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Finally, let us note the geometric meaning to be associated wil 
the invariants and covariants which have been mentioned in thia 
section. W e confine our attention to the case of four variables. 
The vanishing of the resultant of four linear forros gives a necessary 
and sufficient condition that the four planes determined by setting 
the forms equal to zero meet in a point. The vanishing of the co­
variant of Theorem 3 is a necessary and sufficient condition that the 
four points lie in a plane. The vanishing of the covariant of 
Theorem 4 is a necessary and sufficient condition that the point 
(!li, y2, y3, y4) lie on the surface f= O. It will be seen that in alJ 
cases we are thus led to a projective property ; cf. §§ 80, 81. 

32, Some Theorems Concerning Linear Forros. 
THEOREM 1. Two systems of n linear forms in n variables ar, 

equivalent with regard to non-singular linear transformations if neithet 
re&ultant is zero. 

Let l a11x1 + .. · + a¡11x11 

(1) : : : : : 
a,.1Xi + ... + a1111x11 

be the two systems, whose resultants, 

a= 

are, by hypothesis, not zero. Applying the transformations 

a 1 ~ ~ a1t1 ~ ·:· ~ ªit•' b { ~ =: bu~1 ~ ": + :•,.~•' 
x1,. = a,.¡X¡ + ... +an,.Xn, :t..= b.¡x¡ + ... + b,.,.x,., 

to (1) and (2) respectively, they are both reduced to the normal form 

¡ i¡, 

. .~'. . 
:t,.. 

(3) 

N ow, since neither a nor b is ~ero, the transformations a and b have 
inverses, which when applied to (3) carry it back into (1) and (2) 
Tes~ectively. Hence the transformation b-1a carries (1) into (2). 
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THEOREM 2. A system of n linear forms in n variables has no 
int,egral rational invariants * other than constant multiples of powers 
of the resultant. 

Let (1) be the given system and a its resultant, and let e be the 
determinant of a non-singular linear transformation which carries 
(1) over into allxl . . . a:i_,.x,., 

I 
1 '+ + 1 1 

(4) 

~~l~; ... :+ ~~n~• 
If we call the resultant of ( 4) a1, we have 

ª'=ªª· 
Let 1( a11, • .. a,.,.) be any integral ration~l invariant of the system 

(1) of weight µ, and write 

Then 
I' = I ( <4.11 .. • a~.). 

1'=.c11-L 

N ow let us assume for a moment that a* O, and consider the speciaJ 
t~nsfor~ation which carries over (1) into the normal form (3). In 
th1s spec1al case we have a'= 1; hence, as may also be seen directly, 
ac = l. Calling the constant value which 11 has in this particular 
case k, we have k I = (JI'- = a-11-I, 
Ot 

(5) 

This equality, in which k is independent of the coefficients a¡;, has 
been established so far merely for values of the a¡;'s for whicb. a* O. 
Since µ is not negative ( cf. Theorem 5, § 31 ), we can now infer 
t!i.at (5) is an identity, by making use of Theorem 5, § 2. Thus we 
Mle that I is merely a constant multiple of a power of the resultant, 
as was to be proved. 

ÜOROLLARY. A system of m linear forms in n variables has no i11,­
tegral rational invariants ( other than aonstants) when m < n. 

For such an invariant would also be an integral rational invariant 
of the system of n linear forros obtained by adding n - m new forms to 
the given system; and hence it would be a constant multiple of a 

• It has the arithmetical invariant mentioned in Theorem 2, § 80. 
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power of the resultant of this system. This power must be zero. 
and hence the invaria11t must be a mere constant, as otherwise it 
would involve the coefficients of the added forms, and hence would 
not be an invariant of the system of original forms. 

EXERCISES 

l. Prove that ü we have two systems of n + 1 linear forma in n variables whoee 
matrices are both of rank n, a necessary and suflicient condition that these tn 
systems be equivalent with regard to non-singular linear transformation is thu 
the resultants of the forros of one set taken II at a time be proportional to * 
resultants of the correspont!ing forms of the other set. 

2. Generalize the preceding theorem. 

3. Prove that every integral rational invariant of a system of m linear forms in 
~ variables (m > n) is a homogeneous polynomial in the resultant.s of these forma 
taken n at a time. 

4. State and prove the theorems analogous to the theorems oí the present seo, 

tion, including the three preceding exercises, when the system of linear forms is re, 

placed by a system of poiut~. 

33. Cross-ratio and Harmonic Division. Let us consider any four 
distinct points on a line 

1 

'll) (x1, t1), (x2, t2), (x3, t8), (x4, t4). 

W e have seen, in § 31, Theorem 3, that each of the six determinant, 

(2) 
x¡t2-x2t1, 

Xsf4-X/3, 
X¡i3- X3t1, 
x/z-xzt4, 

X¡t4 - Xi¡, 
xzta- xatz, 

is a covariant of weight -1. The ratio of two of these determinant, 
is therefore an absolute covariant, and we might te tempted, by 
analogy with the examples of absolute covariants in Exercise 1, § 28, 
to expect that it might have a geometric rneaning. It will be readily 
seen, howe, er, that this is not the case, for the value of the ratio of 
two of the determinants (2) will be changed if the two coordinata 
of one of the four points are multiplied by the same constant, and 
this does not affect the position of the points. 

lt is easy, however, to avoid this state of affairs by forming such 
an expression as the following:* 

(3) (1 2 3 4)=(x¡t2-Xl1)(xat4-x4t3) 
' ' ' ( ~ ~ A ' ( t t )' ,-z•3-X3bz) X4 1 - X_14 

• The reversa! of sign of the second factor in tbe denominator is not essential, 1111 
la -1:ustoma.ry for a reason whicb will presently be evider:~ 
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which is also an absolute covariant of the four points (1), and is called 
their cross-ratio or anharmonic ratio. More accurately it is called the 
cross-ratio of these four points when taken in the arder writteu in (1 ). * 

In arder to determine the geometric meaning of the cross-ratio 
of four points, let us first suppose the four points to be finite so that 
tit2th * O. Dividing numerator and denominator of (1, 2, 3, 4) by 
this product, we find the following expression for the cross-ratio in 
terms of the non-homogeneous coordinates X1. of the points, 

(4) (1 2 3 4)= (X1 - Xz)(Xa- X4) 
' '' (X2-Xa)(X4-X1f 

Finally, denoting the points by P 1, P 2, P8, P4, we may write 

(5) (1, 2, 3, 4)= P1Pz/P1P4= P2P1/P,.P8_ 
, P 3P2 P3P4 P 4P 1 P 4P8 

In words, this formula tells us that the cross-ratio of four finite 
points is the ratio of the ratio in which the second divides tbe first 
and third and the ratio in wbich the fourth divides the first and 
third; and that it is also the ratio of the ratios in which the first 
and third divide the seco11d and fourth. 

In this statement, it must be remembered that we have taken the 
~tio in which O divides the points A, B as A O/ BO, so that the ratio 
18 negative if O di vides AB internally, positi ve if it divides it externall y. 

If we agree that the point at infinity on a line shall be said to 
~vide any two finite points A, B of this line in the ratio + 1 ( and this 
18 a natural convention since the more distant a point the more nearly 
does it divide AB in the ratio + 1) it is readily aeen, by going ba(.,k 
to formula (3), that the first statement following (5) still holds if the 
second or fourth point is at infinity, while the second statement holds 
if the first or third is at infinity. Thus we have in all cases a simple 
geometric interpretation of the cross-ratio of four distinct points. 

Tbe special case in which four points P 1, P 2, P8, P4 are so situ• 
ated that (1, 2, 3, 4) = -1 is of peculiar importance. In this· case 
we have 

(1, 2, 3, 4) = (1, 4, 3, 2) = (3, 2, 1, 4) = (3, 4, 1, 2) = (2, 1, 4, 3) 
=(2, 3, 4, 1)=(4, 1, 2, 3)=(4, 3, 2, 1)=-1. 

• If the8e four points are taken in other orders, we get different cross-ratioa: 
(l. 2, 4, &), (1, t, 3, 2), etc. Cf. Exercise 1 at the end of r,his section 
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The relation is therefore merely a relation between the two pairs of 
points P

1
, P

8 
and P 2, P. taken indifferently in either order, and we 

say that these two pairs of points di vide each other harmonically, 
From the geometric meaning of cross-ratio, we see that, if ali four 
points are finite, the pairs P 1, P 8 and P 2, P4 divide each other har. 
monically when, and only wheu, P 2 and P4 divide P 1, P 8 internally 
ADd externally in the same ratio; and also when, and only when, P1 

and P
8 

divide P
2
, P

4 
internally and externally in the same ratio. lf 

P
2 

or P. lies at infinity, the first of these statements alone has 1 

meaning, while if P
1 

or P
8 

lies at infinity, it is the second statemen, 
to which we must confine ourselves. 

It is easily seen that the case in wbich three of the four point.a. 
say P

1
, P

2
, P

8
, coincide, while P. is any point on tbe line, may be 

regarded as a limiting form of two pairs of points which separate one 
another harmonically. It is convenient to include tbis case under the 
term harm<mic division, and we will tberefore lay down the definition: 

DEFrnITIO~. Two pairs of points P 1, P3 and P 2, P, on alinear, 
said to divide one another harmonically if they are distinct and theit 
cross-ratio taken in the order P 1, P 2, P 3,P4 is -1, and also if at lea.C 

three of them coincide. 

It will be seen that the property of two pairs of points dividing 
each other barmonically is a projective property in space of one 
dimension. 

The most important applications of cross-ratio come in geometry 
of two, three, or more dimensions where the points are not determined 
as above by two coordinates ( or one non-homogeneous coordinate ), bu, 
by more. Suppose, for instance, we bave four distinct finite pointl 
on a line in space of three dimensions. Let tbe points be P 1, P, 
Q1, Q

2
, and suppose the coordinates of P1, P2 are (x1, y1, z1, t1) and 

(x
2

, y
2

, z
2
, t

2
) respectively. Then the coordinates of Q1, Q2 may be 

written 

~X¡+ )..x2,Y1 + AJf2,Z1 + AZ2,t1 + )..t2),(x1 + µ.x2,Y1 + µ.y2,z1 +µ.z2,t1 +Jd,), 
Now, let 
(6) Ax + By + Oz + Dt = O 

be any plane through Qt but not through P2, and we have 

(.Ax1 + By1 + Oz1 + Dt1) + A(Ax2 + By2 + Oz'J. + JJt'J.) =- O, 
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or, since P1 does not lie on (6), 

Ax1 + By1 + Oz1 + Dt1 
Ax2 + By

2 
+ Oz

2 
+ .l)t

2 
= - ~. 

Changing to non-homogeneous coordinates, we have 

AX1 +BY1 + OZ1 +JJ t 
AX

2
+BY

2
+ OZ

2
+JJ= -)..~. 

If P1M¡ and P~ are tbe perpendiculars from P and p on the 
plane ( 6), we ha ve 

1 
1 

P1Q1=P1M¡=AX1+BY1+ OZ1+JJ _ t1 
P2Q1 P2~ AX2 +BY2 + OZ2 +JJ- -)..~. 

In exactly the same way we get 

P1Q2 t .. 
P2Q2 = - µ~• 

Consequently P1Q1¡P1Q2_~. 
P'J.Ql P2Q2 - JI, 

This is the cross-ratio of the four points taken in the order p n 
P Q 

1• v1, 
t• 2' 

_ It is readily seen that if one of tbe two points Q or Q lies at in­
fimty, all that is essential in the above reasoning re

1
mains

2 
valid and 

the croS&ratio is still Ajµ. ' 
The case in which one of the two points P1 or P is at infinity 

:; be reduced to the case just considered by writin¡ for the coor­
ates of Q1 and Q2, (E1, 111, ~1, 71) and (f2, 112, ½• T2 ). The coordi-

nates of P 1 and P2 are then ✓ 

( 
A, A, A, A, ) 

E1 - ,J2, 111 - µ1121 t1-µt2, 7'¡-µ7''}, , 

(E1 - E2, 111 -112, t1 - {2, 7'¡ - T2)· 

Acco:dingly, from what has just been proved, we see that the 
cross-ratio of tbe four points taken in the order Q p Q p 1·8 '/ B t tb' 1, 11 2• 2 "- µ. 

u is cbange of order does not cbange the cross-ratio. Hence in 
all cases we bave the result: 
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THEOREM 1. The cross-ratio of the four distinct poin.tl 

P 1 (x1, !Ji, z1, t1), 

Pa (x2, '!h, Z2, t2), , 

Q1 (x1 + )..x2, '!h + A!f2, z1 + ).z2, t1 + At2), 

Qz (xi+ µ,xz, Y1 + W!h, Zi + µ,z2, ti+ µ,tz), 
taken in the order P 1, Q1, P 2, Qz, is)./µ,. 

From this theorem we easily deduce the f~rther result: 

THEOREM 2. The cross-ratio of four points on a line is invariatd 
with regard to non-singular collineations of space. * 

For the four points P 1, P 2, Q1, Q2 of Theorem 1 are carried over 
by a non-singular collineation into the four points 

pi (Z¡, Yi• Zi, f¡), 
p~ (~, y~, z~, t~), 

~ ( Xi + lx~, Yi + ).y~, Zi + AZ~, ti + ).~~ 

{>~ (r¡ + µ,~, Yi + µ,y;, zi + µ,z~, ti+ µ,t~), 
whose cross-ratio, when taken in the order Pi, Q;, P~, Q~, is also X/JJ,, 

Theorems similar to Theorems 1 and 2 hold in space of two, and in 
general in space of n, dimensions and may be proved in the same way, 

EXERCISES 

l. Denote the six determinants (2) by 

(1, 2), (1, 3), (1, 4), (3, 4), (4, 2), (2, 3), 

and write ) 3) 
A=(l,2)(3,~), B=(l, 3)(4,2), C=(l,4 (2, . 

Prove that six, and only six, cross-ratios can be formed from four. points bJ 
taking them in different orders, namely the negatives of the six ratios wh1ch can be 
formed from A, B, C taken two and two. 

2. Prove that A + B + C = O, and hence show that il A is one of the croe 
ratios of four points, the other five will be 

1 1 A-1 .\ 
¡• l->., 1-.\' T' l-i' 

• This also follows from Exercise 5, § 24 
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3. Prove that the six cross-ratios of four distinct points are all different from 
each other except in the following two cases : 

(a) The case of four harmonic points, where the values of the cross-ratios 
are -1, 2, ½, 

(/3) The case known as four equianharmonic points, in which the values of 
the cross-ratios are - ½ ± h/ _ 3. 

4. Prove Theorem 2, § 24, by making use of the fact that the cross-ratio of four 
points on a line is unchanged by non-singular projective transformations of the 
line. 

5. By the cross-ratio of four planes which meet in a Iine is understood the 
cross-ratio of the four points in which these planes are met by any line which 
does not meet their line of int.ersection. 

J ustify this definitiou by proving that if the equations of the four planes are 

Pi = O, P1 + AP2 = O, P2 = O, P1 + l'-P2 = O 

(p1 and p2 homogeneous linear polynomials in x, y, z, t), the cross-ratio of the four 
points in which any line which does not meet the line of intersection of the planes 
is met by the planes is )-../ p.. 

6. Prove that the cross-ratio of four planes which meet in a line is invariant 
with regard to non-singular collineations. 

34. Plane-Coordinates and Contragredient Variables. If u
1
, u

2
, 

u31 u4 are constants, and x1, x2, x3, x4 are the -homogeneous coordinates 
of a point in space, the eq uation 

(1) U1X¡ +ur2 +u3x3+U4X4=0 

represents a plane. Since the values of the u's determine the posi­
tion of this plane, the u's may be regarded as coordinates of the plane. 
\Ve will speak of them as plane-coordinates, justas the x's (each set 
of which determines a point) are called point-coo·rdinates. And just 
as we speak of the point (x1, x2, x8, x4) so we will speak of the plane 
(u1, '½, u8, u4). The u's are evidently analogous to homogeneous 
coordinates in that if they be all multiplied by the same constant, 
the plane which they determine is not changed. 

Suppose now that we consider the x's as constants and allow the 
u's to vary, taking on all possible sets of values which, with the fixed 
1,et of values of the x's, satisfy (1 ). This equation will now repre­
sent a family of planes, infinite in number, each one of which is de­
termined by a particular set of values of the u's and all of which pass 
througb the fixed point (x1, x2, x8• x4). The equation (1) may there­
fore be regarded as the equation of a point in plane-coo·rdinates, since 
it is satisfied by the coordinates of a moving plane which envelops 
this point, just as when the x's vary and the u's are constant, it is 



108 INTRODUCTION TO HIGHER ALGEBRA 

the equation of aplane in point_-coordinates, ~ince it is sa;isfi.ed by the 
coordinates of a moving point whose locus 1s the plane. . 

In the same way, a homogeneous equation of degree h1gher t~an 
the fi.rst in the u's will be satisfied by the coordinates of a mov1Dg 
plane which will, in general, envelop a sur~ace. The __ eq_uation will 
then be called the equation of this surface m plane-coordmates. t 

Let us now subject space to the collineation 

e ( i = 1, 2, 3, 4} 

W e will assume that the determinant e of this transformation is noi 
zero • and we will denote the cofactors in this determinant by o, 
The~ the inverse of the transformation e may be written 

( i = 1, 2, 3, 4} 

Substituting these expressions, we see that the plane (1) goes over 

into 
(2) 
where 
d 

uixi + u~ + u~z:i +u~~= O, 

U~= ~U¡ + ~U2 + ikua + ~U4 
' e e e e 

( i = 1, 2, 3, 4} 

w e thus see that the u's have also suffered a linear transf?rmatiou, 
though a different one from the x's, n~mely, the transfo~mat10n whose 
matrix is the conjugate ( cf. § 7, Definition 2) of c-1

• Th1s transfo~ 
tion d of the plane-coordinates is merely another way of expressmg 
the collineation which we have commonly expressed by the transfor• 
mation e of the point-coordinates. The two sets of vari~bles x and • 
are called contragredient variables according to the followmg 

DEFINITION 1. Two sets of n variables each are called contra,</:'" 
dient if, w henever one is subj ected to a non-singular linear tr~nsf orm~tiOA, 
the other is subjected to the transformation which has as its matrix tM 
conjugate of the inverse of the matrix of the first. 

• Similarly, in two dimensions, the equation 

U1X1 + U2X2 + UgX3 = 0 

represents a line in the poin~oordina~ (x1, ~. xa) if u1, U2, ua a.re conata.nts, ctl 
point in the Jine-ooordinates (ui, u2, u3) _1f Xi, X2, xa are consta.nts. 

t An exa.mpie of this will be found m § 63. 
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Precisely the reasoning used above in the case of four variables 
establishes here also the theorem : 

THEOREM. * Jf the two sets of contranredient variables x ....... 
.:1 11 "'11 

and U¡, .. · u11 are carried over by a linear transf ormation into x! ... 31. 
, , h 11 

" and u1, .. • u11, t en 

VJill 90 over into 

In connection with this subject of contragredient variables it is 
customary to introduce the conception of eontravariants, just as tl-..e 
conception of covariants was introduced in connection with the sub­
ject of cogredient variables. For this purpose we lay down the 

DEFINI'.l'ION 2. If we have a system of Jorms in (x.¡, ... x
11

) an,l 
also a number of sets of variables, ( ui, • .. u~), (uf, ... u~), ... , contra-
gredient to the x' s, any rational function of the u' s and the coeffieients of 
the forms which is unchanged by a non-singular linear transformation of 
the x' s exr:ept for being multiplied by the µth power (µ an integer) of the 
determinant of this transformation is ealled a contravariant of weight µ. 

Thus the theorem that the resultant of n linear forros in n variables 
is an invariant of weight 1 may, if we prefer, be stated in the forro: 
If we have n sets of n variables each, (ui, ... u~), ... (14111, ... uf:'l), 
each of which is contragredient to the variables (x

1
, ..• x

11
), the de­

terminant of the u's is a contravariant of weight l. t 
It will be seen that the conception of contravariant, though 

sometimes convenient, is unnecessary, since the contragredient vari­
ables may always be regarded as the coefficients of linear forms, and, 
when so regarded, the contravariant is merely an invariant. 

Similarly, the still more general conception of mixed concomitants 
in ~hich, besides the coefficients of forros and the contragredien~ 
variables, certain sets of cogredient variables are involved,t reduces 
to t~e famil~ar conception of covariants if we regard the contra­
gred1ent variables as coefficients of linear forms. 

• Tbis is really a special theorem in the theory of bilinear forros. Cf. the ne:x:t 
cbapter. 

t For other examples of contravariants in which coefficients a.lso occur see 
Cbap. XII. ' 

t An exa.mple is u1x1 + u2x2 + . •· + u,.x,., the theorem a.hove stating that this is au 
llbsolute mixed concomitant. 
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35. Line-Coordinates in Space. A line is determined by t,,. 
points (y

1
, y

2
, y

3
, y4), (z1, z2, z3, z4) whi?h lie on it. It is clear tbat 

these eight coordina tes are not all necessary to ·determine the line 1 

and it will be seen presently that the following six quantities det.er­
mine the line completely, and may be used as line-coordinates, 

P12• Pis, Pw Ps4• P42• P2a, 
where 

(1) l Yi Y11 Pv= · 
Z¡ Z; 

In other words, the p's are the two-rowed determinants of the matrix 

11 

Y1 Y2 '!fa Y4 II • 
z1 z2 z3 z4 

except that the sign of the determinant obtained by_ str~king out 
the first and third column has been changed. These su: p s are 118' 
all zero if, as we assume, the two points y and z are distinct. 

These six p's are connected by the relation 

{2) P12P34 + p13p42 + PuP2a = O,* 

as may be seen either directly or by expanding the vanishing 

<leterminant Y1 Y2 Ya Y4 
zl Z2 Z3 Z4 

Y1 Y2 Ya Y4 
Z¡ Z2 Z3 Z4 

by Laplace's method in terms of the minors of the first two rows. 
That the p's may really be used as line-coordinates is shown by 

the following two theorems: 

THEOREM l. When a line is given, its line-coifrdinates P,i are 009-

pletely determined except f or an arbitrary factor dijf erent from zero lf 
which they may all be multiplied. 

The definition (1) of the p's shows that they may ali be m~tio 
plied by an arbitrary factor different from zero without affectu' 
the position of the line, since the y's ( and also the z's) may be _mulf;i, 
plied by such a factor without affecting the position of the po111t. 

• C!. :Exercise 2, § 33, 
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In order to prove our theorem it is sufficient to show that, if 
instead of the two points used above far determining the p's we use 
two other points of the line, 

the line-coordinates 
P--=I ~ Yjl 

V Z¡ Z; 

thus determined will be proportional to the p¡/s. Since the points 
Yand Z are collinear with the distinct points y, z, they are linearly 
dependent upon them and we may write 

( i = 1, 2, 3, 4 ). 

Accordingly P.¡;=I ª1 c2 /I Y1 !hl=Kpv, 
k¡ k2 . Z¡ Z2 

where K '4= O, as Y and Z are distinct points. 

THEOREM 2. Any six constants p,1 satisfying the relation (2) and 
,wt all zero are the line-coó'rdinates of one, and only one, line. 

That they cannot be the coordina.tes of more than one line may be 
seen as follows: Suppose the p,/s to be the coordinates of a line, 
and take two distinct points y and z on the line. The coordinates 
of these points may then be ·so determined that relations (1) hold. 
Let us suppose, for definiteness, that p¡2 * O.* Now, consider the 
point whose coordinates are c1y, + c2z,. By assigning to c1 and e 
first the values - z1 and y1, then the values - z2 and y2, we get th; 
two points 

(3) {O, Pt2, Pis, Pu), (P21, O, P2s• P24), 

where, by definition, p;; = - P;,· 
These two points are distinct, since for the first of them the first 

coordinate is zero and the second is not, while for the second the 
second coordinate is zero and the first is not. These poifi.ts ac­
cordingly determine the line, and since they, in turn, are deter­
mined by the p's, we see that the line is uniquely determined 
by the p's. 

• By a slight modification of the fonnuloo this proof will apply to the ca.se in 
l'hlch any one of the p's is assumed different from zero. 
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It remains, then, merely to show that any set of p.;'s, not all zero. 
which satisfy (2) really determine a line. For this purpose we again 
assume p12 * O* and consider the two points (3) which, as above, are 
distinct. The line determined by them has as its coordinates 

pb P12Pis, Pi2Pw - PiaP 42 - JJiif23, P12P 42' Pi2P2s· 

Using the relation (2), the .fourth of these quantities reduces t-0 
p12p84, so that, remembering that the coordinates of a line may be 
multiplied by any constaut different from zero, we see that we 
really have a line whose coordinates are Pw 

In a systematic study of three-dimensional geometry these line­
coordinates play as important a part as the point- or plane-coordi. 
na tes; and in the allied alge braic theories we shall ha ve to consider 
expressions having the invariant property, into which these line­
coordinates enter just as point-coordinates occur in covariants and 
plane-coordinates in contravariants. We may, if we please, regard 
these expressions as ordinary covariants, since the line-coordinates 
are merely functions of the coordinates of two points, but the co­
variants we get in this way are covariants of a special sort, since the 
coordinates of the two points occur only in the combinatious (1 ). 

As an example, let us consider four points 

(i = 1, 2, 3, 4} 

The determinant of these sixteen coordinates is, by Theorern 3, § 31, 
a covariant of weight - 1. Let us denote by Pt and p~} the coordi• 
nates of the lines deterrnined by the :first two and the last two pointa 
respectively. Expanding the four-rowed determinant just referred 
to by Laplace's ruethod according to the two-rowed determinants of 
the :first two rows, we get 

( 4) Pi2P~ + Pf2P;4 + PisPZ2 + PtsPk + PiiP~ + Pt4P~a· 
This, then, is an expression having the invariant property and in• 
volving only line-coordinates. 

Since the vanishing of . the four-rowed determinant from which 
we sta;ted gave the condition that the four points lie in a plane, it 
follows that the vanishing of ( 4) gi ves a necessary and sufficient 
condition that the two lines p' and p" lie in a plane, or, what 
amounts to the same thing, that they meet in a point. 

• By a slight modification of the formulre, this proof will apply to the case ia 
which any one of the p's is assumed different from zero. 

• 
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EXERCISES 

l. Prove that, if the point-eoordinates are subjected to the linear transfol' 
mation 

(i= 1, 2, 3, 4), 

the line-coordinates will be subjected to the linear transformation 

Pt = ( cae¡2 - cae11) Pu+ ( cacfJ - c¡aep) PIB + ( c,1c,t - cucp) p14 + ( c¡¡¡ei4 - c«c,s) p34 

+ ( C¡4C,'2 - CaC1t) p42 + ( Crf:JS -C¡¡¡C¡2) P'l:l· 

2. Aplane is determined by three points 

Prove that the three-rowed determinants of tbe matrix of these tbree points may 
be used as coordina.tes of this plane, and that these coordina.tes are not distinct 
from the plane-coordinates definsd in § 34. 

3. A line determined by two of its points may be called a ray, and the line­
coordinates of tbe present section may tberefore be called ray-coordinates. A line 
determined as the intersection of two planes may be called an axis. If ( ui, "2, 

u,, u1) and ( v1, v2, va, Vt) are two planes given by their plane-coordinates, discuss 
t.he axis-coiirdinates of their intersection, 

q12, q13, qu, qat, qt2, q2a, 
where 

4. Prove that ray-coordinates and axis-coordina.tes are not essentially differ• 
ent by showing that, for any line, the q's, taken in the order written in Exercise a 

' are proportional to the p's taken in the order 

Pat, P42, P2s, P1z, Pis, PH• 

5. A point is determined as the intersection of three planes • 

(u¡, Uz, 1.18, u,), (t>1, Vz, vs, V4), (w1, W2, W3, W4). 

Prove that the three-rowed determinants of the mat.rix of these planes may be 
~d as coordina.tes of this point, and that they do not differ from the ordinary 
pomt-coordinates. 

Hence, show that all covariants may be regarded as invariants. 


