CHAPTER VIII
BILINEAR FORMS

36. The Algebraic Theory. Before entering on the study of
quadratic forms, which will form the subject of the next ﬁ-ve chaptefgi
we turn briefly to a very special type of quadratic form in 2?@, varia:
bles, known as a bilinear form, and which, as its name implies, form§
a natural transition between linear and quadratic forms.

DeriNtTiON 1. A polynomial in the 2n varz’ables. (2 +» a;,_‘j‘,{:
(4 ) 8 called a bilinear form if each of its terms 8 of the first
degree in the 2's and also of the first degree in the y's. :

Thus, for # = 3, the most general bilinear form is

ay&1Y1 + Oi®1Ya + GgTrls

+ Ay %oY1 T GggTslfy + tygTaly
+ A%y + A5l + Aag¥sly, .
3 3 Al

This may be denoted, for brevity, by Za;zy;; and, in general, wé
may denote the bilinear form in 2 variables by ;

1), '
The matrix

n
%aiixiy:"

I

|
|
is called the matrix of the form (1); its determinant, the flgtermln&ll!‘rj
of the form ; and its rank, the rank of the form.* A bthnear form-|
is called singular when, and only when, its determinant is zero.

8
V . e
* Tt should be noticed that the bilinear form is completely determined when i@:,

matrix is given, so there will be no confusion if we speak of the bilirtear form a. Iﬁ|
two bilinear forms have matrices a; and a,, their sum has the matrix a'1+ag. ko
bilinear form whose matrix is a;as is 1ot the product of the two forms, but is sometimé}
spoken of as their symbolic product. i |
4 ]

™|

:‘Iﬁngm
86l8 of variables, are known as combinants.
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Let us notice that the bilinear form (1) may be obtained by
starting from the system of n linear forms in the y’s of matrix a,
multiplying them respectively by =, @, --- z,, and adding them
together. It can also be obtained by starting from the system
of » linear forms in the 2’s whose matrix is the conjugate of a,
multiplying them respectively by u,, y, - 9., and adding them
together.

Using the first of these two methods, we see (cf. Theorem 1, § 31)
that if the y’s are subjected to a linear transformation with matrix
d, the bilinear form is carried over into a new bilinear form whose
matrix is ad. Using the second of the above methods of building
up the bilinear form from linear forms, we see that if the z’s are
subjected to a linear transformation with matrix ¢, we get a new
bilinear form the conjugate of whose matrix is a'c, where accents
are used to denote conjugate matrices. The matrix of the form
itself is then (cf. Theorem 6, § 22) c'a.*

Combining these two facts, we have

TeworEM 1. If, in the bilinear form (1) with matriz a, we subject
the #'s to a linear transformation with matriz ¢ and the y's to a linear
trangformation with matriz d, we obtain a new bilinear form with matriz
cad, where ¢ is the conjugate of c.

Considering the determinants of these matrices, we may say :

Tagorey 2. The determinant of a bilinear form ds multiplied by

the product of the determinants of the transformations to which the x’s -
und y's are subjected.t

: ‘We also infer from Theorem 1, in combination with Theorem i
§ 25, the important result: }

THEOREM 8. The rank of a bilinear form is an invariant with re.
yard to non-singular linear transformations of the 2’s and y’s.

DeriNtrioN 2. A bilinear form whose matriz s symmetric 13
talled a symmetric bilinear form.

* These results may also be readily verified without referring to any earlier theorems.
1 This theorem tells us that the determinant of a bilinear form is, in a generalized
a relative invariant. Such invariants, where the given forms depend on several

1 This result mav also be deduced from Theorem 2, § 80,

’
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THEOREM 4. A symmetric bilinear form remains symmetric if wh
subject the «’s and the y's to the sume linear transformation.

For if ¢ is the matrix of the transformation to which both the s
and the y’s are subjected, the matrix of the transformed form w111,
by Theorem 1, be ¢’ac. Remembering that a, being syn}m.etnc, i
its own conjugate, we see, by Theorem 6, § 22, that.c'ac is its own
conjugate. Hence the transformed form is symmetric..

EXERCISES

1. Prove that a necessary and sufficient condition for the equivalence of two

bilinear forms with regard to non-singular linear transformations of the z’s and
y’s is that they have the same rank.

2. Prove that a necessary and sufficient condition that it be possible to fa@dr-
abilinear form into the product of two linear forms is that its rank be zero or oné.

3. Prove that every bilinear form of rank r can be reduced by non-singular
linear transformations of the 2’s and y's to #he normal form

Ty + ToYa+ oo FTYr
4. Do the statements in the preceding exercises remain correct if we ‘confing
our attention to real bilinear forms and real linear transformations?
5. Prove that a necessary and sufficient condition that the form
211+ Zaya+ o+ Tolfn

should be unchanged by linear transformations of the «’s and of the y’s is that,
these be contragredient transformations. |

|

37. A Geometric Application. Let (2, 73 25) and (9 Yo yg). he
homogeneous coordinates of points in a plane, and let us consllda_l;‘:
the bilinear equation =

(1) %aﬁ y;="0.

If (4;, ¥ ¥5) is & fixed point P, then (1), being linear in the m’s,'
is the equation of a straight line p. The only exception is when t_hg:‘
coefficients of (1), regarded as a linear equation in the 2’s, are all |
zero, and this cannot happen if the determinant of the form is differ=
ent from zero. Thus we see that the equation (1) causes one, md.
only one, line p to correspond to every point P of the plane, pri
vided the bilinear form in (1) is non-singular.

Conversely, if
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s aline p, there is one, and only one, point P which corresponds to it
by means of (1), provided the bilinear form in (1) is non-singular. For
if P is the point (y;, ¥, ¥5), the equation of the line corresponding to it
is (1), and the necessary and sufficient condition that this line coineide

with (2) is @Y1+ Aila + 01395 = p4,
Gg1Y1 + AgoYs + a5 = pB,
g1y + gl + gz = p O,

where p is a constant, not zero. For a given value of p, this set of
equations has one, and only one, solution (yy, ¥5 ¥5), since the deter-
minant @ is not zero, while a change in p merely changes all the y's
in the same ratio. Hence,

THEOREM. If the bilinear equation (1)is non-singular, it establishes
@ one-to-one correspondence between the points and lines of the plane.
This correspondence is called a correlation.

EXERCISES

1. Discuss the singular correlations of the plane, considering separately the
cases in which the rank of the bilinear form is 2 and 1.

2. Examine the corresponding equation in three dimensions, that is, the equa-
fion obtained by equating to zero a bilinear form in which n= 4, and discuss it for
all possible suppositions as to the rank of the form.

3. Show that a necessary and sufficient condition for three or more lines,
which correspond to three or more given points by means of a non-singular corre-
lation, to be concurrent is that the points be collinear.

4. Show that the cross-ratio of any four concurrent lines is the same as that of
the four points to which they correspond by means of a non-singular correlation.

5. Let P be any point in a plane and p the line corresponding to it by means
of a non-singular correlation. Prove that a necessary and sufficient condition for
the lines corresponding to the points of p to pass through P is that the bilinear
form be symmetrical.

6. State and prove the corresponding theorem for points and planes in space
of three dimensions, showing that here it is necessary and sufficient that the form
be symmetrical or skew-symmeirical *

* The correlation given by a symmetric bilinear equation is known as a reciproca-
tion. By reference to the formul® of the next chapter, it will be readily seen that in
this case every point corresponds, in the plane, to its polar with regard to a fixed conic;
in'space, to its polar plane with regard to a fixed quadric surface. The skew-symmetrio
bilinear equation gives rise in the plane merely to a very special singular correlation.

1In space, however, it gives an important correlation which is in general non-singular

and is known as a null-system. Cf. any treatment of line geometry, where, however.

the subject is usually approached from another side.




CHAPTER IX

GEOMETRIC INTRODUCTION TO THE STUDY OF QUADRATIC

FORMS

38. Quadric Surfaces and their Tangent Lines and Planes. If

Ty, %y, Ty are homogeneous codrdinates in a plane, we see, by reference =

to §4, that the equation of any conic may be written
9 9 o ool
Ay} 4+ g3 + 523+ 20,92,25 + 010,25 + 2aye2a2, = 0.
Similarly, in space of three dimensions, the equation of any quadrie
surface may be written
2 2 2
a2} + 93 + g3 + a2 + 20002,:0 + 203,004 + 200,77,
9 =
+ 25,757, + 2057,7, + 20,50505 =00

This form may be made still more symmetrical if, besides the
coefficients @y @y @14 Ggp @ Uy We introduce the six other eons=

stants dy, @gp, 04, G4 doy dgg defined by the general formula

a4y = @

L
The equation of the quadric surface may then be written
2

@] T @yt Aty Ty + a7,

+ yZgy + 0¥+ Uag¥aTy + Uy ToT,
2
+ 0y %aTy t UgyTsTy + AggTy T+ gy
; Y J—

+ gz @y + 0Ty + oty agey =0,

or for greater brevity .
(1) % o =0,

DEFINITION 1.— The matriz of the sizteen a’s taken in the order
written above 8 called the matriz of the quadric surface (1), the deters
minant of this matriz is called the discriminant of the quadric surfact
its rank is called the rank of the quadric surface, and if the discrimis

nant vanishes, the quadric surface is said to be singular.
: 118
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A fundamental problem is the following: If (yy, ¥ s v,) and
(2 2 25 2,) are two points, in what points does the line yz meet the
surface (1)?

The codrdinates of any point on yz, other than y, may be written
(21 4 My 23+ My 23+ Mg 24+ M7).

A necessary and sufficient condition for this point to lie on (1) is

4
%aﬁ(z{ +2Ay:) (24 Nyy) =0,

or expanded, ‘ 4
(2) l;'.a,a.zizj 42 R?aijy,-zj + 3\2%* i =0.

If the point y does not lie on (1), this is a quadratic equation in A.
To each root of this equation corresponds one point where the line
meets the quadric. Thus we see that every line through a point y
which does not lie on a quadric surface, meets this surface either in
two, and only two, distinet points, or in only one point.

On the other hand, if y does lie on (1), the equation (2) reduces to
an equation of the first degree, provided Za,yz+0. In this case,
also, the line meets the surface in two, and only two, distinet points,
viz., the point y and the point corresponding to the root of the equa-
tion of the first degree (2).

Finally, if Za;yy;=Z2a,y2=0, the first member of equation
(2) reduces to a constant, so that (2) is either satisfied by no value
of A, in which case the line meets the surface at the point y ouly,
or by all values of A (if Za;2i2;= 0), in which case every point on the
line is also a point on the surface.

Combining the preceding results we may say:

Tueorew 1. If a quadric surface and a straight line are given,
one of the following three cases must ocour :

(1) The line meets the quadric in two, and only two, points, in which
case the line 13 called a secant.

(2) The line meets the quadric in one, and only one, point, in which
ease it 18 called a tangent.*
_ (3) Every point of the line is a point of the quadric. In this case
the line is called a ruling of the quadric.+

* We ghall presently distinguisk between true tangents and pseudo-tangents.
4 T Also called a generator, because, as will presently appear, the whole surface may
be generated by the motion of such a line.
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That all these three cases are possible is shown by simple exam
ples; for instance, in the case of the surface
pP+E-p=0,
the three coordinate axes illustrate the three cases.
We shall often find it convenient to say that a tangent line meets

the quadric in two coincident points.
From the proof we have given of Theorem 1, we can also infer

the further result:
THEOREM 2. If (§y Uy Yp Ys) 8 @ point on the quadric (1), thenif

(8)
every line through y is either a tangent or ¢ ruling of (1), otherwiss
every line through y which lies in the plane

(4)

is a tangent or ruling of (1), while every other line through y is a secant,

4
= (.*
%aiixiyj =0,

4
Elaﬁx,-y,- =0

A theorem of fundamental importance, which follows immediately =

from this, is:
THEOREM 3. If there exists a point y on the quadric (1) such that

the identity (3) is fulfilled, then (1) is a cone with y as @ vertex ; an-l, con= S
versely, if (1) s a cone with y as a vertex, then the identity (3)1s fulfilled

We pass now to the subject of tangent planes, which we defing
as follows:

DerINITION 2. A plane p i3 said to be tangent to the quadric (1) ‘

at one of its points P, if every line of p which passes through P ts eithera
tangent or a ruling of (1).

It will be seen that, according to this definition, if( 1)is a cone, every
plane through a vertex of (1) is tangent to (1)at this vertex. We have

thus included among the tangent planes, planes which in ordinary -
geometric parlance would not be called tangent. The same objection "
applies to our definition of tangent Jines. We therefore now intros
duce the distinction between true tangent lines or planes and pseude-

tangent lines or planes.

DepINtTION 3. A line or plane which touches a quadric surface @

a point which is not a vertez is called a true tangent ; all other tangent
lines and planes are called pseudo-tangents.

# Tt should be noticed that, on account of the relation ay = ;i Zay%¥;= Zailie

1
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EXERCISES

1. Prove that if P is a point on a quadric surface S, which is not a vertex,
and p the tangent plane at this point, one of the following three cases must occur:

(@) Two, and only two, lines of p are rulings of §, and these rulings intersect
at P.

(8) One, and only one, line of p is a ruling of §, and this ruling passes
through P.

(¢) Every line of p is a ruling of S.

2, Provethat

(a) When case (a) of Exercise 1 occurs, the quadric surface is not a cone;
and, conversely, if the quadric surface is not a cone, case (a) will always occur.

(b) If case (b) of Exercise 1 occurs, p is tangent to S at every point of the
ruling which lies in p.

(¢) If case (b) of Exercise 1 occurs, S is a cone with one, and onlyone, vertex,
and this vertex is on the ruling which lies in p; and conversely, if S is a cone with
one, and only one, vertex, case (b) will always occur:

(d) If case () of Exercise 1 ocours, there is a line I in p every point of which

 (but no other point) is a vertex of S; and § consists of two planes one of which

is p, while the other intersects it in [.

39. Conjugate Points and Polar Planes., Two points are com-
monly said to be conjugate with regard to a quadric surface

(1)

when they are divided harmonically by the points where the line
connecting them meets the surface. In order to include all limiting
gases, we frame the definition as follows:

4
%aijmng = 0,

DerNiTION.  Two distinet points are said to be conjuga;te with re-
gard to the surface (1) if

(@) The line joining them is a tangent or a secant to (1), and the
points are divided harmonically by the points where this line meets(1); or

(b) The line joining them is a ruling of (1).

Two coincident points are called conjugate if they both lie on (1).
~ Let the codrdinates of the points be {yy, y ¥a ) and (2p, 25, 2 2,),
and let us look first at the case in which the points are distinct and
neither of them lies on (1), and in which the line connecting them is
asecant of (1). The points of intersection of the line yz with (1)
may therefore be written

(21 + Mgy 23+ My %+ M Y 24+ M Y) (t=1,2)
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where A, and ), are the roots of Equation (2), § 38. A necessary
and sufficient condition for harmonic division is that the cross-ratio
A /Mg have the value —1; that is A +2,=0; or, referring back
to Equation (2), §38,

(2) a;9&; =0.

We leave it for the reader to show that in all other cases in whichy
and 2 are conjugate this relation (2) is fulfilled ; and that, conversely,
whenever this condition is fulfilled, the points are conjugate. Thatis:

TaeoREM 1. A necessary and sufficient condition that the points
¥, 2 be conjugate with regard to (1) is that (2) be fulfilled.

This theorem enables us at once to write down the equation of
the locus of the point z conjugate to a fixed point y, namely,

4
(3) %wijxiyj = O .

Except when the first member of this equation vanishes identicallyy
this locus is therefore a plane called the polar plane of the point g

We saw in the last section that the first member of (3) vanishes =

identically when (1) is a cone and y is a vertex. This is the only

case in which it vanishes identicaliy ; for, if y is any point, not a =

vertex, on a quadric surface, (3) represents the tangent plane at that

point; while if y is not on (1), the first member of (3) can clearly not =

vanish identically, since it does not vanish when the z’s are replaced
by the y’s, Hence the theorem :

TaEOREM 2. If (1) 45 not a cone, every point y has a definite polar S

plane (3); if (1) 8 a cone, every point except its vertices has a definite

polar plane (3), while for the vertices the first member of (8) is tdenti=

cally zero.

We note that the property that a plane is the polar of a given

point with regard to a quadric surface is a projective property, sincé
a collineation of space evidently carries over two conjugate points
into points conjugate with regard to the transformed surface.

THEOREM 8. If two points P, and P, are so situated that the
polar plane of P, passes through Py, then, conversely, the polar pland=

of P, will pass through P,
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For, from the hypothesis, it follows that P; and P, are conjugate
points, and from this the conclusion follows.

40. Classification of Quadric Surfaces by Means of their Rank.
Theorem 2 of the last section may be stated by saying that a neces-
sary and sufficient condition that the quadric surface

4
(1) lza,j:c,-xj =

be z}a} cone and that (y;, ¥, 5 y.) be its vertex (or one of its vertices)
i that

(2) %aax;y =0,

This identity (2) is equivalent to the four equations

@Y1+ G1oYy + Y5 + 2149, = 0,
(3) ] Ayt GgeYs + Gggys + gy, =0,
U1+ Aoy + Ay + gy, =0,
@Y+ Yy + ayys+ ayy, = 0.
A necessary and sufficient condition for this set of equations to
haye a common solution other than (0, 0, 0, 0) is that the determi-

nant of their coefficients be zero. We notice that this determinant
15 the discriminant a of the quadric surface. Hence,

THEOREM 1. A necessary and sufficient condition for a quadrie
surface to be a cone is that its discriminant vanish,

If, then, the rank of the quadric surface is four, the surface is not

& cone.

If the rank is three, the set of equations (3) has one, and, except
for multiples of this, only one, solution. Hence in this case the sur-
face is an ordinary cone with a single vertex.

' If the rank is two, equations (8) have two linearly independent solu-
tions (cf. §18), on which all other solutions are linearly dependent.
Hence in this case the surface is a cone with a whole line of vertices.

If the rank is one, equations (8) have three linearly independent
solutions on which all other solutions are linearly dependent. Hence
We have a cone with a whole plane of vertices. :

If the rank is zero we have, strictly speaking, no quadric surface ;

bu.t the locus of (1) may be regarded as a cone. every point in space
being a vertex.
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It is clear that the property of a quadric surface being a cone iy

a projective property ; and the same is true of the property of a poing
being a vertex of a cone. Hence from the classification we haye
just given we infer

TaEOREM 2. The rank of a quadric surface is unchanged by non
singular collineations.

EXHRCISES

1. DeriNitioN. If a plane p is the polar of a point P with regard to a quadri¢

surface, then P is called a pole of p. ; _
Prove that if the quadric surface is non-singular, every plane has one, and only

one, pole.
2. Prove that if the quadric surface is a cone, a plane which does not pass

through a vertex has no pole.
What can be said here about planes which do pass through a vertex?

41. Reduction of the Equation of a Quadric Surface to a Normal

Form. Since cross-ratio is invariant under a non-singular collinea-

tion, a quadric surface S, a point P, not on &, and its polar plane
with regard to §, are carried over by any non-singular collineation
into a quadric surface &', a point P', and its polar plane with regard

4 .

to 8. A point (¥, ¥ Yy ¥,) DOt on the quadric surface %aijw,-m,:ﬂ, ‘
4 .

cannot be on its own polar plane %a,-jxiyj= 0 as we see by replacing

the «’s in this last equation by the y’s. Now transform by a collines

ation 8o that this point becomes the origin and its polar plane the
plane at infinity.* The quadric surface will now be a central quad-
ric with center at the origin, since, if any line be drawn through the

origin, the two points in which this line meets the surface are divided.

harmonically by the origin and the point at infinity on this line.

The equation of the polar plane of the point (¥4, ¥3 ¥4 i) With =

regard to the transformed quadric

4
Fodad s
?a ;=0

4
e o GER R
%“fj’xiyj =0,

#* Such a collineation can obviousiy be determined in an infinite number of ways =
by means of the theorem that there exists a collineation which carries over any five

linearly independent points into any five linearly independent points; cf. Exercises &
3, §24.
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which reduces to the simple form
@] + Gy + diyzy+ aaf =0 .
when the point is the origin (0, 0, 0,1). For this equation to rep-

resent the plane at infinity, we must have

S (SR !
ayy =ty = ag, =0, aj, 0.

Hence the quadric surface becomes
ay of + gy o) @+ ajy 2 2
tay o tanad +ay a0
+ ay 25 ) + dyp 7y 7 + g 2
-+ ah a:? =0.

A slightly different reduction can be performed by transforming
the point (y;, ¥ ¥ ¥,) to the point at infinity on the z,-axis and its
polar plane to the zz-plane. It is easy to see that we thus get rid
of the terms containing ; except the square term.

Similarly we can get rid of the terms containing z, and ,
Thus we see that any quadric surface can be reduced by a collineation
to @ form where its equation contains no term tn x; except the term in
22 whose coefficient then 18 not zero. :

According as we take for ¢ the values 1, 2, 3, 4, we get thus four
different normal forms for the equation of our quadric surface, and
inasmuch as each of these forms can be obtained in a great variety
of ways, the question naturally arises whether we cannot perform
all four reductions simultaneously. That this can, in general, be
done may be seen as follows: let y be a point not on the quadric
surface, and z any point on the polar plane of y, but not on the
quadric surface. Its polar plane containsy. Let w be any point on
the intersection of the polar planes of y and 2, but not on the quadric
surface. Then its polar plane passes through yand 2. These three
polar planes meet in some point w, and it is readily seen that the four
points y, 2, w,w do not lie on a plane. The tetrahedron yzww is called
a polar or self-conjugate tetrahedron of the quadric surface, since it
hias the property that any vertex is the pole of the opposite face.

If we transform the four points, ¥, 2, w, u to the origin and the
points at infinity on the three axes, the effect will be the same as that
of the separate transformations above, that is, the equation of the
quadric surface will be reduced to the form

! 19 ) J ! / !
@y Tf + dog x22+w33w32+aﬂ $£2= 0.
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We have tacitly assumed that it is possible to find points y, 2, uy i

constructed as indicated above, and not lying on the quadric surface,
We leave it for the reader to show that, if the quadric surface is nog
a cone, this will always be possible in an infinite number of ways,
A cone, however, has no self-conjugate tetrahedron, and in this case

the above reduction is impossible.

EXERCISES

1. Prove that if the discriminant of a quadrie surface is zero, the eqllmtion.of
the surface can always be reduced, by a suitable collineation, to a form in which

the coordinate z, does not enter. :

[Sveaesrion. Show, by using the results of this chapter, that if the vertex of &

quadric cone is at the origin, a4 = @24 = G4 = Ggs = 0.]
2. Show that, provided the cone has a finite vertex, the collineation of
Exercise 1 may be taken in the form
=7, +a7
y=1+pz,
Ty=23+ Y%,
=2,

[Sueoxsnox. Use non-homogeneous coirdinaies.]

CHAPTER X
QUADRATIC FORMS

42. The General Quadratic Form and its Polar. The general
quadratic form in n variables is

n
(1) Zayre, = a8+t + ... + a7y,

+am1'21’1+ﬂ4421“§ + oo+ Qg TeTy

+ amxn:rl + anETuT? + LLL] + anu-.cig

where a; = a;.* The bilinear form %a;j:y,-zj is called the polar form of
(1), Subjecting (1) to the linear transformation
7y = ey] + ... + 70

— o !
4 Zy = Cy + voe F G Ty

we get a new quadratic form
@) R

| o
Ty

The polar form of (2) is Zajyjz]. If we transform the y’s and 2's of
the polar form of (1) by the same transformation ¢, we get a new
3 1 ”_. .
bilinear form %aijy,fz;. We will now prove that @; = aj,.
We have the identities

3 3 >’
( ) %aex‘xj = %a!-jx:ﬂ','},

n il
) 284y = %aijy:z}-

* It should be clearly understood that this restriction is a matter of convenience,
0t of necessity. If it were not made, the quadratic form would be neither more noz

* less general,
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