CHAPTER VII
INVARIANTS. FIRST PRINCIPLES AND ILLUSTRATIONS

28. Absolute Invariants, Geometric, Algebraic, and Arithmetical.

If we subject a geometric figure to a transformation, we find that,
while many properties of the figure have been altered, others have |

not. If we consider, not a single transformation, but a set of trans-

formations, then those properties of figures which are not changed by |

any of the transformations of the set are said to be invariant prop-
erties with regard to this set of transformations. Thus if our set of

transformations is the group of all displacements, the property of |

two lines being parallel or perpendicular to each other and the
property of a curve being a circle are invariant properties, since
after the transformation the lines will still be parallel or perpendicu-
lar and the curve will still be a circle. If, however, we consider,
not the group of displacements, but the group of all non-singular
collineations, none of the properties just mentioned will be invariant
properties. Properties invariant with regard to all non-singular
collineations have played such an important part in the development:
of geometry that a special name has been given to them, and they
are called projective or descriptive properties. As examples of such

projective properties we mention the collinearity and complanarity

of points, the complanarity and concurrence of lines, etc.; or, on

the other hand, the contact of a line with a curve or a surface or |
the contact of two curves or of two surfaces, or of a curve and a |

surface.

DerixirioN 1. If there s associated with a geometric figure
quantity which is unchanged by all the transformations of a certoin
set, then this quantity is called an invariant with regard to the trans:
Jormations of the set.

For instance, if our set of transformations is the group of dis

placements, the distance between two points and the angle between

two lines would be two examples of invariants.
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The geometric invariants so far considered lead up naturally to
the subject of algebraic invariants. Thus let us consider the two

plolynomia,ls Az +By+ 0,
( ) A23§ -+ Bzy =] 029

wnd subject the variables (z, y) to the transformations of the set

2 =z 0086 + ysinb + e,

2
2 y = —wsin b+ ycos 0+ B,

where &, B, @ are parameters which may have any values. The trans-
formation (2) carries over the polynomials (1) into two new poly-
nomials :
! A+ By + O
®) Al + By + Cy

The coefficients of (3) may be readily expressed in terms of the coeffi-
cients of (1) and the parameters «, 8, 0. Using these expressions,
we easily obtain the formulae

" AlB,— AlB!= A,B,~ A,B,
AlA! 4+ BBl = A, A, + BB,

We shall therefore speak of the two expressions
(5) AB,— A;,B;, A4, + BB,

as invariants of the system of polynomials (1) with regard to the set
of transformations (2) according to the following general definition :

DEFINITION 2. If we have a system of polynomials in the variables
(&9, 2, ...) and a set of transformations of these variables, then any
Junction of the coefficients of the polynomials is called an invariant (or
more accurately an absolute invariant) with regard to these transforma-
tions if it 1s unchanged when the polynomials are subjected to all the
transformations of the set.

The relation of the example considered above to the subject of
geometric invariants becomes obvious when we notice that the alge-
braic transformations (2) may be regarded as expressing the dis-
Placements of plane figures in their plane when (z, ) are rectangular
todrdinates of points in the plane. If now we consider, not the poly-
nomials (1), but the two lines determined by setting them equal ta
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zero, we have to deal with the displacements of these two lines
The invariants (5) bave themselves no geometric significance, but by
equating them to zero, we get the necessary and sufficient conditions
that the two lines be respectively parallel and perpendicular, and

these, as we noticed above, are invariant properties with regard to '
displacements. Finally we may nétice that the ratio of the two in- =
variants (5) gives the tangent of the angle between the lines,—a=

geometric invariant. ,
As a second example, let us consider, not two lines, but a lineand
a point. Algebraically this means that we start with the system

{Am+By+C',

© (21 ¥1)

consisting of a polynomial and a pair of variables. We shall wish
to demand here that whenever the variables (z, y) are subjected toa
transformation, the variables (z;, y,) be subjected to the same trans:
formation, or as we say according to Definition 8 below, that (z, )
and (z;, y;) be cogredient variables.
to any transformation of the set (2), we get a new system
A+ By + O,
M { 8
1 1)

and it is readily seen that

Azl + Byl + ('=Az,+ By, + C.

Accordingly we shall call Az, + By, + C acovariant of the system (6) =

according to Definition 4 below. This covariant has also no direct
geometric meaning, but its vanishing gives the necessary and suffi-
cient condition for an invariant property, namely, that the point
(2} 9y) lie on the line Az + By + ('=0.

In the light of this example we may lay down the following gen=
eral definitions: ‘

DEFINITION 3. If we have several sets of variables

(2’;, Y 2, '“)" (.1'71, Yp %p )’ (272, Y #g “')’ i

and agree that whenever one of these sets is subjected to a transfor-

mation every other set shall be subjected to the same transformations

then we say that we have sets of cogredient variables.

If we subject the system (6)
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DerFINITION 4. If we have a system consisting of @ number of poly-
nomials . (2, Y, 2, --) and of a number of sets of variables co-
gredient to (z, ¥, 2, --), then any function of the coefficients of the
polynomials and of the cogredient variables which is unchanged when
the variables (z, 3, 2, +-+) are subjected to all the transgformations of &
eertain set 13 called a covariant (or more accurately an absolute cova-
piant) of this system with regard to the transformations of this set.

It will be seen that invariants may be regarded as special cases of

+ povariants.

Among the geometric invariants there are some which from their
nature are necessarily integers, and which we will speak of as arith-
metical invariants. An example would be the number of verticés of
a polygon if our set of transformations was either the group of dis-
placements or the group of non-singular collineations. Another ex-
ample is the largest number of real points in which an algebraic
curve can be cut by a line, if our set of transformations is the group
of rear non-singular collineations.

These arithmetical invariants also play, as we shall see, an impor-
tant part in algebra. We mention here as an example the degree of an
n-ary form, which isan invariant with regard to all non-singular linear

transformations.®

EXERCISES
zop 1

2 g2 1
T3 Y3 1
(21, 91), (05 ¥2), (w35 ¥3)
with regard to the transformations (2).
2. Prove that A+ B and B*— AC
are invariants of the polynomial
A2?4+2Bzy+ Cy*+2Dr+2Ey+ F

1, Prove that (22— 2)?+ (y2 —y1)% and

are covariants of the system

- with regard to the transformations (2).

What geometric meaning can be attached to these invariants? -
3. Prove that A2+ B? is an invariant of the polynomial
Az+By+C
with regard to the transformations (2).
Hence show that Azy+Bp+C
VA2 B
i8.a covariant of the system (6). Note its geometric meaning.

*Tt is, in fact, an invariant with regard to all linear transformations except the
one in which all the coefficients of the transformation are zero.
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29. Equivalence,

DerizitioN 1. If A and B denote two geometric configurations
or two algebraic expressions, or sets of expressions, then A and B shall
be savd to be equivalent with regard to a certain set of transformations
when, and only when, there exists a transformation of the set which car-

ries over A into B and also a transformation of the set which carries over
B into A.

To illustrate this definition we notice that the conception of equiv- "
alence of geometric figures with regard to displacements is identical *

with the Euclidean conception of the equality or congruence of fig-
ures.

Again, we see from Theorem 2, § 24, that on a straight line.two |

sets of three points each are always equivalent with regard to non-
singular projective transformations.

In both of the illustrations just mentioned the set of transforma- =

tions forms a group. In such cases the condition for equivalence can
be decidedly simplified, for the transformation which carries A into
B has an inverse belonging to the set, and this inverse necessarily
carries B into A. Thus we have the '

THEOREM. A necessary and sufficient condition for the equiva-

lence of A and B with regard to a group of transformations is that 4

transformation of the group carry over A into B.

This theorem will be of great importance, as the question of '
equivalence will present itself to us only when the set of ‘transfor- =

mations we are considering forms a group.

Let us consider, for the sake of greater definiteness, a group of
geometric transformations. If two geometric configurations are
equivalent with regard to this group, every invariant of the first
configuration must be equal to the corresponding invariant of the
second. Thus, for instance, if two triangles are equivalent with re-
gard to the group of displacements, all the sides and angles of the
first will be equal to the corresponding sides and angles of the second.
The same will be true of the altitudes, lengths of the medial lines,
radius of the inscribed circle, ete., all of these being invariants.
Now one of the first problems in geometry is to pick out from among
these invariants of the triangle as small a number as possible whose
equality for two triangles insures the equivalence of the triangles.
This can be done, for instance, by taking two sides and the included

\
!
l

E
I
i
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angle, or two angles and the included side, or three sides. Any one
of these three elements may be called a complete system of invariants
for a triangle with regard to the group of displacements, since two
triangles having these invariants in common are equivalent and
therefore have all other invariants in common. The conception we
have here illustrated may be defined in general terms as follows :

DEFINITION 2. A set of invariants of a geometric configuration or an
algebraic expression are said to form a complete system of invariants if
two configurations or expressions having these invariants in common are
necessarily equivalent.®

It will be seen from this definition that all the invariants of a
geometric configuration or of an algebraic expression are uniquely
determined by any complete system of invariants.

Finally we will glance at an application to matrices of the ideas
of invariants and equivalence. Let us consider matrices of the nth
order,} and consider transformations of the following form which
transform the matrix A into the matrix B:

(1) aAb = B,

where a and b are any non-singular matrices of the nth order. This
transformation may be denoted by the symbol (a, b), and these sym-
bols must obviously be combined by the formula

(a9 by)(aps by)= (A58 byby).

By means of this formula it may readily be shown that these trans-
formations form a group.

According to our general definition of equivalence, two matrices
Aand B must therefore be said to be equivalent when, and only
when, two non-singular matrices a and b exist which satisfy (1).
That this definition of equivalence amounts to the same thing as our
earlier definition is seen by a reference to Exercise 1, § 26.

*1n the classical theory of algebraic invariants this term is used in a different and
much more restricted sense. There we have to deal with integral rational relative inva-
nants (cf. §31). By a complete system of such invariants of a system of algebraic forms
Is there understood a set of such invariants in terms of which every invaiiant of thissort
of the system of forms can be expressed integrally and rationally. Cf. for instance
Clebsch, Bindre Formen, p. 109.

g t We may, if we choose, confine our attention throughout to matrices with real
ements,
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30. The Rank of a System of Points or a System of Linear Forms “
as an Invariant. Let (25, ¥y 25 ty)s (20 U %9 o) (%0 Yo 250 B5) DO :
any three distinet collinear points, so that the rank of the matrix

zy Y

Ty Yo

T3 Ys L
V=

is two. Now subject space to a non-singular collineation and we get
three new points which will also be distinct and collinear, and hence the
rank of their matrix will also be two. Thus we see that in this special
case the rank of the system of points is unchanged by a non-singulas
collineation.
Again, let ax+ by + ez +dit =0,
4%+ byy + ez + dot = 0,
gt + bgy + ez + dgt = 0,
o+ by +ep+dit=0

be any four planes which have one, and only one, point in common
so that the rank of their matrix is three. After a non-singular collines
eation we have four new planes which will also have one, and onlf®
one, point in common, and hence the rank of the matrix of their’
coefficients will be three. The rank of this system of planes i§%

therefore unchanged by such a transformation. |

We proceed now to generalize these facts. }

The rank of the matriz of m points

(o of, - 40,

TaEOREM 1.
(=1, 2, . m)
is an invariant with regard to non-singular linear transformations.
Let Xi=cpzi+ - + e
i LAl o sopalgy 1 | .
Xn = 6’”-1$1+ +crm$'n ’ I‘
be a non-singular linear transformation which carries the pointﬂ
(gll, ... o) over into the points (XT%, .- X{7). Now suppose any &

of the points (21, -+ 2{7), which for convenience we will take as thes
first k, are linearly dependent. Then there exist % constant§

(eg +++ ¢) Dot all zero, such that !

(2) e+ o] + -+ oall =0, (=1, 2, -l _#
iy
\
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By means of the transformation (1) we have
XP =gyl + o+ gl
o X+ X + - + o X = (o) + o] + - +oafl) +
v o G (g + ey 4+ - F el (=1, 2, -n)

Since this vanishes on account of (2), the first % of the points
(X1, .- X[7) are linearly dependent. Since (1) is a non-singular
transformation, it is immaterial which set of points we consider as the
initial set. Thus we have shown that if any k points of either set
are linearly dependent, the corresponding % points of the other set
will be, also.

Now if the rank of the matrix of the 2’s is », at least one set of #
of the z-points is linearly independent, but every set of (4 1) of
them is linearly dependent. Consequently the same is true for the
X-points, and therefore their matrix must also be of rank .

hence

THEOREM 2. The rank of the matriz of m linear forms
| i@y - 2,) = a2 + G2ot o + a7, (i=1,2 - m)
#s an invariant with regard to non-singular linear transformations.

The proof of this theorem, which is very similar to the proof of
Theorem 1, we leave to the reader.

It will be noticed that the invariants we have considered in this
section are examples of what we have called arithmetical invariants.

31. Relative Invariants and Covariants. We will begin by con-
sidering a system of  linear forms in n variables
TR R PR e e PR
O Tyt Gga Ty F ++* + g Ty

(1)

Gy Ty + Qg Ty 220 Oy T
DeriniTioN 1. The determinant

all e a]_ﬂ

Ay ** Oy

18 called the resultant of the system (1).
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Let us now subject the system (1) to the linear transformation
7= 0y @+ e + OB
2) o gy
Zy=C %)+ ConZpe
This gives the new system of forms
dy 2yt et Uy s
(3) fraprripmin e
Wy @+ o+ U Ty
where a:j = @y €15+ Aip Cgj + -+ T+ Ui Cge
From these formule and the law of multiplication of matrices we
infer that
(4)

! !

anl 0+ Ay

|

\

! ! !
dyy " M @11 *** n €11 " C1n f
1

By *** O oy e c.“"'

This result we state as follows :

TasorEM 1. If a system of n linear forms in n variables with
matriz a is subjected to a linear transformation with matriz c, the re
sulting system has as its matriz ac. ‘

Taking the determinants of both sides of (4), we see that the re- ;
sultant of (1) is not an absolute invariant. It is, however, changed
in only a very simple manner by a linear transformation, namely, by
being multiplied by the determinant of the transformation. Thig!
leads us to the following definition : ’

DEFINITION 2. A rational function* of the coefficients of a form of |
system of forms which, when these forms are subjected to any mofe
singular linear transformation, 18 merely multiplied by the pth power
(u an integer 1) of the determinant of the trangformation is called a rele
tive invariant of weight p of the form or system of forms. § The forms
themselves are called the ground forms.

* Besides these rational invariants we may also consider irrational ones (cf. § 90
in which case the exponent x will not necessarily be an integer. :

+The condition that p be an integer need not be included as a part of our:
hypothesis, since it may be proved. The proof that u cannot be a fraction is’ simples

The proof that x cannot be irrational or imaginary would take us outside of the domain .

of algebra. a
{ From this definition it is clear that every relative invariant is an absolute invariant

with regard to the group of linear transformations of determinant 41, Cf ExerciseT.§ 8L
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It will be seen that absolute invariants are simply relative in-
variants of weight zero.

The fact pointed out above concerning the resultant may now be
gtated in the following form :

THEOREM 2. The resultant of a set of n linear forms in n variables
18 @ relative invariant of weight 1.

We pass on now to relative covariants :

DerINITION 3. If we have a system consisting of a number of n-ary
forms and of a number of points (Yy .- Yu): (23 - 2u)y -0 5 the codr-
dinates of each of which are cogredient with the variables (z;, .~ ,) of
the forms, then any rational function of the coefficients of the forms and
the coordinates of the points which ts merely multiplied by the uth power
( an integer) of the determinant of the transformation when the x's are
subjected to any non-singular linear transformation ts called a relative
covariant of weight p of the system of forms and points.*

We may regard an invariant as the extreme case of a covariant
‘where the number of points is zero. The other extreme case is that
in which the number of forms is zero. Here we have the theorem:

TrarorEM 3. [The determinant

!
&l e,

;E-[l"] ves g;g"l

i a relative covariant of weight — 1 of the system of points
(& - 2D}y (&, -oe 1), e (P e 2).
For applying the transformation
o=y Xy + o + oo

. . . . 0 . . - .

0 . . . . e s @

Y= cnIXI i it < enﬁXm

) #* Tn most books where the subject of covariants is treated, the same letters
{Z1, + « + 2,) are used for one of the points as for the variables of the forms. There is
10 objection to this, and it is sometimes convenient. We prefer to use a notation
Which shall make it perfectly clear that the variables of the forms have no connection
With the cotrdinates of the points except that they are cogredient with them.

a




cllX{ F e +g1nX;

enX{"}—i- +glﬂX£ul

6‘11 e c]_i’l

XV s KT

X[lﬂ] - X

a1 g

=11 il
Chy >* Oy z ...g;;

Xl v X!

X oo XU | gy e cp | | o) o

s was to be proved.
Another extremely simple case arises when we have a single

form and a single point:

TaeoreM 4. The system consisting of the form f(zy -+ xz,) and
the point (yy -+ ¥,) has as an absolute covariant with regard to linear

transformations

I (G Ya)
For let us denote f more explicitly as

J(ay ag o5 2y - 2,),

where a,, a,, -~ are the coefficients of f. If the coefficients after the

transformation are af, aj, ---, we have

F e s ) =F (o 0y

. ; xl’ wae zﬂ)'

This being true for all values of the 2’s, will be true if the ’s are
replaced by the y’s. But when this is done, the 2'’s will be replaced

by the y"’s, since the 2’s and y's are cogredient. Accordingly
F (@ et gy ) S5 (ap O 5 o+ Y

as was to be proved.
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The three examples of invariants and covariants which have been
given in this section are all polynomials in the coefficients of the
forms and the codrdinates of the points. Such invariants we shall
speak of as integral rational invariants and covariants.*

TaEOREM 5. The weight of an integral rational invariant canmnot
be negative.t

Let @y, @ty -+« 3 by, b+ 5+« be the coefficients of the system of
forms, and let ¢; be the coefficients of the transformation. It is clear
that the coefficients aj, aj,---; 8, b},---; --- after the transformation are
polynomials in the a’s, &’s, etc., and in the ¢;'s. Now let I be an
integral rational invariant of weight u,

T ’ 4 . .
I(al, Bl 43 b;’ b’z, aaaid ---)=C“I(f$1, gy =+ 3 bl’ 52,..., ...),

where ¢ is the determinant of the transformation. Suppose now

that 4 were negative, u= —». Then
(5) g"I(a;, ey brl’ see y ...)=I(a1’ s ; bI'-' ver 3 ...).

This equality, like the preceding one, is known to hold for all
values of the ¢,'s for which ¢ #0. Hence, since the expressions on
both sides of the equality are polynomials in the a’s, b's, --- and the
€38 we infer, by an application of Theorem 5, § 2, that we really
have an identity.

Let us now assign to the a’s, b's, --- any constant values such that
I(ag--5 by -3 +)#0. Then I(a}.--; by -3 ++) will be a poly-
nomial in the ¢;’s alone, which, from (5), cannot be identically zero.
The identity (5) thus takes a form which states that the product of
two polynomials in the ¢;’s is a constant, and since the first of these
polynomials, ¢’, is of higher degree than zero, this is impossible.

We will agree in future to understand by the terms énvariant ana
¢ovariant, invariants or covariants (absolute, relative, or arithmetical)
with regard to all non-singular linear transformations. If we wish to

tonsider invariants or covariants with regard to other sets of trans-

formations, for instance with regard to real linear transformations.
this fact will be explicitly mentioned.

* All rational invariants and covariants may be formed as the quotients of such as
A integral and rational ; of. Exercises 4, 5, § 78.
* It cannot be zero either ; ¢f. Theorem 5, §79.




