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CHAPTER VIII 

BILINEAR FORMS 

36. The Algebraic Theory. Before entering on the study of 
quadratic forros, which will forro the subject of the next five chapters, 
we turn briefly to a very special type of quadratic forro in 2 n varia­
bles, known as a bilinear forro, and which, as its name iroplies, forma 
a natural transition between linear and quadratic forms. 

DEFINITION l. A polynomial in the 2 n variables (x1, ... z.} 
('!h• • • • y,.) is called a bilinear form if each of its terms u of the jn 
degree in the x's and also of the first degree in the y's. 

Thus, for n = 3, the roost general bilinear f orm is 

ª11X1Y1 + ª12X1Y2 + ª1sX1Ya 

+ ª21XzY1 + ª2zXzY2 + az3XzY3 

+ ªs1XaY1 + ªs2XaY2 + ªssXaYs· 
a 

This roay be denoted, for brevity, by Iai;X;J/; ¡ and, in general, we 
1 

may denote the bilinear form in 2 n variables by 

(1). • 

The matrix 

a= 

n 
!a .. x-11 .• 
1 ., "'' 

ax1 ... ªin 1 . . . 
. . . 

a,.¡ ... ªnn 

is called the matrix of the form (1); its deterroinant, the determinant 
of the form ; and its rank, the rank of the forro.• A bilinear form 
is called singular when, and only when, its determinant is zero. 

• It should be noticed that the bilinear form is completely determined when 111 

matrix is given, so there will be no co¡úusion if we speak of the bilinear form a. D 
two bilinear forma have matrices a1 and a2, their sum has the matrix a1 + a2, '1'I 
bilinear form whose matrix is a1a2 is not the product of the two forms, but is sometilllll 
spoken of as their symboli c product. 

Jl,i 
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L_et us notice that the bil~ear forro (1) may be obtained by 
startmg from the system of n lrnear forros in the y's of matrix a, 
multiplying them respectively by x1, x2, ... x,., and adding them 
together. It can also be obtained by starting from the system 
of n _ lin:ar forros in the _x's whose matrix is the conjugate of a, 
multiplymg them respect1vely by y1, y2, . .. Yn, and adding them 
together. 

~sing th~ first of ~hase two me~hods, we see (cf. Theorero 1, § 31) 
that 1f the y s are subJected to a lmear transforrnation with matrix 
d, the bilinear forro is carried over into a new bilinear forro whose 
ma.trix is -~d. Using the second of the above roethods of building 
up the bilrnear forro froro linear forms, we see that if the x's are 
s~~jected to a linear :ransformation with matrix e, we get a new 
bilinear form the conJugate of whose matrix is a'c, where accents 
are used to denote conjugate matrices. The matrix of the forro 
itself is then ( cf. Theorem 6, § 22) c'a. • 

Combining these two facts, we have 

TB'EOREM l. IJ, in the bilinear form (1) with matrix a, we subje<Jt 
tl,e x's to a linear transforrnation with matriz e and the y's to a linear 
transformation with matrix d, we obtain a new bilinear form with matrix 
c'ed, where e' is the conjugate of c. 

Considering the determinants of these matrices, we may say: 

THEOREM, 2. The de~erminant of a bilinear form is multiplied by 
the product of the determinants of the transformations to which the x's 
and y's are subjected. t 

.W e also in fer from Theorero 1, in corobination with Theo;em 7 
§ 25, the important result: :f: ' 

THEOREM 3. The rank oj a bilinear jorm is an invariant with re,. 
gard to non-singular linear transformations of the x' s and y' s. 

DEFINITION 2. A bilinear f orm whose matriz is symmetric i, 
oalled a symmetric bilinear f orm. 

• Th~e resulta may also be readily verified without referriug to any earlier theorems. 
t ThlS th?or~m tells us that the determinant of a bilinear form is, in a generalized 

18Dae, a relat1ve mvariant. Such invariants, where the given forma depend on severa! 
1818 of variables, are known as combinants. 

l This result mo.v also be deduced from Theorem 2, § 30, 
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THEOREM 4. A symmetric bilinear form remains symmetric if "" 
subject the x's and the y·s to the same linear transformation. 

For if e is the matrix of the transformation to which both the z'a 
and the y's are subjected, the matrix of the transformed form will, 
by Theorem 1, be c'ac. Remembering that a, being symroetric, ia 
its own conjugate, we see, by Theorero 6, § 22, that c'ac is its own 
conjugate. Hence the transforroed form is symroetric. 

EXERCISES 

l. Prove that a necessary and swficient condition for the equivalence of two 
bilinear forms with regard to non-singular linear transformations of the .x's and 
y's is that they have the same rank. 

2. Prove that a necessary and sufficient condition tbat it be possible to fact.or 
a bilinear form into tbe product of two linear forms is that its rank be zero or one. 

3. Prove that every bilinear form oÍ rank r can be reduced by non-singular 
linear transformations of the x's and y's to l;he normal form 

x1y1 + X2Y2 + ... +x,y,. 

4. Do the statements in the preceding e:x.ercises remain correct if we confine 
our attention to real bilinear forms and real linear transformations? 

5. Prove that a necessary and sufficient condition that the form 

X1Y1 + x2y2 + •· • + x,.y,. 

should be unchanged by linear transformations of the x's and of the y's is tbal 
these be contragredient transformations. 

37. A Geometric Application. Let (x1, x2, Xa) and (Y1, Y"' Ya) be 
horoogeneous coordinates of points in a plane, and let us cons~der 
the bilinear eq uation 

(1) 

If (y
1
, y

2
, y

3
) is a fixed point P, then (1), being linear in the z's, 

is the equation of a straight line p. The only exception is when the 
coefficients of (1 ), regarded as a linear equation in the x's, are ali 
zero, and this cannot happen if the deterroinant of the forro is differ• 
ent froro zero. Thus we see that the equation (1) causes one, and 
only one, line p to correspond to every point P of the plane, pi'() 
vided the bilinear forro in (1) is non-singular. 

Conversely, if 
(2) Ax1 + Bx, + Oxi= O 
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JS a line p, there is one, and only one, point P which corresponds to it 
bymeans of (1), provided the bilinear form in (1) is non-singular. For 
if Pis the point (yi, y2, y8), the equation of the line corresponding to it 
is (1 ~ and the necessary and sufficient condition that this line coincide 
with (2) is ª11Y1 + ª12'!12 + ª1sYa = pA, 

ª21Y1 + ª22Y2 + ª2sYs = pB, 

ªa1Y1 + ªsz'!/2 + ªssYa = pO, 
where p is a constant, not zero. For a given value of p, this set of 
equations has one, and only one, solution (y1, y'J, y8), since the deter­
minant a is not zero, while a change in p merely changes all the y's 
in the same ratio. Hence, 

THEOREM. Jf the bilinear equation (1) is non-singular, it establishes 
a one-to-one correspondence between the points and lines of the plane. 

This correspondence is c.alled a correlation. 

EXERCISES 

l. Discuss the singular correlations of the plane, considering separately tbe 
cases in which the rank of the bilinear form is 2 and l. 

2. Examine the corresponding equation in three dimensions, that is, the eguar 
tion obtained by equating to zero a bilinear form in which n= 4, and discuss it for 
ali possible suppositions as to the rank of the form. 

3. Show that a necessary and sufficient condition for three or more lines, 
which correspond to three or more given points by means of a non-singular corre­
lation, to be concurrent is that the points be collinear. 

4. Show that the cross-ratio of any four concurrent lines is the same as that of 
the four points to which they correspond by means of a non-singular correlation. 

5. Let P be any point in a plane and p the liue corresponding to it by means 
of a non-singular correlation. Prove that a neceBSary and suflicient condition for 
the lines corresponding to the points of p to pass tbrough P is tbat tbe bilinear 
lorm be symmetricat 

6. State aud prove the corresponding theorem for points and planes in space 
of three dimensions, showing that here it is necessary and sufficient that the form 
be symmetrical or skew-symmetrical.* 

• Tbe correlation given by a symmetric bilioear equation is known as a reciproca­
Uon. By reference to the formulre of the next cbapter, it will be readily seen that in 
~ case every pomt corresponds, in tbe plane, to its polar with regard to a fixed conic ; 
m &pace, to its polar plan e witb regard to a fixed qnadric surface. The skew-symmetric 
bilinear equation gives rise in the plane merely to a very special singular correlation. 
In space, however, it gives an important correlation which is in general nou-singulat 
and is known as a nnll-system. Cf. any treatment of line geometry, where, however. 
the subject is usually approacbed from another side. 
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CHAPTER IX 

GEOMETRIC INTRODUCTION TO THE STUDY OF QUADRATIC 
FORMS 

38. Quadric Surfaces and their Tangent Lines and Planes. If 
x1, x2, x8 are homogeneous coordinates in a plane, we see, by reference 
to §-!, that the equation of any conic may be writteu 

a 11x¡ + a2ri + ªsr§+ 2a12X1X2 + 2a13X1X3 + 2a23X2X3 = 0. 

Similarly, in space of three dimensions, the equation of any quadric 
surface may be written 

a 11x¡ + a22xi + a83x¡ + a44x4 + 2a1r 1x2 + 2a13x1x3 + 2a14x1x 4 

+ 2a34X3X4 + 2a42X4X2 + 2a23X2X3 = o. 

This form may be made still more eymmetrical if, besides the 
coefficients a 12, a 1a, ªw a 34, a42, a28, we introduce the six other con­
stants a 21, a 81, a41, a43, a 24, a32, defined by the general formula 

a'i= aii• 

The equation of the quadric surface may then be written 

aux} + ª12X1X2 + ª1aX1X3 + a14X1X4 

+ a21X2X1 + ª22Xi + ª2aX2X3 + ll24X2X4 

+ ªa1X3X¡ + ªa2XaX2 + ªsaxi + ll34XaX4 

+ a41X4X1 + ª42X4X2 + a43X4X3 + ll44X~ = O, 

or for greater brevity 
4 

(1) l a,ix,.xi = O. 
1 

DEFINITION 1. - The matrix of the sixteen a' s taken in the oraer 
written above is called the matrix of the quadric surf ace (1 ), the deter• 
minant of this matrix is called the discriminant of the quadric surface, 
its rank is called the rank of the quadric surface, and if the discrimi­
flant vanishes, the quadric surface is said to be singular. 

11& 
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A fundamental problem is the following: If (y1, !h., !Js, y4) and 
(11, z21 z8, z4) are two points, in what points does the line yz meet the 
1urface ( 1) ? 

The coordinates of any point on yz, other than y, may be written 

(z1 + Xy1, z2 + Xy2, z8 + Xy8, z4 + Xy4). 

A necessary and sufficient condition for this point to lie on (1) is 

!aiiz¡ + Xy;)(z1 + A'!J;) = 0, 
l 

or expanded, 
(2) 

If the point y does not lie on (1 ), this is a quadratic equation in X. 
To each root of this equation corresponds one point where the line 
meets the quadric. Thus we see that every line through a point y 
which does not líe on a quadric surface, meets this surface either in 
two, and only two, distinct points, or in only one point. 

On the other hand, if y does lie on (1), the equation (2) reduces to 
an equation of the first degree, provided ¡ªi;YiZ; * O. In this case, 
also, the line meets the surface in two, and only two, distinct points, 
viz., the point y and the point corresponding to the root of the equa­
tion of the first degree (2). 

Finally, if ¡a;;YiYi = Ia;jy,z; = O, the first member of eq uation 
(2) reduces to a constant, so that (2) is either satisfied by no value 
of X, in which case the line meets the surface at the point y only, 
or by ali values of X (if ¡aiiZ¡Z; = O~ in which case every point on tbe 
line is also a point on the surface. 

Combining the preceding results we may say: 

THEOREM: 1. Jj a quadric surface anda straight line are given, 
&ne of the following three cases must occur: 

(1) The line meets the quadric in two, and only two, points, in wliich 
case the line is called a secant. 

(2) The line meets the quadric in one, and only o'ne, point, in which 
ease it is called a tangent. • 

(3) Every point of the line is a point of the quadric. In this cas6 
the line is called a ruling of the quadric. t 

• W e shall presently distinguisc between true tangent.s and pseudo-tangent.s. 
t Also called a generator, because, a.~ will presently appear, the whole surface may 

lle ,enerated by the motion of such a Jine. 
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That all these three cases are possible is shown by simple exam 
ples ; for instance, in the case of the surface 

y2+z2-it= O, 

the three coordinate axes illustra.te the three cases. 
We shall often find it convenient to say that a tangent line meet:a 

the q uadric in two coincident points. 
From the proof we have given of Theorem 1, we can_ also infer 

the further result : 
THEOREM 2. Jf (y1, y2, y3, y4) is a point on the quadric (1), thenif 

(3) !a,;Xi!f;= O,* 
1 

every line through y is either a tangent or a ruling of (1~ otherioi,, 
every line through y which líes in the plane 

4 

( 4) 7ªi;Xi!f; = 0 

i~ a tangent or ruling of (1 ), while every other line througli y is a secant, 
A theorem of fundamental importance, which follows immediately 

from this, is : 
THEOREM 3. lf there exists a point y on the quadric (1) such that 

the identity (3) is fulfilled, then (1) is a cone witl. y as a vertex; an•l, con• 
·/Jersely, if ( 1) is a cone with y as a vertex, then the identíty ( H) is fulfilled. 

We pass now to the subject of t,rngent planes, which we define 

as follows: 
DEFINITION 2. Aplane pis said to be tangent to the quadrit (1) 

at one of its points P, if every line of p which passes through P is eíther a 

tangent or a ruling of (1 ). 
lt will be seen that, according to this definition, if (1) is a cone, every 

plane through a vertex of (1) is tangent to (1) at this vertex. We have 
thus included among the tangent planes, planes which in ordinary 
geometric parlance would not be called tangent. The same objection 
applies to our definition of tangent lines. W e therefore now intro­
duce the distinction between true tangent lines or planes and pseudo­

tangent lines or planes. 
DEFINITION 3. A line or plane whích touches a quadric surface at 

a point which is not a vertex is called a true tangent ; all other tangerú 
lines and planes are called pseudo-tangents. 

• It should be noticed that, on account of the relation a,1 = a11, !ia¡p;¡y1 = !ia;fllttJ, 
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EXERCISES 

l. Prove that if P is a point on a qua.dric surface S, which is not a vertex. 
and p the tangent pla.ne at this point, one of the following three ca.ses must occur: 

(a) Two, and only two, lines of p are rulings of S, and these rulings intersect 

atP. 
(b) One, and only one, line of p is a ruling of S, and this ruling pa.sses 

through P. 
(e) Every line of p ~ a ruling of S. 

2. Prove that 
(a) When ca.se (a) of Exercise 1 occurs, the quadric surfa.ce is not a con e ; 

and, conversely, if the quadric surface is not a cone, case (a) will alwa.ys occur. 
(b) If case (b) of Exercise 1 occurs, p is ta.ngent to S at every point of the 

ruling which lies in p. 
(e) 1f case .(b) of Exercise 1 occurs, Sis a cone with one, and onlyone, vertex, 

and this vertex is on the ruling which líes in p; and conversely, if S is a cone with 
one, and only one, vertex, ca.sti (b) will always occur. 

( d) If case (e) of Exercise 1 occurs, there is a line l in p every point of which 
(but no other point) is a vertex of S; a.nd S consista of two planes one of which 
is p, while the other intersects it in l. 

39. Conjugate Points and Polar Planes. Two points are com­
monly said to be conjugate ~ith regard to a quadric surface 

(1) 

when they are divided harmonically by the points where the line 
connecting them meets the surface. In order to include all limiting 
cases, we frame the definition as follows: 

DEFINITIO~. Two distinct points are said to be conjugate with re­
gard to the surf ace ( 1) if 

(a) The linejoining them is a tangent ora secant to (1), and the 
points are di·vided harmonically by the points where this line meets (1); or 

( b) The line joining them is a ruling of (1 ). 
Two coincident poí11,ts are called conjugate if they both líe on (1). 
Let the coordina tes of the points be (y1, y2, y8, y 4) and ( z1, z2, z3, z,), 

and let us look first at the case in which the points are distinct and 
neither of them líes on (1 ), and in which the line connecting them is 
a secant of (1 ). The points of intersection of the line yz with (1) 
may therefore be written 

(i= 1, 2} 
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where X1 and At are the roots of Equation (2), § 38. 4- necessary 
and sufficient condition for harmonic division is that the cross-ratio 
Xi/¾ have the value -1 ; that is )..1 + >..2 = O ; or, referring back 
to Equation (2), § 38, 

(2) 

W e lea ve it for the reader to show that in all other cases in which y 
and z are conjugate this relation (2) is fulfilled ; and that, conversely, 
w henever this condition is fulfilled, the points are conjuga te. That is: 

THEOREM l. A necessary and sufficient condition that the poim, 
y, z be conjugate with regard to (1) is that (2) be fulfilled. 

This theorem enables us at once to write down th9 equation of 
the locus of the point x conjugate to a fixed point y, namely, 

(3) 

Except when the first member of this equation vanishes identically, 
this locus is therefor.e a plane called the polar plane of the ,point y. 
We saw in the last section that the first member of (3) vanishes 
\dentically when (1) is a cone and y is a vertex. This is the only 
case in which it vanishes identicaliy; for, if y is any point, not a 
vertex, on a quadric surface, (3) represents the tangent plane a.t that 
point; while if y is not on (1), the first member of (3) can clearly not 
vanish identically, since it does not vanish when the x's are replaced 
by the y's: Hence tbe theorem: 

THEOREM 2. Jf (1) is not a cone, every point y has a de.finite polar 
plane (3) ; if (1) is a cone, every point except its vertices has a definiú 
polar plane (3), while for the vertices the .first rnember of (3) is identi­
cally zero. 

W e note that the property that a plane is the polar of a given 
point with regard to a quadric surface is a projective property, since 
a collineation of space evidently carries over two conjugate point.s 
into points conjugate with regard to the transformed surface. 

THEOREM 3. Jf two points P1 and P 2 are so situated that thl 
polar plane of P 1 passes through P2, then, con1Jersely, the polar pla'M 
of P1 will pass through P1• 
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For, froi¡i the hypothesis, it follows that P1 and P2 are conjugate 
points, and from this the conclusion follows. 

40. Classiñcation of Quadric Surfaces by Means of their Rank. 
Theorem 2 of the last section may be stated by saying that a neces­
sary and sufficient condition that the quadric surface 

(1) 

be a cone and that (y1, y2, y3, y,) be its vertex (or one of its vertices) 
is that 
(2) !a;;x;yj = O. 

l 

This identity (2) is equivalent to the four equations 

(3) 
{ 

ª11Y1 + ª12'!12 +a1aYs + a14y4 = O, 
· ª21'!/1 + ª22'!/2 + ª2a!la + a24y4 = O, 

ªs1Y1 + ªs2Y2 + ªsaYs + ªa4Y4 = O, 
ª41'!/1 + ª42'!/2 + ª4sYs+ ª«Y4 = O_. 

A necessary and sufficient condition for this set of equations to 
have a common solution other than (O, O, O, O) is that the determi­
nant of their coefficients be zero. W e notice that this determinant 
is the discriminant a of the quadric surface. Hence, 

THEOREM l. A necessary and sufficient condition for a quadric 
rurf ace to be a cone is that its discriminant vanish. 

If, then, the rank of the quadric surface is four, the surface is not 
a cone. 

If the rank is three, the set of equations (3) has one, and, except 
for multiples of this, only one, solution. Hence in this case the sur­
face is an ordinary cone with a single vertex. 
. lf the rank is two, equations (3) have two linearly independent solu­

tions ( cf. § 18), on which a.U other solutions are linearly dependent. 
Hence in this case the surface is a cone with a whole line of vertices. 

lf the rank is one, equations (3) have three linearly independent 
solutions on which all other solutions are linearly dependent. Hence 
we have a cone with a whole plane of vertices. 

lf the rank is zero we have,. strictly speaking, no quadric surface; 
bu~ the locus of (1) may be regarded as a cone. every point in space 
bemg a vertex. 
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It is clear that the proper.ty of a quadric surface being a cone ia 
a projective property ; and the same is true of the property of a point 
being a vertex of a cone. Hence froro the classification we have 
j ust gi ven we infer 

THEOREM 2. The rank of a quadria surfaae is unahanged by non­
singular aollineations. 

EXl:,'RCISES 

l. DEFINITION, If aplane p is the polar of a point P with regard to a quadrie 
surf ace, then P is called a pole of p. 

Prove that if the quadric surface is non-singular, every plane has one, and onlj 

one, pole. 

2. Prove' that ü the quadric surface is a cone, aplane which does not pasa 

through a vertex has no pole. 
What can be said here about planes which do pass through a vertn? 

41. Reduction of the Equation of a Quadric Surface to a Normal 
Form. Since cross-ratio is invariant under a non-singular collinea• · 
tion, a quadric surface 8, a poiut P, not on 8, and its polar plane 
with regard to 8, are carried over by any non-singular collineation 
into a quadric surface 81, a point P', and its polar plane with regard 

to 8'. A point (y1, y2, y3, y4) not on the quadric surface ía;;xix¡ = O, 

cannot be on its own polar plane Ía;;X;Y; = O as we see by replacing 
1 

the x's in this last equation by the y's. Now transform by a colline­
ation so that tbis point becomes the origin and its polar plane the 
plane at infinity. * The quadric surface will now be a central quad­
ric with center at the origin, since, if any line be drawn through the 
origin, the two points in which this line roeets tbe surface are divided 
harmonically by the origin and the point at infinity on this line. 

The equation of the polar plane of the point (yf, '/A, y;, YÜ with 
regard to the transformed quadric 

is 

fa~;i;Xj = Ü 

4 
1 1 1 Q !a--x·-11. = , 1 IJ t,JJ 

• Such a collineation can obviousíy be determined in an infinite number of waya 
by means .of the theorem that there exists a collineation w!iich carries over any tlve 
linearly independent points into any five linearly independent points; cf. Exercises 2i 
~. §24. 
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l'hich reduces to the simple forro 

a{,x[ + ª'•x~ + a~x; + a~~x! = O 

when the point is the origin (O, O, O, 1). For this equation to rep­
resent the plane at infinity, we roust have 

ai4 =a~=a~=0, a~4 :;1;0. 

Hence the quadric surface becomes 

/lj,1 z'f + ªi2 X~ ~ + ªia Xi ~ 
+ ah x~ Xi + ª~2 x~2 + ª~a ~ ~ 
+ ª~1 x~ Xi +a~2 x'a ~ +ak x~2 

+ a44 x¡2=0. 
A slightly different reduction can be performed by transforming 

the point (y1, y2, y8, y4) to the point at infinity on the x1-axis and its 
polar plane to the xr3-plane. It is easy to see that we thus get rid 
of the terms containing x1 except the square term. 

Similarly we can get rid of the terms containing x2 and x8• 

Thus we see that any quadria surf aae aan be reduaed by a aollineation 
to a form where its equation aontains no term in x, exaept the term in 
xf whose aoeffiaient then is not zero. 

According as we take for i the values 1, 2, 3, 4, we get thus four 
rufferent normal forros for the equation of our quadric surfa~e, and 
inasmuch as each of these forros can be obtained in a great variety 
of ways, the question naturally arises whether we cannot perform 
all four reductions simultaneously. That this can, in general, be 
done may be seen as follows: let y be a point not on the quadric 
surface, and z any point on the polar plane of y, but not on the 
quadric surface. Its polar plane contains y. Let w be anypoint on 
the intersection of the polar planes of y and z, but not on the quadric 
surface. Tben its polar plane passes through y and z. These three 
polat planes meet in soroe point u, and it is readily seen that the four 
points y, z, w, u do not lie on aplane. The tetrahedron yzwu is called 
a polar or self-aonJugate tetrahedron of the quadric surface, since it 
has the property that any vertex is the pole of the opposite face. 

If we transforro the four points, y, z, w, u to the origin and the 
points at infinity on the three axes, the effect will be the same as that 
o~ the separate transformations above, that is, the equation of the 
quadric surface will be reduced to the form 

ah xi2 + a~ x;2 + tlk z'a2 + a44 ~2 = O. 
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We bave tacitly assumed that it is possible to find points y, z, w. 
constructed as indicated above, and not lying on the quadric surfa.ce. 
W e lea ve it for the reader to show that, if the quadric surface is not 
a cone, this will al ways be possible in an infinite number of ways. 
A cone, bowever, has no self-conjugate tetrahedron, and in this case 
the above reduction is impossible. 

EXERCISES 

l. Prove that ü the discriminant of a quadric surface is zero, the equation of 
the surface can always be reduced, by a suitable collineation, to a forro in whicb 

the coordinate x4 does not enter. 
(SuooESTION. Show, by using the resulta of this chapter, that ü the vertex of a 

quadric cone is at the origin, a14 = au = au = au = O.) 

2. Show that, provided the cone has a fiuite vertex, the collineation ol 
Exercise 1 may be taken in the forro 

x; = x1 +o.x4, 

r, = x, + {3x4, 

xi= x, + yx4, 

r.=x •. 
[8u?o.&sr1OK. Use non-homogeneous coordina.R-S.l 

CHAPTER X 

QUADRATIC FORMS 

42. The General Quadratic Form and its Polar. 
quadratic form in n variables is 

" fl) fªüx,x, = ª11Xi + ª1zX1 X2 + • • • + ª1,.X1X• 

+ l½iX,X¡ + V2 + .. • + l½nX,X,a 

The general 

where a(I = a;,·• The bilinear forro f a;;f ,z1 is called the polar form of 

(1). Subjecting (1) to the linear transformation 

C' 
{ 

X1 = CuXi + • • . + C1nX~1 

~ .. ~ c:1xf ~ . : . ~ e,.:.~.: 
we get a new quadratic form 

(2) " Ia~;x!zj. 
1 

The polar forro of (2) is Ia~!AzJ. If we tra.nsform the y's and z's of 
the polar form of (1) by the same transformation e, we get a new 

bilinear form fa,;y¡zJ. W e will now prove that a,1 = a~. 

We have the identities 

(3) 

(4) 

• It should be clearly understood tbat this restriction Is a matter of convenience 
. ~ of necessity. If it were not made, the quadratic form would be neither more no; 

-general. 
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