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Finally, let us note the geometric meaning to be a.stociatefi Wlﬂl 1
the invariants and covariants which have been mentioned in thig
section, We confine our attention to the case of Afour variables, ;
The vanishing of the resultant of four linear forms gives a necessary -
and sufficient condition that the four planes detern‘um'ad by setting !
the forms equal to zero meet in a point. The vamsh}infg of the co~
variant of Theorem 3 is a necessary and sufficient condition t%lat t]:ua,j .
four points lie in a plane. The vanishing of the covarlant.of.
Theorem 4 is a necessary and sufficient condition that the .poml_;-_
(415 Yo Yo ¥y) lie on the surface f=0. It will be seen that in all
cases we are thus led to a projective property ; cf. §§80, 81

32. Some Theorems Concerning Linear Forms.

TaroreM 1. Two systems of n linear forms in n variables ars |
. x i : o s o noihail
equivalent with regard to non-singular linear transformations if neithes

resultant is zero.
Let @y %y + - F AT,

L O N

X% i

byy + -+ + bia®y

[ R
be the two systems, whose resultants,
@1 %n
a=

Ay Oy bnl"'bnﬂ

are, by hypothesis, not zero. Applying the transformations
2y = 4y %; + -+ BT o) = by + 4 broTus
e T T
x.:u = arq-xl + 'I'.“m:”m @y = by @y + -+ + by
to (1) and (2) respectively, they are both reduced to the normal form
74y
() ,
s
Now, since neither & nor b is zero, the transformations a and b have
inverses, which when applied to (3) carry it back into (1) and (2)

respectively. Hence the transformation b~!a carries (1) into (2).
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THEOREM 2. A system of n linear forms in n variables has mo
sutegral rational invariants* other than constant multiples of powers
of the resultant.

Let (1) be the given system and « its resultant, and let ¢ be the
determinant of a non-singular linear transformation which carries
(1) over into

@yl + e+ &2k,

®) Einis b e
Ghth -+

If we call the resultant of (4) o', we have

a = ae.

Let I(ay, --- @.,) be any integral rational invariant of the system
(1) of weight u, and write

I'= I(ailu e a:m)'

Then I'=eT.

Now let us assume for a moment that @ 0, and consider the special
trangformation which carries over (1) into the normal form (8). In
this special case we have o' =1; hence, as may also be seen directly,
ae=1. Calling the constant value which I’ has in this particular
case &, we have JE T T

Or
(5) I= kar.

This equality, in which % is independent of the coefficients @, has
been established so far merely for values of the ay’s for which a 0.
Since 4 is not negative (cf. Theorem 5, § 31), we can now infer
that (5) is an identity, by making use of Theorem 5, § 2. Thus we
4ee that I'is merely a constant multiple of a power of the resultant,
48 was to be proved.

. CorOLLARY. A system of m linear forms in n variables has no in-
tegral rational invariants (other than constants) when m < mn.

For such an invariant would also be an integral rational invariant
of the system of » linear forms obtained by adding » — m new forms to
the given system; and hence it would be a constant multiple of a

* It has the arithmetical invariant mentioned in Theorem 2, § 30.
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power of the resultant of this system. This power must be zerg

and hence the invariant must be a mere constant, as otherwise i
would involve the coefficients of the added forms, and hence wcu]ﬁr{

not be an invariant of the system of original forms. . Jg

.
EXERCISES II

1. Prove that if we have two systems of n + 1 linear forms in n variables whose |
matrices are both of rank n, a necessary and sufficient condition that these two"
systems be equivalent with 1ewa1d to non-singular linear transformation is thats
the resultants of the forms of one set taken » at a time be proportional to tﬂ\
resultants of the corresponding forms of the other set.

2, Generalize the preceding theorem.

3. Prove that every integral rational invariant of a system of m linear formsm
» variables (m > n) is a homogeneous polynomial in the resultants of these forms
taken n at a time. .

4. State and prove the theorems analogous to the theorems of the present see
tion, inclading the three preceding exercises, when the system of linear forms is rés
placed by a system of points. |

33. Cross-ratio and Harmomc Division. Let us consider any four |
distinet points on a line ]

1) (2p t), (2g0 ), (2 B (24 1) :
We have seen, in § 31, T
@) 4ty — 24ty

is a covariant of weight —1. The ratio of two of these determinani§’

2ty — m4t3, xty— Tty Tyl — .’cgtz, .

is therefore an absolute covariant, and we might ke tempted, bjf
analogy with the examples of absolute covariants in Exercise 1, § 28
to expect that it might have a geometric meaning. It will be read'
seen, however, that this is not the case, for the value of the ratio @
two of the determinants (2) will be changed if the two coordmat@'
of one of the four points are multiplied by the same constant, anﬂi
this does not affect the position of the points.

It is easy, however, to avoid this state of affairs by forming such‘
an expression as the following:* :

) (1, 2, 3, 4)=Bh=nt) (5l — 2y,

(2yts—2gly) (24t — 1t4) }

* The reversal of sign of the second factor in the denominator is not essential, ll"'
ia customary for a reason which will presently be evidert 2
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which is also an absolute covariant of the four points (1), and is called
their eross-ratio or anharmonic ratio. More accurately it is called the
eross-ratio of these four points when taken in the order written in (1).*

In order to determine the geometric meaning of the cross-ratio
of four points, let us first suppose the four points to be finite so that
tityfsfy#0. Dividing numerator and denominator of (1, 2, 8, 4) by
this product, we find the following expression for the cross-ratio in
terms of the non-homogeneous codrdinates X; of the points,

(X, - X,)(X,= X))
(X=X (X,= X))

() (1,2, 8,4)=

Finally, denoting the points by P;, P,, P,, P,, we may write

PPy /PP, PP [PyP

5 1,238 4)= s ¥
©) 423 49=5p,/ pp,~P.p,/ P.P.

In words, this formula tells us that the cross-ratio of four finite
points is the ratio of the ratio in which the second divides the first
and third and the ratio in which the fourth divides the first and
third; and that it is also the ratio of the ratios in which the first

and third divide the second and feurth.

In this statement, it must be remembered that we have taken the
matio in which €' divides the points A, B as A '/ B(, so that the ratio

isnegative if C'divides A B internally, positive if it divides it externally.

If we agree that the point at infinity on a line shall be said to
divide any two finite points 4, B of this line in the ratio +1 (and this
18 & natural convention since the more distant a point the more nearly
does it divide 4B in the ratio +1) it is readily seen, by going back
to formula (3), that the first statement following (5) still holds if the

second or fourth point is at infinity, while the second statement holds

if the first or third is at infinity. Thus we have in all cases a simple
geometric interpretation of the cross-ratio of four distinet points.

The special case in which four points P,, P,, Py, P, are so situ-
ated that (1, 2, 8, 4)= —1 is of peculiar importance. In this- case
we have :

(1,2, 8, 4)=(1, 4, 3, 29=(3,21,4)=(3,4,1, 2)=(2,1, 4, 3)
=(2, 3, 4, 1)=(4, 1.2 3)=(4, 3, 2, 1)=—1.

®If these four points are taken in other orders, we get different cross-ratios:
(42,4, 8), (1,4, 8,2), ete. Cf. Exercise 1 at the end of this section
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The relation is therefore merely a relation between the two pairs of =
points P, P, and P, P, taken indifferently in either order, and wg"_.
say that these two pairs of points divide each other harmonically,=

From the geometric meaning of cross-ratio, we see that, if all four 5

points are finite, the pairs P,, P,and P,, P, divide each other hars
monically when, and only when, P, and P, divide P;, P; internally
and externally in the same ratio; and also when, and only when, Py
and P, divide P,, P, internally and externally in the same ratio. Iff
P, or P, lies at infinity, the first of these statements alone has &
meaning, while if P, or P, lies at infinity, it is the second statement
to which we must confine ourselves.

It is easily seen that the case in which three of the four points =

say Py, P, P, coincide, while P, is any point on the line, may be
regarded as a limiting form of two pairs of points which separate ong
another harmonically. It is convenient to include this case under the
term harmonic division, and we will therefore lay down the definition:

DerINTTION. Two pairs of points Py, P, and P,, P, on a line aré
said to divide one another harmonically if they are distinct and thei
cross-ratio taken in the order Py, Py, Py, Py is — 1, and also if at leasty
three of them coincide. ‘

It will be seen that the property of two pairs of points dividing
each other harmonically is a projective property in space of oné
dimension.

The most important applications of cross-ratio come in geometq'w
of two, three, or more dimensions where the points are not determined
as above by two codrdinates (or one non-homogeneous coordinate), butl
by more. Suppose, for instance, we have four distinet finite point§
on a line in space of three dimensions. Let the points be Py, Pyl
Qy» @, and suppose the codrdinates of P,, P,are (z; ¥y 2 &) and
(20 Y 7> L) respectively. Then the codrdinates of Q, @, may b!]
written .

(71 4 Mg Yy + N2y + A28 + My ) () + Bg Yy + 1Y 21+ By by + plg)
Now, let :
(6) Az + By + Cz+ Dt =0

be any plane through @; but not through Py, and we have
(Az, + By, + Cz, + Dty) + MAz, + By, + Czy + Dty) =0,
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or, since P; does not lie on (6),

Az, + By, + Oz + Dt
Az, + By, + U2y + D,
‘.

=_ll

Changing to non-homogeneous codrdinates, we have
t

AX]+BY1+0ZI+D_ 2
AX,+BY,+ 0%+ D~ ™4

If P, M, and P,M, are the perpendiculars from P, and P,
plane (6), we have yand P, on the

P,Q, PM, AX +BY,+(CZ+D ty
t

PO, PM," A%, +BY,+ 0Z,+D %

In exactly the same way we get

‘PIQ.E = -
Py,

P10,
Pq9,

g
4

P@y _2
PaQﬂ »

Consequently

.

This is the cross-ratio of the four points taken in the order P,, @,
P, 0, v ¥
‘lt is readily seen that if une of the two points @, or @, lies at in-
finity, all that is essential in the above reasoning remains valid, and
the cross-ratio is still A /u.
The case in which one of the two points P, or P, is at infinity
may be reduced to the case just considered by writing for the coér-

dinates of @, and Q,, (£
) ,'ﬂsga'r)aﬂd s Na. Loy Ta)e 'EH = s
uates of P; and P, a?e tﬁenl %ad & 10 & ) e codrdi

A p A A
(El T ;Eﬂ‘ nI ] ;Uza CI_' ;gzs Tl_;TB))

(& — & m—7p G T —Ty)

Accordingly, from what has just been proved, we see that the
crosa-r?,tio of the four points taken in the order Qs Py Qp Pyis A/
But this change of order does not change the cross-ratio.2 ﬁenca in
all cases we have the result
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TaroreM 1. The cross-ratio of the four distinet points

Py (zp 0 20 )
Py (2p Yy % by); s
Q (7 + Moy Y1+ Myy 2+ N2y, 1+ M),
@ (@1+ oy Yy Yy 2y F pag b+ ply),
taken in the order Py, @y Py @y is N/ p.
From this theorem we easily deduce the further fesult :

THEOREM 2. The cross-ratio of four points on a line is invariant
with regard to non-singular collineations of space.®

For the four points Py, P,, @;, @, of Theorem 1 are carried over
by a non-singular collineation into the four points

Py (@ 95 )
Py (o Yy 2 1)

@ (2 + Nl oh + Mghs 2+ 02, 6 + M),

O (2 pa, Y+ w2+ pel, G+ pty), ¥
whose cross-ratio, when taken in the order P}, @}, Py, ¢}, is also M/j

I
Theorems similar to Theorems 1 and 2 hold in space of two, and il

general in space of n, dimensions and may be proved in the same waje

q
i

EXERCISES 1

1. Denote the six determinants (2) by
G2 8 oLk (1),

42), @3)
and write
A=(12)3 4, B=(1,3)4 2), C=(1,4)2, 3).

Prove that six, and only six, cross-ratios can be formed from four points bx

taking them in different orders, namely the negatives of the six ratios which can qu\

formed from A, B, C' taken two and two. :

i
2. Provethat 4 + B+ C =0, and hence show that if A is one of the oros ';'
i

ratios of four points, the other five will be

1 S T )
i sl 7 e T v 4

# This also follows from Exercise 5, § 24
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3. Prove that the six cross-ratios of four distinet points are all different from
gach other except in the following two cases:

(2) The case of four harmonic points, where the values of the eross-ratios
are —1, 2, 1.

(B) The case known as four equianharmonic points, in which the values of
the crossratios are —§ + }1/_ 3.

. 4, va.e Tl.leorem 2,§24, by m_aking use of the fact that the cross-ratio of four
ﬁomts on a line is unchanged by non-singular projective transformations of the
ne.

5, ‘By the cross-ratio of four planes which meet in a line is understood the
cross-ratio of the four points in which these planes are met by any line which
does not meet their line of intersection.

Justify this definition by proving that if the equations of the four planes are

P=0,p1+Ap,=0,p,=0, p, + pp, = 0

(p, and p, homogeneous linear polynomials in z i

 and p, b » 1, % t), the cross-ratio of the four
pointsin which any line which does not meet the line of intersecti

18 met by the planes is A/ p. e

) 6. Prove that the cross-ratio of four planes which meet in a line is invariant
with regard to non-singular collineations.

34. Plane-Cobrdinates and Contragredient Variables. If w,, u
Uy, 1ty a{-e constants, and z;, a,, g x4 are the homogeneous coﬁrdill;ateﬂé
of a point in space, the equation
(1) Uy + UgTy + Uy + Uz, =0
tepresents a plane. Since the values of the u’s determine the posi-
tion of this plane, the u’s may be regarded as codrdinates of the plane
We will speak of them as plane-cosrdinates, just as the 2’s (each set".
of which determines a point) are called point-codrdinates. And just
33 we speak of the point (zy, z,, 25, 2,) s0 we will speak of the plane
(u{,_ Up U, ). The w's are evidently analogous to homogeneous
coordinates in that if they be all multiplied by the same constant
the plane which they determine is not changed. 9

’ Suppose now that we consider the #’s as constants and allow the
8 to vary, taking on all possible sets of values which, with the fixed
86t of values of the o', satisfy (1). This equation will now repre-
sent a family of planes, infinite in number, each one of which ispde-
termined by a particular set of values of the u’s and all of which pass
;ﬁrmi)gh the fixed point (=, Ty 2y 2,). The equation (1) may there-
1926 be }'egarded as the equation of a point in plane-cosrdinates, since
lt..ls. satisfied by the cobrdinatesof a moving plane which en,velops
this point, just as when the 2's vary and the «’s are constant, it is
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the equation of a plane in point-codrdinates, since it is satisfied by the
coirdinates of a moving point whose locus is the plane.*
In the same way, a homogeneous equation of degree higher than =
the first in the «’s will be satisfied by the codrdinates of a moving .
plane which will, in general, envelop a surface. The equation will
then be called the equation of this surface in plane-codrdinates. f

Let us now subject space to the collineation
c ﬂ'/',’: = Uilxl + 652332 "f" 01-353 + 054934 (i’ = 1, 2, 3, 4)'.'

We will assume that the determinant ¢ of this transformation is nok
zero ; and we will denote the cofactors in this determinant by C
Then the inverse of the transformation ¢ may be written

Cotgt 4+ Gaigy 4 (i=1,2 8,08

W r= Sl el 4 SH 4 T,

Substituting these expressions, we see that the plane (1) goes over
into
(2) e, + b + uheh +wzy =0,

where o o

d ’M{= gﬂul =& ?ﬂug + '—;jug = %u4 (i= 13 2‘! 3, 4}‘
(4

We thus see that the «'s have also suffered a linear transformation;
though a different one from the z’s, namely, the transformation whosé

matrix is the conjugate (cf. § 7, Definition 2) of ¢ This transformas
tion d of the plane-codrdinates is merely another way of expressfnﬁ}h
the collineation which we have commonly expressed by the transfor
mation ¢ of the point-codrdinates. The two sets of variables zand#
are called contragredient variables according to the following i

DerisirioN 1. Two sets of n variables each are called contragre:
dient if, whenever one is subjected to a non-singular linear transformatioly
the other s subjected to the transformation which has a8 its matriz the

conjugate of the inverse of the matriz of the first.

* Similarly, in two dimensions, the equation
Uy + Usks + Ugls = 0
represents a line in the point-codrdinate (21, s #g) if a3, ug, Us AT CONstants, 0!'1]A

point in the line-cotrdinates (w1, %z, ug) if ©y, &o, X5 ATE constants.
+ An example of this will be found in § 63. .
!
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Precisely the reasoning used abov f
\ e in the case i
establishes here also the theorem : g

o
d[HEOREM. If the two sets of contmgredieﬂt variables Zyy oo+ &,
and Uy, --- U, Are carried over by a linear transformation into ', -- a;
§ LENS

and wyy - Uy, then
Uyly + gy + o0 + U2,

will go over into wheh + el + o + ula
2 nn®
In connect.lon with this subject of contragredient variables it is
customa.ry to mtrod_uce the conception of contravariants, just as the
r-}onceptlon of ‘covariants was introduced in connection with the sub-
ject of cogredient variables. For this purpose we lay down the

DErINTPION 2. If we have a system of forms dn (zy, - z,) and
also .a-number of sets of variables, (u}, - ’bvt-:;), (], - u”l)’ ?ont 1
gredient to the 2’s, any rational funetion of the u’sland th: c:a@ﬁ’cz'ent: Z)-"
the f?rms which is unchanged by a non-singular linear transformation of
the s except Jor being multiplied by the pth power (u an inte e?‘)-of fh
determinant of this transformation is called a contravariant o_}g weight ;
) T}.lus th'e theorem that the resultant of » linear forms in n variables
15 an mvariant of weight 1 may, if we prefer, be stated in the form :
If we have n sets of n variables each, (ufy ++ ), o (ul®), .. .
each .of which is contragredient to the variables Ea; sr:l)1 the ’:'1 :
termma,r.xt of the «'s is a contravariant of weight 1.‘[1‘ 5 ¥

It _w111 be seen that the conception of contravariant, though
sometimes convenient, is unnecessary, since the contragredi’ent vagri-
ables may always be regarded as the coefficients of linear forms, and
When. 80 regarded, the contravariant is merely an invariant iy
. Su{nlarly, the still more general conceptio'n of mized con:eamz'tant
In '_Whlch, besides the coefficients of forms and the contragredi st,
variables, certain sets of cogredient variables are involved j:gredu?:n
t.o. t}}e familiar conception of covariants if we regard tile co tes
gredient variables as coefficients of linear forms. o

*This is really a special : )
hapter. y a special theorem in the theory of bilinear forms. Cf, the next

T For other examples of i i i .
il ples of contravariants in which coefficients also oceur, see

1 An example is u :
- 121 + UeXo + »o» + ULy, th i s
absolute mixed concomitant. Ty e T R dat C s B
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35, Line-Cobrdinates in Space. A line is determined by |
points (#s, Yy ¥ Yi) (2 Zp 25 2,) which lie on it. It is clear thafs
these eight codrdinates are not all necessary to determine the hne%:f
and it will be seen presently that the following six quantities detes
mine the line completely, and may be used as line-codrdinates,

P Pz Pie Pap Pip Pop

Yi Y;
& Zj

where

(1) =

In other words, the p’s are the two-rowed determinants of the matrix

Y1 Yo Ys Y4

2y % %

]

except that the sign of the determinant obtained by striking out
the first and third column has been changed. These six p’s are nol:
all zero if, as we assume, the two points ¥ and z are distinct.

These six p's are connected by the relation

2) PPyt PrsPas + Prals=0*
as may be seen either directly or by expanding the vanishing

determinant Y9 Ys Y3 Ys

|

by Laplace’s method in terms of the minors of the first two rows. =
That the p’s may really be used as line-codrdinates is shown"hg‘ﬂ
the following two theorems: :

TaEOREM 1. When a line is given, its line-codrdinates p; are colte
pletely determined except for an arbitrary factor different from zero by
which they may all be multiplied. ]

The definition (1) of the p's shows that they may all be multi

plied by an arbitrary factor different from zero without aﬁecti}%‘
the position of the line, since the 4's (and also the #'s) may be m}ﬂ%l??
plied by such a factor without affecting the position of the point =

* (0, Exercise 2, § 33, ‘"
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In order to prove our theorem it is sufficient to show that, if
instead of the two points used above for determining the p’s we use
two other points of the line;

Ty Yy Yo YY), (2 2, 2y Z)),
e
Z .2

the line-codrdinates

thus determined will be proportional to the Ppy's. Since the points
Y'and Z are collinear with the distinct points y, 2, they are linearly
dependent upon them and we may write

17‘ = C’Iy‘- + 6'2 Zi Z, = kly‘ E kgz,- (3.= 1, 2, 3, 4)-

Accordingly ¢, Glly Y

'Pﬁ:
ky k2_| g 2

=Kpy
where K+ 0, as ¥ and Z are distinct points.

TaroREM 2. Any siz constants p,; satisfying the relation (2) and
not all zero are the line-coordinates of one, and only one, line.

That they cannot be the codrdinates of more than one line may be
seen as follows: Suppose the p,'s to be the codrdinates of a line,
and take two distinct points y and z on the line. The coérdinates
of these points may then be so determined that relations (1) hold.
Le_t us suppose, for definiteness, that p;,0.* Now, consider the
}‘)omt whose cobrdinates are ¢;y;+ ¢,2. By assigning to ¢, and ¢
fist the values — z; and y,, then the values — 2, and Ygy We get thg
two points
®) (0, P1g» Prs» Pro):

where, by definition, p, = — p;.

> These two points are distinet, since for the first of them the first
Qoérdinate is zero and the second is not, while for the second the
Sétond coordinate is zero and the first is not. These poifits ac-
eo.rdiugly determine the line, and since they, in turn, are deter-
mined by the p's, we see that the line is uniquely determined
by the p's.

(Pars 05 Pags Pag)s

- *By a slight modification of the formule this proof will apply to the case in
Which any one of the p's is assumed different from zero.
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It remains, then, merely to show that any set of p;’s, not all zerg l‘}’
which satisfy (2) really determine aline. For this purpose we again
assume p;,= 0* and consider the two points (3) which, as above, arg
distinct. The line determined by them has as its codrdinates

Pl PPy PPy — PisPo— PuPw Pule Prlas

Using the relation (2), the fourth of these quantities reduces o
P1aPse SO that, remembering that the codrdinates of a line may be
multiplied by any constant different from zero, we see that we'
really have a line whose codrdinates are p;;. :

In a systematic study of three-dimensional geometry these lines
coordinates play as important a part as the point- or plane-codrdis
nates; and in the allied algebraic theories we shall have to consideﬁ:
expressions having the invariant property, into which these ling=
coordinates enter just as point-coordinates oceur in covariants and
plane-codrdinates in contravariants. We may, if we please, rega_rdi "
these expressions as ordinary covariants, since the line-coérdina,tg?g”]
are merely functions of the codrdinates of two points, but the eo=
variants we get in this way are covariants of a special sort, since thes
codrdinates of the two points occur only in the combinations (1).

As an example, let us consider four points

(‘55’ Yis 2 ti) (i= 1,23, 4]'*

The determinant of these sixteen coérdinates is, by Theorem 8, § 31;5
a covariant of weight — 1. Let us denote by p; and plf the coordis
nates of the lines determined by the first two and the last two point§
respectively. Expanding the four-rowed determinant just referrel
to by Laplace’s method according to the two-rowed determinants of
the first two rows, we get
(4) PraPsy+ PioPhs + PisPis + PisPia + P1aPis + PliPos: I_J
This, then, is an expression having the invariant property and il
volving only line-coérdinates. a3
Since the vanishing of the four-rowed determinant from which
we started gave the condition that the four points lie in a plane it
follows that the vanishing of (4) gives a necessary and sufficient’
condition that the two lines p’ and p'' lie in a plane, or, what
amounts to the same thing, that they meet in a point.

* By a slight modification of the formule, this proof will apply to the case il
which any one of the p’s is assumed different from zero. |
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EXERCISES
1. Prove that, if the point-coérdinates are subjected to the linear transfor
mation T} = a2y + Caa + gty + Cuty (i=1,2384),
the line-coordinates will be subjected to the linear transformation
Pi= (Cate — €atpn) Pra + (cacs — cacp) P+ (eacs — cuca) pue + (cistia — C34Cs3) Ps
+ (Cucp — cocu) o + (Cutps —Citp) P
2. A plane is determined by three points
(1 Y2 Ysr ),

Prove that the three-rowed determinants of the matrix of these three points may
be used as codrdinates of this plane, and that these coérdinates are not distinet
from the plane-cosrdinates defined in § 34.

(21, 22 23y 24), (wlr Wy, Ws, !U4).

3. Aline defermined by two of its points may be called a ray, and the line-
codrdinates of the present section may therefore be called ray-cosrdinates. A line
determined as the intersection of two planes may be called an azis, If (w1, ug,
usy ) and (va, vy, v, v4) are two planes given by their plane-codrdinates, diseuss
the uxis-coordinates of their intersection,

912, Gz, Qi Q34 G425 dosy

where 9= Uiy — Ugly

4. Prove that ray-cosrdinates and axis-cogrdinates are not essentially differ-
enf by showing that, for any line, the ¢’s, taken in the order written in Exercise 3,
are proportional to the p’s taken in the order

Psey Pazy Posy Pizy P13y Puas

5. A point i3 determined as the intersection of three planes
L]
(uh Ug, Ug, u!)s (Uil Vg Vs, U.;), (wlr Wa, Ws, w4)-

Prove that the three-rowed determinants of the matrix of these planes may be

used as codrdinates of this point, and that they do not differ from the ordinary

point-codrdinates.
Hence, show that all covariants may be regarded as invariants.




