
CHAPTER VII 

INVARIANTS. FIRST PRINCIPLES AND ILLUSTRATIONS 

28. Absolute Invariants, Geometric, Algebraic, and Arithmetical, 
If we subject a geometric .figure to a transformation, we find that, 
while many properties of the figure have been altered, others have 
not. lf we consider, not a single transformation, but a set of trans
formations, then those properties of figures which are not changed by 
any of the transformations of the set are said to be invariant prop
erties with regard to this set of transformations. Thus if our set of 
transformations is the group of all displacements, the property of 
two lines being parallel or perpendicular to each other and the 
property of a curve being a circle are invariant properties, since 
after the transformation the lines will still be parallel or perpendicu
lar and the curve will still be a circle. If, however, we consider, 
not the group of displacements, but the group of all non-singular 
collineations, none of the properties just mentioned will be invariant 
properties. Properties invariant with regard to all non-singular 
collineations have played such an important part in the development 
of geometry that a special name has been given to them, and they 
are called pro/ective or descriptive properties. As examples of such 
projective properties we mention the collinearity and complanarity 
of points, the complanarity and concurrence of lines, etc.; or, on 
the other haud, the contact of a line with a curve or a surface or 
the contact of two curves or of two surfaces, or of a curve aud a 
surface. 

DEFINITION 1. If there is associated with a geometric figure a 
quantity whicli is unchanged by all the transformations of a certain 
set, then tliis quantity is ·called an invariant with regard to the trana• 
f ormations of the set. 

For instance, if our set of transformations is the group of dis
placements, the distance between two points and the angle between 
two lines would be two examples of invariant~ 

SS 
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The geometric invariants so far considered lead up naturally to 
the subject of algebraic invariants. Thus let us consider the two 

polynomials {A1x + B1Y + 01, 
(l) Á2X + B'11f + 02, 

and subject the variables (x, y) to the transformations of the set 

{2) {
r =xcos0+ysin0 +a, 

y1 = - X ~iIJ 0 + '!J COS 0 + fl, 
where a, f], 0 are parameters which may have any values. The trans• 
formation (2) carries over the polynomials (1) into two new poly
nomials: 

{
Aix' + Biy' + q, 
A~ + Bi!J' + O~. 

The coefficients of (3) may be readily expressed in terms of the coeffi
cients of (1) and the parameters a, /:3, 0. Using these expressions, 
we easily obtain the formulre 

(4) {
A{B~ - A~B{ = A1B2 - A2Bl' 

A~A~ + B~Bf = A1A2 + B1B2• 

W e shall therefore speak of the two expressions 

(5) A 1B2 -A2B1' A1A2 + B1B2 

as invariants of the system of polynomials (1) with regard to the set 
of transformations (2) according to the following general definition: 

DEFINITION 2. If we have a system of polynomials in the variables 
( x, y, z, ... ) and a set of transformations of these variables, then any 
function of the coefficients of the polynomials is called an invariant ( or 
more accurately an absolute invariant) with regard to these transforma
tions if it is unchanged when the polynomials are sub/ected to all th, 
transjormations of the set. 

The relation of the example considered above to the subject of 
geometric invariants becomes obvious when we notice that the alge
braic transformations (2) may be regarded as expressing the dis
placements of pla_ne figures in their plane when (x, y) are rectangular 
coordinates of points in the plane. If now we consider, not the poly
nomials O 1 but the two lines determined by setting them equal to 
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zero, we have to deal with the displacements of these two linea 
The invariants (5) have themselves no geometric significance, but by 
equating them to zero, we get the necessary and su:fficient conditiona 
that the two lines be respectively parallel and perpendicular, and 
these, as we noticed above, are invariant properties with regard to 
displacements. Finally we may nótice that the ratio of the two in
variants ( 5) gives the tangent of the angle between the lines,-a 
geometric invariant. 

As a second example, let us consider, not two lines, but a line and 
a point. Algebraically this means that we start with the system 

{
Ax+By+ O, 

(6) 
(xi, '!/1~ 

consisting of a polynomial and a pair of variables. W e shall wish 
to demand here that whenever the variables (x, y) are subjected to a 
transformation, the variables (x1, y1) be subjected to the same trans
formation, oras we say according to Definition 3 below, that (x, y) 
and (x

1
, y1) be cogredient variables. If we subject the system (6) 

to any transformation of the set (2), we get a new system 

{
A'i + B'y' + (J', 

(7) (xi, yf), 

and it is readily seen that 

A'Xi + B'y{ + 0' = Ax1 +By1 + O. 

Accordingly we shall call Ax1 + By1 + O a covariant of the system (6) 
according to Definition 4 below. This covariant has also no direct 
geometric meaning, but its vanishing gives the necessary and suffi
cient condition for an invariant property, namely, that the point 
(x1, y1) lie on the line Ax+ By+ 0= O. 

In the light of tbis example we may lay down the following gen-

eral definitions : 

DEFINITION 3. Ij we have several sets of variables 

(x, y, 'z, ···), (x1, '!/1, z1, , .. ), (x2, '!/2, Z2, ···), ••• 

and agree that whenever one of these sets is siwjected to a transfor• 
rnation every other set shall be siwjected to the sarie transformr1tion, 
then we say that we have sets of cogredient variables. 
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DEFINITION 4. If we hat,e a system consisting of a number of poly
nomials in (x, y, z, .. ,) and of a number of sets of variables co
gredient to (x, y, z, ... ), then any function of the coefficients of the 
polynomials and of the cogredient variables which is unq"ltanged when 
the variables ( x, y, z, .. •) are subjected to all the transformations of a 
certain set is called a covariant ( or more accurately an absolute cova
riant) of this system with regard to the transformations of this .set. 

It will be seen that invariants may be regarued as special cases of 
covariants. · 

Among the geometric invariants there are sorne which from their 
nature are necessarily integers, and which we will speak of as arith
metical invariants. An example would be the number of verticés of 
a polygon if our set of transformations was either the group of dis
placements or the group of non-singular collineations. Another ex
ample is the largest number of real points in which an algebraic 
curve can be cut by a line, if our set of transformations is the group 
of reat non-singular collineations. 

These arithmetical invariants also play, as we shall see, an impor
tant part in algebra. We mention here asan example the degree of an 
n-ary form, which is an invariant with regard to all non-singular linear 
transformations. * 

EXERCISES 
X¡ Yl 1 

l. Prove that (x2 - x1)2 + (Y2 - ·y1)2, and x2 y2 1 

are covariants of the sysrem xs Ys 1 
(x1, Y1), (x2, Yz), (xa, Ys) 

with regard to the trani.formations (2). 

2. Prove that A + B and B2 - A C 
are invariauts of the polynomial 

Ax2 +2Bxy+ Cy2 +2Dx+2Ey+F 
w:ith regard to the transformations (2). 

What geometric meaning can be attached to these invariant.6? 

3. Prove that A 2 + B2 is an invariant of the polynomial 

Ax+By+C 
rih regard to the transformations (2). 

Hence show that Ax;+ By1 + C 

v'A2+.B2 
is a covariant of the system (6). Nore its geometric meaning. 

• It is, in fa.et, an invariant with regard to ali linear transformations except the 
one in which all the coefficienta of the transformation are zero. 
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29. Equivalence. 

DE.!!'INITION 1. If A and B denote two geometric configuratiom 
or two algebraic expressions, or sets of expressions, then A and B shall 
be said to be equivalent with regard to a certain set of transformation, 
when, and only when, there exists a transformation of the set which car
ríes over A into B and also a "transformation of the set which carries ove, 
B into A. 

To illustrate this definition we notice that the conception of equiv
alence of geometric figures with regard to displacements is identical 
with the Euclidean conception of the equality or congruence of fig
ures. 

Again, we see from Theorem 2, § 24, tbat on a straight line two 
sets of three points each are always equivalent with regard to non
singular projective transformations. 

In both of the illustrations just mentioned the set of transforma
tions forms a group. In such cases ti.le condition for equivalence can 
be decidedly simplified, for the transformation which carries A into 
B has an inverse belonging to the set, and this inverse necessarily 
carries B into A. Thus we have the 

THEOREM. A necessary and suificient condition for the equiva
lence of A and B with regard to a group of transformations is that a 
transformation of the group carry over A into B. 

This theorem will be of great importance, as the question of 
equivalence will present itself to us only when the set of transfor
mations we are considering forms a group. 

Let us consider, for the sake of greater definiteness, a group of 
geometric transformations. If two geometric configurations are 
equivalent with regard to this group, every invariant of the first 
configuration must be equal to the corresponding invariant of the 
second. Thus, for instance, if two triangles are equivalent with re· 
gard to tbe group of displacements, all the sides and angles of the 
first will be equal to the corresponding sides and angles of the second. 
The same will be true of the altitudes, lengths of the medial lines, 
radius of tbe inscribed circle, etc., ali of these being invariants. 
N ow one of the first problems in geometry is to pick out from among 
these invariants of the triangle as small a number as possible whose 
equality for two triangles insures tbe eq uivalence of tbe triaugles. 
This can be done, for instance, by taking two sides and the included 
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angle, or two angles and the included side, or three sides. Any one 
of these three elements may be called a complete sy~tem of invariants 
for a triangle with regard to the group of displacements, since two 
triangles having these invariants in <:ommon are equivalent and 
therefore have all other invariants in common. The conception we 
have here illustrated may be defin~d in general terms as foliows : 

DEFINITION 2. A set of ínvariants of a geometric configuration oran 
algebraic expression are saíd to form a complete system of invariants if 
two configuratíons or expressions having these ínvariants in common are 
necessarily equívalent. • 

It will be seen from this definition that ali the invariants of a 
geometric configuration or of an algebraic expression are uniquely 
determined by any complete system of invariants. 

Finally we will glance at an application to matrices of the ideas 
of invariants and equivalence. Let us consider matrices of the nth 
order, t and consider transformations of the foliowing form which 
tralll!form the matrix A into the matrix B: 

(1) aAb= B, 

where a and b are any non-singular matrices of the nth order. This 
transformation may be denoted by the symbol (a, b), and these sym
bols must obviously be combined by the formula 

( ª2• b2) ( ª1, b1) = ( aza1, b1 bz)· 

By means of this formula it m.ay readily be shown that these trans
formations form a group. 

According to our general definition of equivalence, two matrices 
A and B must therefore be said to be equivalent when, and only 
when, two non-singular matrices a and b exist which satisfy (1). 
That this definition of equivalence amounts to the same thing as our 
earlier definition is seen by a reference to Exercise 1, § 25. 

• In the classical theory of algebraic invariants this term is used in a different and 
much more restricted sense. There we have to deal with integral rational relative inva• 
riants (cf. § 31). By a completesystem of such invariantsof asystem of algebraic forms 
is there understood a set of such invariants in terms of which every inva1iant of this sort 
of the system of forros can be expressed integrally and rationally. Cf. for instance 
Clebsch, Bináre Formen, p. 109. 

t We may, if we choose, confine our attention throughout t,o matrices with real 
elements. 
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30. The Rank of a System of Points or a System of Linear Forma 
as an Invariant. Let (x1, y1, z1, t1), (x2, y2, z2, t2), (x3, y3, z3, t8) be 
a.ny three distinct collinear points, so that the rank of the matrix 

X1 '!h Z1 t1 
X2 Y2 Z2 t2 
Xs Ya za ta 

is two. Now subject space to a non-singular collineation and we gel 
three new points which will also be distinct and collinear, and hence the 
rank of their matrix will also be two. Thus we see that in this special 
case the rank of the system of points is unchanged by a non-singular 
collineation. 

Again, let a1x + b1y + c1z + d¡t = O, 
ª2X + b'J)j + C2Z + d2t = o, 
ag:v + bsY + c8z + d8t = O, 
a4x+ b4Y + c4z + d4t= O 

be any four planes which have one, and only one, point in comqion. 
so that the rank of their matrix is three. After a non-singular collin
eation we have four new planes which will also have one, and onl¡ 
one, point in common, and hence the rank of the matrix of their 
coefficients will be three. The rank of this system of planes i1 
therefore unchanged by such a transformation. 

W e proceed now to generaliza these facts. 

THEOREM l. The rank of the matrix of m points 

(x[il xí•1 .. . xC•1) 
1' 2' n , (i= 1, 2, ... m) 

is an invariant with regard to non-singular linear transformations. 

Let 

(1) 
{ 

~1 ~ ª:1X1:+ :"' _+ ~lnx~, 

Xn = Cn1X1 + .. . + CnnXn 

be a non-singular linear transformation which carries the point.8 
(xtl, ... x~) over into the points (X{il, ... XJ•1). Now suppose any k 
of the points (x~1, ... x~1), which for convenience we will take as the 
first k, are linearly dependent. Then there exist k constant.8 
( c1, • • • e") not all zero, such that 

(j = 1, 2, ... n} 
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By meaos of the transformation (1) we have 

X~1 = ª;1x~l + ... + c;,i~1, 

hence c1 X} + c2X}' + · .. + c0~1 = c;1 ( C1Zi_ + c,p!{ + .. • + c~f1) + 
... + C;n ( ª1 X~ + ª2x'; + ... + C,tX~l) (;' = 1, 2, .. . n). 

Since this vanishes on account of (2), the first k of the points 
(X~l, .' .. Xlil) are linearly dependent. Since (1) is a non-singular 
transformation, it is immaterial which set of points we consideras the 
initial set. Thus we have. shown that if any k points of either set 
are linearly dependent, the corresponding k points of the other set 
will be, also. 

N ow if the rank of the matrix of the x's is r, at least one set of 1' 

of the x-points is linearly independent, but every set of (r + 1) of 
them is linearly dependent. Consequently the same is true for the 
X-points, and therefore their matrix must also be of rank r. 

THEOREM 2. The rank of the matrix of m linear forms 

f¡(x11 ... xn) = ai1x1 + a;2x2+ ... + a;nXn (i = 1, ~' ... m) 

is an invariant with regard to non-singular linear traneformations. 

The proof of this theorem, which is very similar to the proof of 
Theorem 1, we leave to the reader. 

It will be noticed that the invariants we bave considered in this 
section are examples of what we have called arithmetical invariants. 

31. Relative Invariants and Covariants. W e will begin by con
sidering a system of n linear forms in n variables 

(1) l
all X1 + ª12 X2 + ... + ª1nXn, 

ª21 X1 + ª22 X2 + . " + ªzn Xn, . . . . . . . . . 
. . . . . . . . . 

anl X1 + an2 X2 + ... +annX•• 

DEFINITION l. The determinant 

ªn ·" llin . . . 

i, called the resultant of the aystem ( 1 ). 
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Let us now subject the system (1) to the linear transformation 

¡
: ~ C1~ X¡.+:•·~ C1:~' 

. . . . . . . . 
Xn= Cnl Xi+ ... + Cnn:l{.• 

(2) 

This gives the new system of forms 

¡ ~· :"i ~ ··:' +tt 
ª~1Xi+ "' + a~n~' 

(3) 

where a~¡ = a,1 C1; + a,11 C21 + · · · + ªin Cn;-

From these formulre and the law of multiplication of matrices we 
infer that a'¡1 ... ªin a11 ... a111 c11 •• • C1,. 

(4) = . . 
ª~1 ... a:111 ª111 ... ªnn Cnl ... Cnn 

This result we state as follows : 
THEOREM l. If a system of n linear forms in n variables witA 

matrix a is subfected to a linear traneformation with matrix e, the re

sulting system has as its matrix ac. 
Taking the determinants of both sides of (4), we see that the re

sultant of (1) is notan absolute invariant. It is, however, changed 
in only a very simple manner by a linear transformation, ~amely, b.y 
being multiplied by the determinant of the transformat10n. This 
leads us to the following definition : 

DEFINITION 2. A. rational function * of the ~oefficients of a form or 
system of forms which, when these forms are subfected to any non
singular linear tranef ormation, is merely multiplied. by .the µth power 
(µ an integer t) of the determinant of the transf ormation is called a rela
tive invariant of weight µ of theform or system of forms. + The forma 
themselves are called the groundjorms. 

• Besides these rational invariants we roa.y also consider irrational ones ( cf. § 90), 
in which case the exponent µ. will not necessarily be an integer. 

t The condition that µ. be an integer need not be included as a part of our 
hypothesis, since it may be proved. The proof that µ. cannot be a f:action is simpl~ 
The prpof that µ. cannot be irrational or imaginary would take us outs1de of the domain 

of algebra. • · 1 
t Froro tbis definition it is clear that evecy relative invariant is an absolute _mvanan 

with regard to the group of linear transformations of deterroinant + l. Cf Exerc1se 7, ~ 8\. 
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It will be seen that absolute invariants are simply relative in
variants of weight zero. 

The fact pointed out above concerning the resultant may now be 
stated in the following forro : 

THEOREM 2. The resultant of a set of n linear forms in n variables 
is a relative invariant of weight l. 

W e pass on now to relati ve covariants : 

DEFINITION 3. Jj we have a system consisting of a number of n-ary 
forms and of a number of points (yl' ... Yn), (z1, ... z11), ... , the coor
dinates of each of which are cogredient with the variables (x11 .... xn) of 
the f orms, then any rational function of the coefficients of the forms and 
the coo·rdinates of the points which is merely multiplied by the µth power 
(µ, an integer) of the determinant of the transformation when the x's are 
subjected to any non-singular linear transformation is called a relative 
covariant of weight µ of the system of forms and points. * 

W e may regard an invariant as the extreme case of a covariant 
where the number of points is zero. The other extreme case is that 
in which the number of forros is zero. Here we have the theorem: 

THEOREM 3. The determinant 

x{ ... ~ 

xfnl ... z[nl 
1 n 

is a relative covariant of weight - 1 of the system of poim, 

(Z¡, ... x~), (x1{, ... x~), ... (x~nl, ... x~l). 

For applying the transformation 

Z1 = C11X1 + ... + C1nX,., 

• In roost books where the subject of covariants is treated, the 11aroe lettel'S 
(x1, • •• x,.) are used for one of the points as for the variables of tbe forros. There is 
no objection to this, and it is sometimes convenient. We prefer to use a notation 
which sball roake it perfectly clear that tbe variables of the forros have no connection 
witb the coordina.tes of tbe points except tbat they are cogredient with them. 

B 
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we have 

~ •.. X,. º11 xi + ... + º1-X! ... Cnl X1 + ... + º"" X: 
= 

x: ···~ 

xrnJ ... xcn) 
1 ,i 

Or X{ ···X1 

11.s was to be proved. 
Auother extremely simple case arises when we have a single 

forro and a single pt,int: 

THEORE:r.I 4. The system consisting of the form f (Xi, •·· xn) and 
the point (y1, • • • Yn) has as an absolute covariant with regard to linear 
transformations 

f ('!Ji,··· '!In)• 

For let us denote f more explicitly as 

where a1, a2' •·· are the coefficients off. If the coefficients after the 
transformati:on are /li, a~, • •·, we have 

f (aj, a~, ··· ; ~, ... x'..) =f ( ª1, ª2, · ·· ; X1, • .. x,.). 

This being true for all values of the x's, will be true if the x's are 
replaced by the y's. But when this is done, the x''s will be replaced 
by the y1's, since the x's and y's are cogredient. Accordingly 

f (ai, a~,···: tli• ··· ti~) =f (a¡, ª2• ···; Y1• ··· '!In), 

as wa.-s to be proved. 
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The three examples of inv:ariants and covariants which have been 
given in this section are all polynomials in the coefficients of the 
forros and the coordinates of the points. Such invariants we shall 
speak of as integral rational invariants and covariants.* 

THEOREM 5. The weight of an integral rational invariant cannot 
he negative. t 

Let a1, a2, • •· ; b¡, b2,··· ; •·· be tbe coefficients of the system of 
forros, and let cii be the coefficients of the transformation. It is clear 
that the coefficients ªi• a~,• .. ; bi, b~, • • •; • • • after the transformation are 
polynomials in tbe a's, b's, etc., and in the cv's. Now let I be an 
integral rational invariant of weight µ,, 

I(ai, a~, ··· ; o;, b~, ··• ; ···) = c" I(a1, az, ··· ; b1, b2, ... ; ... ~ 

wbere e is the determinant of the transformation. Suppose now 
that µ. were negative, µ, = - v. Then 

~5) e• l(i4, ···; bi, ... ; ···) = I(a1, ···; b1, · ··; · ··). 

This equality, like the preceding one, is known to hold for all 
values of the c,/s for whicb e*º· Hence, since the expressions on 
both sides of the equality are polynomials in the a's, b's, •·· and the 
c,/s, we infer, by an application of Theorem 5, § 2, that we really 
have an identity. 

Let us now assign to the a's, b's, ... any constant values such that 
I(~, .. . ; b1, ... ; ···)=#=O. Then I(ai, ... ; bi, ... ; ... ) will be a poly-
noniial in the cv's alone, wbich, from ( 5~ cannot be identically zero. 
The identity (5) thus takes a form which states that the product of 
two polynomials in the ci/s is a constant, and since the first of these 
polynomials, e", is of higher degree than zero, this is impossible. 

W e will agree in future to understand by the terms invariant ana 
covariant, invariai:ts or covaria11ts (absolute, relative, or arithmetical) 
with regard to all non-singular linear transformations. If we wish to 

· consider invariants or covariants with regard to other sets of trans
formations, for instance with regard to real linear transformations. 
this fact will be explicitly mentioned. 

• All ra.tional invariants and covariants may be formed as the quotient.s of sut'.lt a, 

ve inregral and rational ; rf. Exercises 4, 5, § 78. 
~ It cannot be zero either ; cf. Theorem 5, § 79. 


