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We have tacitly assumed that it is possible to find points y, 2, uy i

constructed as indicated above, and not lying on the quadric surface,
We leave it for the reader to show that, if the quadric surface is nog
a cone, this will always be possible in an infinite number of ways,
A cone, however, has no self-conjugate tetrahedron, and in this case

the above reduction is impossible.

EXERCISES

1. Prove that if the discriminant of a quadrie surface is zero, the eqllmtion.of
the surface can always be reduced, by a suitable collineation, to a form in which

the coordinate z, does not enter. :

[Sveaesrion. Show, by using the results of this chapter, that if the vertex of &

quadric cone is at the origin, a4 = @24 = G4 = Ggs = 0.]
2. Show that, provided the cone has a finite vertex, the collineation of
Exercise 1 may be taken in the form
=7, +a7
y=1+pz,
Ty=23+ Y%,
=2,

[Sueoxsnox. Use non-homogeneous coirdinaies.]

CHAPTER X
QUADRATIC FORMS

42. The General Quadratic Form and its Polar. The general
quadratic form in n variables is

n
(1) Zayre, = a8+t + ... + a7y,

+am1'21’1+ﬂ4421“§ + oo+ Qg TeTy

+ amxn:rl + anETuT? + LLL] + anu-.cig

where a; = a;.* The bilinear form %a;j:y,-zj is called the polar form of
(1), Subjecting (1) to the linear transformation
7y = ey] + ... + 70

— o !
4 Zy = Cy + voe F G Ty

we get a new quadratic form
@) R

| o
Ty

The polar form of (2) is Zajyjz]. If we transform the y’s and 2's of
the polar form of (1) by the same transformation ¢, we get a new
3 1 ”_. .
bilinear form %aijy,fz;. We will now prove that @; = aj,.
We have the identities

3 3 >’
( ) %aex‘xj = %a!-jx:ﬂ','},

n il
) 284y = %aijy:z}-

* It should be clearly understood that this restriction is a matter of convenience,
0t of necessity. If it were not made, the quadratic form would be neither more noz

* less general,
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Each of these we may regard as identities in the 2'’s, y"s?, 2! 5, the
v's, y's, 2's being merely abbreviations for certain polyno.mlals in the
corresponding primed letters. The last written identity reduces,

when we let yl=2{=2} (1=1, 2,...n), to

S sl )
%aijxixj = ?a;jxixi .

Combining this with (3) gives

n n
= e e
%aijxﬁxj = %aij:vix}.
a Tk =+l
Hence 3, = of; and T + @;=ay+ax

We have assumed that o= 4/, these being merely the coefficients on
a certain quadratic form, and we proved, in Theorem 4, § 36, that
;= Hence we infer that @, = aj;.

From this fact and from (4) we get at once the further result:

!
i

Sayle)=Sagy 2
That is :
TurorEM. The polar form

n
2agy 2

is an absolute covariant of the system composed of the quadratic form

ilat-,-:r;{a:j
and the two points (s +» Yahr (g o Za)r

43, The Matrix and the Discriminant of a Quadratic Form.

DepINITION. The matriz
‘: a’n s am
= :

|| (A vor B

i8 called the matriz of the quadratic form

(D %aﬁxt-xj. :

The determinant of a is called the discriminant of (1); and the rank of

a, the rank of (1).  If the diseriminant vanishes, (1) ds called singulars §
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The matrix of (1) is the matrix of its polar form. Moreover, as
was shown in the last section, if the #'s in (1) are subjected to a
linear transformation, and the y's and 2’s in the polar of (1) are sub-
jected to the same transformation, the matrix of the new quadratic
form will be the same as the matrix of the new bilinear form. But
we saw, in Theorem 1, §36, how the matrix of a bilinear form is
changed by linear transformations of the variables. Thus we have
the theorem :

THEOREM 1. If in the quadratic form (1) with matriz a we sub-
ject the s to a linear transformation with matriz ¢, we obtain a new
quadratic form with matriz ¢'ac, where ¢' is the conjugate of c.

From this there follow at once, precisely as in §36, the further
results :

TaroreM 2. The rank of a quadratic form is not changed by non-
singular linear transformation.

TrEOREM 3. The discriminant of a quadratic form is a relative
mvariant of weight two.

44. Vertices of Quadratic Forms.

DEFINITION. By a vertex of the quadratic form
(1) %azjibixj,
we understand a point (¢, - ¢,) where the s are not all zero, such that
(2) %aé,-x‘-cj =0.

A quadratic form clearly vanishes at all of its vertices.
It is merely another way of stating this definition when we say :

TurorEM 1. A necessary and sufficient condition that (ep -+ ¢,) be

Rvertex of (1) is that 1t be a solution, not consisting exclusively of zeros,

of the system of equations
aye + - + ay,e, =0,

(3)

@01+ o + ey =0,
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Since the resultant of (3) is the diseriminant of (1), we may add: A

THEOREM 2. A necessary and sufficient condition for a quadratic
form to have a vertex is that its diseriminant be zero ; and if the rank
of the form 18 r, it has n —r linearly independent vertices, and every poink
linearly dependent on these is a vertex

In particular, we note that if the discriminant of a quadratic .

form is zero and if the cofactors of the elements of this determinang
are denoted in the ordinary way by 4, then (A4, -+ 4,,) is a vertex,
provided all these A’s are not zero.

The following identity is of great 1mp01tance (cf. formula

(2) § 88),
() _Er:'% (24 Agi) (5 +2y) = %%zfzj +2 7‘:2% 2Y;+ 7‘22:‘113.%3/:"
This may be regarded as an identity in all the letters involved.

If (¢, -+ ¢,) is a vertex of the quadratic form E:ag-,-:c,-x_,-, and these
¢'s are substituted in (4) in place of the y's, the last two terms of
the second member of this identity are zero, and we have

(5) ?oa'u (z,- "I‘ RC{) (ZJ ‘+‘ ).C'J) E‘Z} auzlzj H

and conversely, if (5) holds, (¢, - ¢,) is a vertex; for subtracting

(5) from (4), after substituting the ¢'s for the g's in (4), we have f

27\%&,;,-3,-53 + kgé%- ¢ =0,
and, this being an identity in A as well as in the 2's, we have
%L’Lﬁzicj == 0.
1

Thus we have proved the following theorem:

THEOREM 3.
be a vertex of the quadratic form (1) is that 2,
dependent variables, the identity (5) be fulfilled.

c+ 2, and N being i

EXERCISES
1. Prove that if (¢, ...c,) is a vertex of (1), and (y,.

point linearly dependent on ¢ and y.
2. State and prove a converse to 1.

A necessary and sufficient eondition that (ey, +t) |

.+¥a) is any point af
which the quadratic form vanishes, then the quadratic form vanishes at every
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45. Reduction of a Quadratic Form to a Sum of Squares. If in
the quadratic form

(1) Iﬁb (i"lv g

the coefficient a;, is not zero, we may simplify the form by the fol.
lowing transformation due to Lagrange.
The difference

1,
qb (3;1, mﬂ) N Z{'aﬂxl LS a_mxﬂ)z

2,)= Ea G2

is evidently independent of z. Denoting it by ¢,, we have

1 s
¢ = ?‘;(aﬂwl + O armxﬂ)g + ¢].

If, then, we perform the non-singular linear transformation

k.
T =02+ A%y + o+ + By, T,

(2) ‘{........

the quadratic form ¢ is reduced to the form
() 1 :vm + ¢y (a3, -

in which all the terms in 2/ are wanting except the term in 2.
It will be seen that this reduction can in general be performed in
a variety of ways. It becomes impossible only when the coefficients
of all the square terms in the original quadratic form are zero.
Unless, in the new quadratic form ¢,, the coefficients of all the
SQuare terms are zero, we can apply the same reduction to this form
by subjecting the variables #}, --- 2, to a suitable non-singular linear
transformation. This transformation may also be regarded as a non.
singular linear transformation of all the 2s : (2}, x5, +- ) if we write

7 =27. We thus reduce (3) to the form
) El' e : =237+ ¢y (23 -
(1] JJ
Applying this reduction now to ¢,, and proceeding as before, we

8é¢ that by a number of successive non-singular transformations the
form ¢ can finally be reduced to the form:

) G Y e i 3
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These successive transformations can now be combined into a singls
non-singular linear transformation, and we are thus led to the
TaEOREM. Bvery quadratic form in n variables can be reduced fo
the form (5) by o non-singular linear transformation.
The proof of this theorem is not yet complete ; for if at any

stage of the reduction the quadratic form ¢; has the peculiarity that

all its square terms are wanting, the next step in the reduction will be
impossible by the method we have used. Before considering this point,
we will illustrate the method of reduction by a numerical case.
Example.
23+ zT t+ 8,2,
¢=l+ mz—31F +925=1Cn+5+82)"+d
+8x3x1+9x3x2+2x§
where
—1a2 + Daymg
b= — 3z, + 82g)t — 823 + 18 zyzp+ Ax= { _l_% ;3% —30 ;% }
2-23( Joy+b5ay)?-140a |
Accordingly, by means of the non-singular linear transformation
o, =2z, 42, +8z
gh= —fm+dzy
g;g = Lgy
the form ¢ reduces to Fz2—32z7—1§L 22,
We have given here merely one method of reduction. Three differ.

ent methods were open to us at the first step and two at the second,
We proceed now to complete the proof of the general theorem

Let us suppose that the coefficients of all the square terms in ¢ are

zero,* but that a;,# 0. Then
By -+ 2,) = Ly + 22 (g7 + - + Oyo)
+ 2 2@y + o+ + G )+ é%‘x@!

2
= ;:(“12% + Qygta + o+ 032) (B + Gggt3+ 0+ AgnTy)

2
. ¢l?

where ¢ =— ;2—(0513113 oo 01,2, ) (g2 + o Bgan) T %aij:v,-x,-.
v Oy

# This method may be used whenever @11 =a::=0 whether all the other coefe
_ﬁcients ay; are zero or not.
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fhe non-singular linear transformation
pliict T
Ty= Gyt Tyt o T Ayl
pie
Ty =0y% Tyl ot dyty
il
L

e

thus reduces ¢ to the form
2

e {75 4 &y (@5, -+ T}
12 x

The further non-singular transformation
s ¥
Ty =T + Ty,

F el !
oy =21 — Ty

reduces ¢ to the form

1
Ef{ T 2, + ¢,(23) -+ 7).

The above reduction was performed on the supposition that a,,=0.
It is clear, however, that only a slight change in notation would b
necessary to carry through a similar reduction if a,,=0 but a0
The only case to which the reduction does not apply is, therefore,
the one in which all the coefficients of the quadratic form are zero,
a case in which no further reduction is necessary or possible.

We thus see that whenever Lagrange’s reduction fails, the method
last explained will apply, and thus our theorem is completely es
tablished.

EXERCISES

1. Given a quadratic form in which n = 5 and ay = [ — j|. Reduce to the

form (5). '

2. Reduce the quadratic form
9o — 62 —822+ 6oy — 1422+ 182w + 8 yz + 12yw — 42w
fo the form (5).
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3. Prove that if (yy,... y») is any point at which a given quadratic form ﬁ !

not zero, a linear transformation can be found (and that in an infinite number of

ways) which carries this point into the point (0, 0, 1) and its polar into ki

and show that this linear transformation eliminates from the quadratic form alI
terms in z, except the term in 23 which then has a coefficient not zero.

4. Prove that the transformations dascribed in Exercise 3 are the only oney
which have the effect there deseribed.

5. Show how the two methods of reduction explained in this section come ag
special cases under the transformation of Exercise 3.

46. A Normal Form, and the Equivalence of Quadratic Forms
In the method of reduction explained in the last section, it may
happen that, after we have taken a number of steps, and thus
reduced ¢ to the form

elx% ol iseri e t‘,'k:E% o ¢k (xkvl-]'! 55 mn)'l

the form ¢, is identically zero. In this case no further reduction
would be necessary and the form (5) of the last section to which ¢i§
reduced wounld have the peculiarity that ¢, =cpqo= -
while all the earlier ¢'s are different from zero.
when this case will occur,

For this purpose, consider the matrix

6 040
0 ¢y 0

R

Ca

of the reduced form (5) of § 45. It is clear that the rank of thil |

matrix is precisely equal to the number of ¢'s different from zer0j
and, since the rank of this reduced form is the same as that of the
original form, we have the result :

THEOREM 1. A necessary and sufficient condition that it be possis

ble to reduce a quadratic form by means of a non-singular linear transs

Sormation to the form
@)

where none of the ¢'s are zero, is that the rank of the quadratic form be».

0'193¥+ S grg;g,

=, =;(L "
It is easy to see just |

1ank is an invariant.
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This form (1) involves 7 coefficients ¢;, --- ¢,. That the values of
these coefficients, apart from the fact that none of them are zero, are
immaterial will be seen if we consider the effect on (1) of the trans-

| y = \E‘E‘”Jv

formation

where k;, +-- k, are arbitrarily given constants none of which, how-
ever, is to be zero. The transformation (2) is non-singular, and
reduces (1) to the form
(3)

klx?.'_ S er:?.
Thus we have proved '

TueorEM 2. A quadratic form of rank r can be reduced by means
of @ non-singular linear transformation to the form (3), where the values
of the constants ky, - k, may be assigned at pleasure provided none of
them are zero.

If, in particular, we assign to all the %’s the value 1, we get

TuEOREM 8. Every quadratic form of rank r can be reduced to

the normal form '

)

by means of a non-singular linear transformation.

;1:%-]- .

From this follows

TaEorEM 4. A necessary and sufficient condition that two quad-
tatic forms be equivalent with regard to mon-singular linear trans-
formations is that they have the same rank.

That this is a necessary condition is evident from the fact that the

That it is a sufficient condition follows from
the fact that, if the ranks are the same, both forms can be reduced

. o the same normal form (4).
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The normal form (4) has no special advantage, except its sym.
metry, over any other form which could be obtained from (3) by

assigning to the &’s particular numerical values, Thus, for instance, |

a normal form which might be used in place of (4) is
3%"{" " +:E2_1—$?.-

This form would have the advantage, in geometrical work, of giving
rise to a real locus. ;

Finally we note that the transformations used in this section are
not necessarily real, even though the form we start with be real.

EXERCISE
Apply the results of this section to the study of quadric surfaces.

47. Reducibility. A quadratic form is called reducible when it is
identically equal to the product of two linear forms, that is, when

@)

Let us seek a necessary and sufficient condition that this be the case.
We begin by supposing the identity (1) to hold, and we consider i

S ana = (b + by + -+ b)oy + oty o ko).

succession the case in which the two factors in the right-hand mem- =
ber of (1) are linearly independent, and that in which they are pro- |

portional. In the first case the &'s are not all proportional to the

corresponding ¢’s, and by a mere change of notation we may insuré

by, by not being proportional to ¢;, ¢ This being done, the trans
formation

(@) =bzy + byty + - + 0,20

Th = €4y + CpTy + -+ Oy

zﬂ

is non-singular and carries our quadratic form over into the form
! ol

L

‘The matrix of this form is readily seen to be of rank 2, hence the }
original form was of rank 2
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Turning now to the case in which the two factors in (1) are
proportional to each other, we see that (1) may be written

% aga;= O + - + b, )2

where (0.

Unless all the &’s are zero (in which case the rank of the quadratic
form is zero) we may without loss of generality suppose b;+0, in
which ca’ ; the linear transformation

2y =ba;+ -+ b2,
Ty = Zy

r,= Ty

will be non-singular and will reduce the quadratic form to
12
which is of rank 1. Gy
Thus we have shown that if a quadratic form is reducible, its
rank is 0, 1, or 2. We wish now, conversely, to prove that every
gquadratic form whose rank has one of these values is reducible.
A quadratic form of rank zero is obviously reducible.
A form of rank 1 can be reduced by a non-singular linear trans-
formation to the form w’lf that is,

S il Y -
g —
(I..:clm :EI .

It here we substitute for 2, its value in terms of the #’s, it is clear
that the form is reducible.
A form of rank 2 can be reduced to the form /' + 2}, that is,

Sapay=d] +a3 =(+V=12)@e - V-1a)
Here again, replacing 2} and ), by their values in terms of the 2’s,
the reducibility of the form follows. Hence,

THEOREM. A necessary and sufficient condition that a ‘guadmtz’a
form be reducible is that its rank be not greater than 2.

48. Integral Rational Invariants of a Quadratic Form. We have
seen that the discriminant @ of a quadratic form is an invariant of
weight 2. Any integral power of a, or more generally, any constant
multiple of such a power, will therefore also be an invariant. We

will now prove conversely the

TreoreM. Hvery integral rational tnvariant of a quadratic form
1 a constant multiple of some power of the discriminant.
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Let us begin by assuming that the quadratic form

1) %“ﬁ:‘mﬁj

is non-singular, and let ¢ be the determinant of a linear transforma,.
tion which carries it over into the normal form

@ S+ + o tal

Let I(ay, -+ @,,) be any integral rational invariant of (1) of weight
and denote by & the value of this invariant when formed from (2),
It is clear that k is a constant, that is, independent of the coefficients
ag of (1). Then ;P

Moreover, the discriminant a being of weight 2, and having for (2
the value 1, we have 158 da.

Raising the last two equations to the powers 2 and w respectively,
1= g+, |

we get =],
From which follows

(3) I*=an,

This formula has been established so far for all values of the
coefficients az for which a+0. That it is really an identity in the
ag's is seen at once by a reference to Theorem 5, § 2. The poly:
nomial on the right-hand side of (8)is of degree w in a;;* henee

we see that u must be an even number, since 12 is of even degree in =

@ Letting u =2, we infer from (3) (cf. Exercise 1, § 2) that ong
or the other of the identities
I=ika,

must hold, and either of these identities establishes our theorem.
A comparison of the result of this section with Theorem 4, § 46
will bring out clearly the essential difference between the two cons

=— ka”

ceptions of a complete system of invariants mentioned in § 29, It will

be seen that the rank of a quadratic form is in itself a complete sys:
tem of invariants for this form in the sense of Definition 2, § 295
while the discriminant of the form is in itself a complete system in
the sense of the footnote appended to this definition.

* We assume here that %=£0, as otherwise the truth of the theorem would b
obvious, :
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49, A Second Method of Reducing a Quadratic Form to a Sum of
Squares. By the side of Lagrange’s method of reducing a quadratic
form to a sum of squares, there. are many other methods of accom-
plishing the same result, one of the most useful of which we pro-
geed to explain. It depends on the following three theorems. The
proof of the first of these theorems is due to Kronecker and estab-
lishes, in a remarkably simple manner, the fact that any quadratic
form of rank » can be written in terms of # variables only, a fact
which has already been proved by another method in Theorem 1, § 46.

THEOREM 1. If the rank of the quadratic form
1) (zy - 2,) = %a,}wﬁxj

e >0, and if the variables z,, ---x, are so numbered that the r-rowed
determinant in the wpper left-hand corner of its matriz i3 not zero*
new variables xi, -z, can be introduced by means of a non-singular
linear transformation such that

(i=r+1, n),

Ti=1x
and such that (1) reduces to the form
éai, 2},

This, it will be noticed, is a quadratic form in # variables in which
the coefficients, so far as they go, are the same as in the given form (1).
. In order to prove this theorem, we begin by finding a vertex
(& -+ ¢,) of the form (1) by means of Equations (8), § 44. Since the
r-rowed determinant which stands in the upper left-hand corner of

the matrix of these equations is not zero, the values of ¢,,y, -+ ¢, may

be chosen at pleasure, and the other ¢’s are then completely deter-
mined. If we let ¢ =cuq= =¢,,=0, ¢,=1, we get a vertex

(e = €p 0,+--0, 1),
Using this vertex in the identity (5), § 44, we have
& (24 Aoy - T+ Moy Tppgy oo By gy T+ N) = P20 3,):

If we let A= — z,, this identity reduces to
G (2= 1T ** Tp = €Ty Trgyy *+ Typp 0) =@ (2, -+ 7).

# That such an arrangement is possible is evident from Theorem 3, § 20.
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Accordingly, if we perform the non-singular linear transformation®
{z{.—-xi—c,-:z:, (i=1,-1)
7 =2; (i=r+1,-a)

the quadratic form (1) reduces to
n-1
¢(}, = 71 0)= §a‘,m;.

This, being a quadratic form in n— 1 variables of rank r and &
arranged that the r-rowed determinant which stands in the upper
left-hand corner of its matrix is not zero, can be reduced, by the
method just explained, to the form

n—2
%’aﬁxfx;',
where the linear transformation used is non-singular and such that
:L':-":Zz (i=r+1, ...“_1).
By adding the formula 2] =2,

we may regard this as a non-singular linear transformation in the a

variables. This transformation may then be combined with the oné

previously used, thus giving a non-singular transformation in which
] =, (i=r+1,:n)
and such that it reduces (1) to the form

L
};‘a,}- )z}

Proceeding in this way step by step, our theorem is at lost

proved.

In the next two theorems we denote by A; in the usual way the

cofactor of a; in the discriminant a of the quadratic form (1).

TaroreM 2. If A,,# 0, new variables ), ++- @) can be introduced
by a non-singular transformation in such a way that

Tp =%y
and that (1) takes the form

nila iz + LAY
o e A W

# This transformation should be compared with Exercise 2, § 41.
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To prove this we consider the quadratic form
- Tt
Oy Ty — —— Ty
. .
Its discriminant is
L]
e 1| e Bady - 4w

Qn-1,1 ** g, n-1 Fn-1,n -
gy veet Oy, Wil App — A
nn
Hence by means of a non-singular transformation of the kind used
m the last theorem, an essential point being that z} = z,, we get

% a 2 "ol el
> Ay 2,25 — A—M:Ln = %aﬁx.,-zj,
n n-1

a
Sagam; = Sagriy +
. 1 Aun

I
R xﬂz'

TagorEM 3. If
Amt = An-—l,n-—l = 0! An,n-l:# 01

new variables z,, --- x| can be introduced by a non-singular transforma-

tion in such a way that .
Ty1=Tp—p Tp= Ty

and that (1) takes the form

n—2 9
Sagrin+— a_lx,:x,:_l.
~ Let us denote by B the determinant obtained by striking out the
last two rows and columns of a. Then (cf. Corollary 3, § 11) we
have

® aB = | Ar-r-r A

i

3L o gt A2, #0.
Consider, now, the quadratic form
2a

8 S ST
(7 ) Ela'Jx':':? Arr. n-3

T Tpge
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Its diseriminant is

2 al! n=1

.

@a-1, w1
a
Xyyn—1— A

y, =1

2
@ @ @
< e N S Rl LI )
= lAra. n—1 Ans n—1 1y =1

which has the value zero, as we see by making use of (2).
does the' determinant (4) vanish, but its principal minors obtained

Not only

by striking out its last row and column and its next to the last row

and column are zero, being A, and 4,_, ,_, respectively. The minor
obtained by striking out the last two rows and columns from (4) 1§

B, and, by (2), this is not zero. Thus we see (cf. Theorem 1, § 20}

that the determinant (4) is of rank n—2. Hence, by Theorem 1,

we can reduce (8) by a non-singular linear transformation in which |

Ty =Ty y =1, to the form

a n-3
BTy = SOOL)

7
Ea‘ﬁx"ﬁj = if
1 n, n=1

8 n-2 2a
5 ' 1o
El.a,jx,-x_,- = %a,}-xﬁxj +——alz .

Hence
An, -1

COROLLARY. Under the conditions of Theorem 3, the quadralis
form (1) ean be reduced to the form

2a
An. n-1

)
%ﬂﬁmimj +

(97’4:2—1 _'3:;42)

by a non-singular linear transformation.

To see this we have merely first to perform the reduction of
. Theorem 3, and then to follow this by the additional non-singulat

transformation e (=1,9 ~n=0)

" I

x:l-] =z —l_mm

| "
el o
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Having thus established these three theorems, the method of
reducing & quadratic form completely is obvious. If the form (1) is
gingular, we begin by reducing it by Theerem 1 to

.
% O ;T

where  is the rank of the form. Unless all the principal (r— 1)-
rowed minors of the discriminant of this form are zero, the order
of the variables z;, :-- z, can be so arranged that the reduction of
Theorem 2 is possible, a reduction which may be regarded as a non-
singular linear transformation of all # variables. If all the princi-
pal (r — 1)-rowed minors are zero, there will be at least one of the
cofactors A which is not zero, and, by a suitable rearrangement of
the order of the variables, this may be taken as 4, ,_;. The reduc-
tion of Theorem 3, Corollary, will then be possible. Proceeding in
this way, we finally reach the result, precisely as in Theorem 1, § 46,
that a quadratic form of rank s can always be reduced by a non-
singular linear transformation to the form

o234 v + .22

It may be noticed that the arrangement of the transformation of
this section is in a certain sense precisely the reverse of that of §45,
inasmuch as we here leave at each step the coefficients of the unre-
duced part of the form unchanged, but change the variables which

. enfer into this part ; while in §45 we change the coefficients of the

gareduced part, but leave the variables in it unchanged.
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