CHAPTER XI
REAL QUADRATIC FORMS

50. The Law of Inertia. @We come now to the study of real
quadratic forms and the effect produced on them by real lineas
transformations.

We notice, here, to begin with, that the only operations involved
m the last chapter are rational operations (i.e. addition, subtraction,
multiplication, and division) with the single exception of the radicals
which come into formula (2), §46. In particular the reduction of
§ 45 (or the alternative reduction of §49) involves only rational opers
ations. Consequently, since rational operations performed on real
quantities give real results, we have

TarorREM 1. A real quadratic form of rank r can be reduced by
means of a real non-singular linear transformation to the form

1) ot ol + o+ 0a)
where ¢,, -+ ¢, are real constants none of which are zero.

As we saw in the last chapter, this reduction can be performed ina
variety of ways, and the values of the coefficients ¢;, -
form will be different for the different reductions. The signs of these

coefficients, apart from the order in which they occur, will not depend
on the particular reduction used, as is stated in the following im-

portant theorem discovered independently by Jacobi and Sylvestar' !

and called by the latter the Law of Inertia of Quadratic Forms:

TeEOREM 2. If a real quadratic form of rank r is reduced by tue
real non-singular linear tmnsﬁrnmtions to the forms (1) and

(2) klx”‘z £ kzx”2 + + k’mﬁg
respectively, then the number of positive ¢'s in (1) is equal to the number
of positive ks in (2).

In order to prove this, let us suppose that the 2’s and 2/"’s hayé 5

been so numbered that the first u of the ¢’s and the first » of the ks

are positive while all the remaining ¢’s and k’s are negative.
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theorem will be established if we can show that p =». If thisis
not the case, one of the two integers u and » must be the greater,
and it is merely a matter of notation to assume that p>». We will
prove that this assumption leads to a contradiction.

If we regard the 2/’s and 2'"’s simply as abbreviations for certain
linear forms in the 2’s, (1) and (2) are both of them identically equal
to the original quadratic form, and hence to each other. This iden-
tity may be written

(3) xfz + sn gt wu o | M+1Ix.!l2+1_ --]c,,]:z:,’?

sk + o B[k g|2)] = - — [kl

Let us now consider the system of homogeneous linear equations
in (ﬂp v Ty,
4) 2 =0, a)=0,2,,,=0..2,=0.

We have here » 42 —u <n equations. Hence, by Theorem 3,
Corollary 1, §17, we can find a solution of these equations in which
a}l the unknowns are not zero. Let (y;, --- %,) be such a solution and
denote by gi, y! the values of 2}, z when the constants g, .- y, are
substituted in them for the variables #;, .. z,. Substituting the s
for the 2's in (3) gives

eyt + e +oyd=—lb gyl = - =kl

The expression on the left cannot be negative, and that on the right
cannot be positive, hence they must both be zero; and this is pos-
sible only if ' '
= =y#=0'

But by (4) we also have g, = - =y, =0.

That is, (9, -y, is a solution, not composed exclusively of zeros, of
the system of » homogeneous linear equations in » unknowns,

=0, 2, =0, - z/=0.

The determinant of these equations must therefore be zero, that is,
the linear transformation which carries over the z’s into the 2’s must

be a singular transformation. We are here led to a contradiction

and our theorem is proved.
L
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We can thus associate with every real quadratic form two in:
tegers P and N, namely, the number of positive and negative coeffi.
cients respectively which we get when we reduce the form by any
real non-singular linear transformation to the form (1). These twg
numbers are evidently arithmetical invariants of the quadratic form
with regard to real non-singular linear transformations, since twa
real quadratic forms which can be transformed into one another by
means of such a transformation can obviously be reduced to the same
expression of form (1).*

The two arithmetical invariants P and N which we have thug
arrived at, and the arithmetical invariant 7 which we had before, ar
not independent since we have the relation '

(5) P4+ N=r.

One of the invariants P and N is therefore superﬂubus and either
might be dispensed with. It is found more convenient, howeven
to use neither P nor IV, but their difference,

(6) s=P—N,

which is called the signature of the quadratic form.

DEFINITION. By the signature of a real quadratic form is under
stood the difference between the number of positive and the number of
negative coeflicients which we obtain when we reduce the form by ang
real non-singular linear transformation to the form (1).

Sinee the integers P and NV used above were arithmetical invatis
ants, their difference s will also be an arithmetical invariant. T
should be noticed, however, that s is not necessarily a positive il
teger. - We have thus proved

TrueoreM 3. The signature of a quadratic form is an arithmeticdh i
invariant with regard to real non-singular linear transformations.

EXERCISES

1. Prove that the rank r and the signature s of a quadratic form are eithét

both even or both odd ; and that e,

2, Prove that any two integers r.and s (r positive or zero) satisfying the eol
ditions of Exercise 1 may be the rank and signature respectively of a quadralitsy
form. b

# P is sometimes called the index of inertia of the quadratic form. w

|
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8. Prove that a necessary and sufficient condition that a real quadratic form
of rank r and signature s be factorable into two real linear factors is that

P2y
or Y= g=0;

either

4. A quadratic form of rank r shall be said to be regularly arranged (cf. § 20,
Theorem 4) if the 2's are so numbered that no two consecutive 4’s are zero in the set

By o

il ednt o
e

a4y, ey
dy=LAd=a,d,=| 1"
g A S =, 5
21 %22 .
Opy wev Oy

and that A, == 0. Prove that if the form is real and any one of these A’s is ZET0,
the two adjacent A’s have opposite signs,

[SveersTion. In this exercise and the following ones, the work of § 49 should be
consulted.]

5. Prove that the signature of a regularly arranged real quadratic form is
equal to the number of permanences minus the number of variations of sign in the
sequence of the A’s, if the A’s which are zero are counted as positive or as nega
tive at pleasure. -

6. Defining the expression sgn = (read signum z) by the equations
sgnz=+1 x>0,
sgnz= 0 =z=0,
sgnz= -1 z<0,
show that the signature of a regularly arranged real quadratic form of rank r is
sgn (4gAd;) +sgn(4,4,) + .- + sgn (4,-14,).

81, Classification of Real Quadratic Forms. We saw in the last
section that a real quadratic form has two invariants with regard to
teal non-singular linear transformations, — its rank and its signa-
ture. The main result to.be established in the present section
(Theorem 2) is that these two invariants form a complete system.

If in §46 the ¢'s and %’s are real, the transformation (2) will be
real when, but only when, each ¢ has the same sign as the corre-
§p0n6ing k. All that we can infer from the reasoning of that section
Tow is, therefore, that if a real quadratic form of rank  can be
teduced by a real non-singular linear transformation to the form

e+ -+

16 ¢an also be reduced by a real non-singular linear transformation t

the form

b+ -+ Rl
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where the s are arbitrarily given real constants, not zero, subject
to the condition that each % has the same sign as the correspondiﬁg ¢
Using the letters P and V for the number of positive and negative ¢y
vespectively, the transformation can be so arranged that the first
P ¢'s are positive, the last N negative. Accordingly the first P ks
can be taken as + 1, the last Nas — 1. From equations (5) and (6)
of §50, we see that P and NV may be expressed in terms of the rank
and signature of the form by the formul®

Thus we have the theorem:

TaroreM 1. A real quadratic form of rank r and signature & can be.
reduced by a »eal non-singulor linear transformation to the normal form
(2) ; m%+---+m§-—x§;+1—----—w3
where P is given by (1).

We are now able to prove the fundamental theorem :

THEOREM 2. A necessary and sufficient condition that two real
quadratic forms be equivalent with regard to real non-singular linear

transformations is that they have the same rank and the same signature.

That this is a necessary condition is evident from the invariance S
That it is sufficient follows from the fact

of rank and signature.
that if the two forms have the same rank and signature, they cal
both be reduced to the same normal form (2).

DerINITION. All real quadratic forms, equivalent with regard
real non-singular lineer transformations to a given form, and thereforett |

each other, are said to form a class.*

Thus, for instance, since every real non-singular quadratic form
in four variables can be reduced to ome or the other of the fivé

normal forms
: 23 + 2} + 4§ + 2}

2 2 3 . 2
7+ 25 + T3 — T
®) A+ —af - o}

PR N
X — 2y — X3 — Ty

JEme A W
\— & — % — %5 — T

#* This term may be used in a similar manner whenever the conception of equiva

lence is involved.
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we see that all such forms belong to one or the other of five classes
‘characterized by the values

8=4,20, -2, —4, r=4,

If, however, as is the case in many problems in geometry, we are
goncerned not with quadratic forms, but with the equations obtained
by equating these forms to zero, the number of classes to be distin-
guished will be reduced by about one half, since two equations are
the same if their first members differ merely in sign.

Thus there are only three classes of non-singular quadric surfaces
with real equations, whose normal forms are obtained by equating
the first three of the forms (8) to zero. These equations written in
non-homogeneous codrdinates are

X2+ V24 2%0==1,
X4 V24 2%=1,
X2+ ¥2-Z%=1.

The first of these represents an imaginary sphere, the second a real
sphere, and the third an unparted hyperboloid generated by the revolu-
tion of arectangular hyperbola about its conjugate axis. It may readily
beproved that this last surface may also be generated by the revolution
of either of the lines Vil X

=1, X=+2

about the axis of Z. We may therefore say:

THEOREM 8. There are three, and only three, classes of non-singular -
?uadric surfaces with real equations. In the first the surfaces are imag-
inary ; in the second real, but their rulings are imaginary ; in the third
they are real, and the rulings through their real points are real.*

This classification is complete from the point of view we have
adopted of regarding quadric surfaces as equivalent if one can be
transformed into the other by a real non-singular collineation. The
more familiar classification does not adopt this projective view, but

‘_disti.ngl'}ishes in our second class between ellipsoids, biparted hyper-
boloids, and elliptic paraboloids ; and in the third class between un-

parted hyperboloids and hyperbolic paraboloids.

*1f, as here, we consider not real quadratic forms, but real homogeneous quadratic

EQuations we must use, not s, but |s| as an invariant. In place of [s| we may use what is

known as the characteristic of the quadratic form, that is the smaller of the two ine

legers P X' Thig characteristic is simply L (r — ).
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EXERCISES

1. Prove that there are 3(n + 1) (n +2) classes of real quadratic forms ing
variables.

2. Give a complete classification of singular quadric surfaces with real equa.
tions from the point of view of the present section.

52. Definite and Indefinite Forms.

DEFINITION. By an indefinite quadratic form is understood a real
quadratic form such that, when 5t is reduced to the mormal form (2),
§ 51, by a real non-singular linear transformation, both positive and neg-
ative signs oceur. Al other real quadratic forms are called definite ;¥
and we distinguish between positive and negative definite forms accord-
ing as the terms in the normal form are all positive or all negative.

In other words, a real quadratic form of rank » and signatures

is definite if 8= + r, otherwise it is indefinite.}

The names definite and indefinite have been given on account of

the following fundamental property:

TaEOREM 1. Anindefinite quadratic form is positive for some red
values of the variables, negative for others. A positive definite form @
positive or zero for all real values of the variables; a negative definite
form, negative or zero.

The part of this theorem which relates to definite forms follows
directly from the definition. To prove the part concerning indefi-
nite forms, suppose the form reduced by a real non-singular lineat
transformation to the normal form

() B 4o = oy =

Regarding the 2’ as abbreviations for certain real linear forms in
the 2’s, let us consider the system of n— P homogeneous linear equé
tions

(2)

— ! = e
Z{Pﬂ—"oa Tpig=0, 1, =0.

Since these equations are real, and their number is less than the

number of unknowns, they have a real solution not consisting

* Some writers reserve the name definite for non-singular forms, and call the.

gingular definite forms semidefinite.
t Otherwise stated, the condition for a definitegform is that the characteristic bé
zero. Cf. the footnote to Theorem 3, §61. ;
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exclusively of zeros. Let (yy -+ ,) be such a solution. This
solution cannot satisfy all the equations

(3) 2, =0, - p=10,

for equations (2) and (8) together form a system of » homogeneous
linear equations in n unknowns whose determinant is not zero, since
it is the determinant of the linear transformation which reduces the
given quadratic form to the normal form (1). Accordingly, if we
substitute (yy, --- y,) for the variables (2, .-- 2,) in the given quad-
ratic form, this form will have a positive value, as we see from the
reduced form (1).

Similarly, by choosing for the a’s a real solution of the equations

o b Sotes oK
=0, 2h=0, =0, 2,=0,

which does not consist exclusively of zeros, we see that the quad-
ratic form takes on a negative value.

~ We pass now to some theorems which will be better appreciated
by the reader if he considers their geometrical meaning in the
case n = 4.

THEOREM 2. If an indefinite quadratic form is positive at the real
point (Y, -+ y,) and negative at the real point (24, - 2,) then there
are two real points linearly dependent on these two, but linearly inde-
pendent of each other, at which the quadratic JSorm is zero, and neither

of which s a vertex of the form.

The condition that the quadratic form
. ﬁ:‘.aﬁx‘ay
vanish at the point (¥, + Azg, oo Y, + A2,) 18
%a,}-yiyj + 2 )&%aijy,zj + lzéaﬁzizj =,

This quadratic equation in A has two real distinct roots, since,
from our hypothesis that (4) is positive at y and negative at 2, it
follows that

(%%%%‘)2 i (%aiﬁyr‘%) (%“iz’zizf) >0.
Then the points
(14 M2p = Yo + Ma2a)

Let us call these roots A; and A,
() (@1 + M2 o+ Yo+ M2
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are two real points linearly dependent on the points y and 2 at which
(4) vanishes. :

Next notice that
Yit+ Mz Y+ N ‘ 1

6 -
©) Yi+ N2 Y+ M2

Y Yy

Since the points y and z are linearly independent, the integers 64
can be so chosen that the last determinant on the right of (6) is not
zero. Then the determinant on the left of (6) is not zero; and,
consequently, the points (5) are linearly independent.

In order, finally, to prove that neither of the points (5) i8 @
vertex, denote them for brevity by

Xy - 1:) (Zp e Z)

Letting A; — Ay = 1/p, we have
7, =uY; — pZ (i=1i 2, "'“)-

Therefore :

M) 3ape =YY, - 20, YT, + 1200,

Since the points ¥ and Z have been so determined that (4) vanishes "

at them, the first and last terms on the right of (7) are zero. IE5

either ¥ or Z were a vertex, the middle term would also be zeroj
but this is impossible since the left-hand member of (7) is, by
hypothesis, negative. Thus our theorem is proved.

For the sake of completeness we add the corollary, whose truth 3
is at once evident; : i

CoROLLARY. The only points linearly dependentson y and 2z @
which the quadratic form vanishes are points linearly dependent on one
or the other of the points referred to in the theorem; and nome of these
are vertices.

We come now to a theorem of fundamental importance in the
theory of quadratic forms.

THEOREM 3. A necessary and sufficient condition that a real

quadratic form be definite s that it vanish at mo real points except it |

vertices and the point (0, 0, - 0). 1 |
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Suppose, first, that we have a real quadratic form which vanishes
at no real points except its vertices and the point (0, 0, --- 0). Ifit
were indefinite, we could (Theorem 1) find two real points y, 2, at
one of which it is positive, at the other, negative. Hence (Theorem
2) we could find two real points linearly dependent on y and z, at
which the quadratic form vanishes. Neither of these will be the
point (0, 0, ... 0), since, by Theorem 2, they are linearly independ-
ent. Moreover, they are neither of them vertices. Thus we see
that the form must be definite, and the sufficiency of the condition
is established.

It remains to be proved that a definite form can vanish only at
its vertices and at the point (0, 0, .- 0).

Suppose (4) is definite and that (y,, .- ,) is any real point at
which it vanishes. Then,

%aij{m,- + M)z + My = %aijrix,- 32 l%aﬁx,fyj.

If y were neither a vertex nor the point (0, 0, -.- 0), Za,zy; would
not vanish identically, and we could find a real point (2, :-+ 2,) such

that 2
k= Sapy; + 0.

If we let

n
= Eavz‘zj1
. 1

we have

(8) 213%(3-' + M)z + Ay;) = e + 20k,

For a giver real value of A, the left-hand side of this equation
18 simply the value of the quadratic form (4) at a certain_real point.
Accordingly, for different values of A it will not change sign, while
the right-hand side of (8) has opposite signs for large positive
and large negative values of A. Thus the assumption that y was
neither a vertex nor the point (0, 0, - 0) has led to a contradiction;
and our theorem is proved.

CoroLLARY. A nmon-singular definite quadratic form vanishes,
Jor real values of the variables, only when its variables are all zero.

As a simple application of the last corollary we will prove

TrEOREM 4. In a non-singular definite form, none of the coeff
cuents of the square terms can be zero.
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For suppose the form (4) were definite and non-singular; and
that @;=0. Then the form would vanish at the point

xl= van =2:‘-_! = xl-+1 ==, = O’ Ti= 1;
and this is impossible, since this is not the point (0,0, ... 0},

EXERCISES

1. DermxitioN. By an orthogonal transformation* is understood a linear frans
formation which carries over the variables (Zyy- ) into the variables (2], %,) in such
& way that

xf s :c§ oE eawi xﬁEz? +a et 23

Prove that every orthogonal transformation is non-singular, and, in particular,
that its determinant must have the value + 1 or — 1. d

2. Prove that all orthogonal transformations in n variables form a group; and
that the same is true of all orthogonal transformations in n variables of deter
minant + 1.

3. Prove thata necessary and sufficient condition that a linear transforma.
tion be orthogonal is that it leave the * distance ”

Vi-2) + (@2 —2) + =+ Un—)*
between every pair of points (31, =+ #); (21, - 2,) invariant.

4. Prove that if n =38, and if 1, 25, 25 be interpreted as non-homogeneous
rectanglar codrdinates in space, an orthogonal transformation represents eithera
rigid displacement which leaves the origin fixed, or such a displacement combined
with reflection in a plane through the origin.

Show that the first of these cases will occur when the determinant of the
transformation is + 1, the second when this determinant is — 1.

5. If the coefficients of a linear transformation are denoted in the usual way
by ¢y, prove that a necessary and sufficient condition that the transformation be
orthogonal is that el 4 vbel=l (i =1,2, 1),

€130y + CaiCyy + v+ + CuiCy =0 {i=1’2""n‘ i
1iC1y 2iCgy niCny = j=1,2,---nhf:].

Show that these will still be necessary and sufficient conditions for an orthogonal

transformation if the two subscripts of every ¢ be interchanged.t

* The matrix of such a transformation is called an orthogonal matrix, and its deter
minant an orthogonal determinant,.

t We have here } n (n + 1) relations between the n? coefficients of the transformae
tion. This suggests that it should be possible to express all the coefficients in terms of
_n(n+l) _n(n-1)

Em

of them, or if we prefer in terms of }n (n — 1) other parameters. For Cayley's diss

n2

eussion of this question cf. Pascal’s book, Die Determinanten, §47. Cayley’s formuley

however, do not include all orthogonal transformations except as limiting cases.

CHAPTER XII

THE SYSTEM OF A QUADRATIC FORM AND ONE OR MORE
LINEAR FORMS

53. Relations of Planes and Lines to a Quadric Surface. If the
plane

(]') ulxl + u‘zxg + usi‘a + u4ﬂ54 — 0

i§ a true tangent plane to the quadric surface

(2) %a@-zixj =0,

there will be a point (yy, ¥, ¥y y,) (namely the point of contact)
lying in (1) and such that its polar plane

(3) éaﬁx,-yj =

eoincides with (1). From elementary analytic geometry we know
that a necessary and sufficient condition that two equations of the
first degree represent the same plane is that their coefficients be pro-
portional.  Accordingly, from the coincidence of (1) and (8), we

deduce the equations
Yy + Yy + Ay + ayy, — puy =0,
@ Uo1Yy + Coglfs + Qogly + gy — puy =0,
Bg1Y1 T Agglfy + Aggls + agy9 s — prg =0,
By + Aglfy + Aygys + ayy, — pu, =0,
From the fact that the point y lies on (1), we infer the further
relation )
(5) UrYy + gl + Uy + ugy, = 0.

A These equations (4) and (5) have been deduced on the suppo-

ffltion that (1) is a true tangent plane to (2). They still hold if

6 is a pseudo-tangent plane ; for then the quadric must be a cone,

ind a vertex of this cone must lie on (1). Taking the point y as

ihis vertex, equation (5) is fulfilled. Moreover, since now the first
156




