side of this equatio11 
is simply the value of the quadratic forro (4) ata certain. real point. 
Accordingly, for different values of X it will not change sign, while 
the right-hand side of (8) has opposite signs for large positive 
and large negative values of X. Thus the assumptlon that y was 
neither a vertex nor the point (O, O, ... O) has led to a contradiction; 
and our theorem is proved. 

CoROLLARY. A non-singular definite quadratic f orm vanishes, 
for real values of the variables, only when it1J variables are all zero. 

. As a ~imple application of the last corollary we will prove 

THEOREM 4. In a non-singular definite f orm, none of the coeffi 
eienta of the square terms can be zero-
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For suppose the form (4) were de:finite and non-singular¡ and 
that ª• = O. Then the forro would vanish at the point 

x1 = .. ,=x,_1 =x,+1 = ... =x.=0, x,=1; 
and this is impossible, since this is not the point (O, O, ... O;. 

EXERCISES 
l. DEFINITION. By an orthogonal trarisformation • is understood a linear tra,.. 

formatfon which carries over the variables ( X11•·· Xn) into the variables ( x{, .. , x,.) in IUC4 
;way that 

x? + x: + ... + x; = xr2 + ".2 + ... + x:. 
Prove that every orthogonal transformation is non-singular, and, in particular, 

that its determinant must have the value + 1 or - l. 

2. Prove that all orthogonal transformations in n variables form a group; and 
that the same is true of all orthogonal transformations in n variables of deter, 

minant + l. 
3. Prove that a necessary and sufficient condition that a linear transform• 

tion_ be orthogonal is that it leave the "distance" 

v(y1 - z1)2 + (y2 - Z2)2 + ... + (y,. - Zn)2 
between every pair of points (yi, ... y,.), (zi, ... z,.) invariant. 

4. Prove that if n = 3, and if x1, x2, xs be interpreted as non,homogeneona 
rectanglar coordiu.ates in space, an orthogonal transformation representa either a 
rigid displacement which lea ves the origin fixed, or such a displacement combined 
with refiection in a plane through the origin. 

Show that the first of these cases will occur when the determinant of the 
transformation is + 1, the second when this determinant is - l. 

5. If the coefficients of a linear transformation are denoted in the usual way 
by ciJ, prove that a necessary and sufficient condition that the transformation be 
orthogonal is that e~, +ci+ ... +e~= t (i = 1, 2, ... n), 

{
i= 1,2, .. ,n. . 
• 1 :P}• 

J = 1,2, .. ,n 

Show that these will still be necessary and suflicientconditionsforan orthogonal 
transformation if the two subscripts of every e be interchanged. t · 

• The matrlx of such a transformation is called an orthogonal matrlx, and lts deter­
tninant an orthogonal determinant. 

t We ha.ve here ½ n (n + 1) relations between the n2 coefflcients of the transfonna­
tion. This suggests that it should be possible to express all the coeflicients in terms of 

2 n(n+l) n(n-1) 
n 2 2 

of them, or lf we prefer in terms of ½ n ( n - 1) other parameters. For Ca.yley's dil­
t:IJi!Sion of this question cf. Pascal's book, Die Determinanten,. § 47. Cayley's formula!, , 
however, do not include ali orthogonal transformations except as limiting cases. 

CHAPTER XII 

TBE SYSTEM OF A QUADRATIC FORM AND ONE OR MORE 
LINEAR FORMS 

53. Relations of Planes and Lines to a Quadric Surface. If th, 
plane 
(\) 

is a true tangent plane to the quadric surface 

(2) 

there will be a point Ü/i, y2, y8, y4) (namely the point of contact' 
lying in (1) and such that its polar plane , 

(3) !ai3-x;y1 = .0 
1 

coincides with (1 ). From elementary analytic geometry we know 
that a necessary and sufficient condition that two equations of the 
first degree represent the same plane is that their coefficients be pro­
portional. Accordingly, from the coincidence of (1) and (3), we 
deduce the equations 

(4) 

1 

ª11Y1 + ª1•iJh + ª1a!Ja + ªuJh - pu1 = O, 
ª21Y1 + ª2?112 + ª2a!Ja + ª2J/4 - puz = O, 
ªs1Y1 + ªw/2 + ªaa!Js + ªaJ/4 - pua = O, 

ª41Y1 + ª4'11f2 + ª4a!fa + ª4J/4 - pu4 = O. 

From the fact that the point y lies on (1), we infer the further 
relation 
(5) 

.. These equat~ons (4) and (5) have been deduced on the suppo-
11t1on that (1) 1s a true tangent plane to (2). They still hold if 
it is a pseudo-tangent plane; for then the guadric must be a cone, 
m_d a vertex of this cone must lie on (1 ). Taking the point y as 
th1s vertex, equation ( 5) is fulfilled. Moreover, since now the first 
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