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5. Prove that a projective transformation in space effects on every plane 1 

two-dimensional, and on every line a one-dimensional, projective transformation. 
while at the same time the positions of the plane and line are changed. 

[SuooESTION. If p a.nd pi are any two corresponding planes, assume in a.ny way a 
pair of perpendicular axes in each of them, and denote by (x1, y1, t¡), a.nd (x¡, y¡, t;) 
respectively the systems of two-dimensional bomogeneous coordinates based on theae 
axes. Then show, by using the result of Exercise 4, tbat the transformation of one 
plane on the other will be expressed by writing x{, yf, tf as homogeneous linear poly-

nomials in :i:1, y1, tr J 

25. Further Development of the Algebra of Matrices. W e proceed 
to establish certain further properties of matrices, leaving, however, 
much to the reader in the shape of exercises at the end of the section. 

The theory of linear transformations suggests to us at once certain 
properties of matrices. The first of these is : 

THEOREM l. The matrix 

I= 
1 o ······º1 O 1 ...... o 
. . . . ' 
. . . . 

O O ····•• l 

ha, the property that if a is any matrix whatever 
la= al= a. 

For the linear transformation of which a is the matrix will evi­
dently not be changed by being either followed or preceded by tbe 
identical transformation of which I is the matrix. 

If we do not wish to use the idea of linear transformation, we may 
prove the theorem directly by actually forming the products la and al. 

This theorem tells us that I plays in the algebra of matrices the 
same role that is played by 1 in ordinary algebra. For thi~ 
reason I is sometimes called the unit matrix or idemfactor. 

Let us now consider any non-singular linear transformation and 
its inverse. These two transformations performed in succession in 
either order obviously lead to the identical transformation. This 

gives us the theorem : 

THEOREM 2. Jf ª11 • .. lli.n 

a= 
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i, cJ non-singular matrix of determinant a, and if A;1 denote in tht. ordt 
.ary way the cof actors of the elements of a, the matrix 

I.Au Á.111 

a ···•"a 

Á1,. Án,. ª ...... ª 
called the inverse of a, and denoted by a-1, is a non-tingular matrü 
which has the property that 

aa-1 = a-1a = l. 

Tbis suggests that we define positive and negative integral 
powers of matrices as follows : 

D~:FrNITCON 1. Jf p is any positive integer and a any matrix we 
u~derstand by. aP the product aa ... a to p factors. Jj a is a non--
1111.qular matrix, we define its negative and zero pou·ers by the Jor­
mul11J 

a-P=(a- ty,, aº=l 

From this definition we infer at once 

THEOREM 3. The laws of indices 

aPaq = aP+<1, (aP)q = aN 

hold for all matrices when the indices p and q are positive integers and 
for all non-singular matrices wlien p and q are any integers. ' 

We turn now to the questio~ .º! the division of one matrix by 
:~other. 'V! e natur~ll~ de.fine. d1v1s10n as the inversa of multiplica­

~º'. and, .smce m~lt~~hcat1on 1s not commutative, we thus get two 
d1St~ct kmds of dtv1S10n ; a divided by b being on the one hand a 
matnx x such that 

a=bx, 

on the other hand a matrix y such that 

a=yb. 

~o account of this ambiguity, the term division is not ordinarily used 
ere. We have, however, as is easily seen, the following theorem : 
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THEOREM 4. ' Jf a is any matrix and b any non-singular _matriz 
there exists one, and only one, matrix x which satisftes the equation 

a=bx, 

and one, and only one, matrix y which satisftes the equation 

a=yb, 

and these matrices are given respectively by the formu"lm 

A special class of matrices is of sorne importance ; namely, those 

of the type 
k O o 
O k O 

O O k 

Such matrices we will call scalar matrices for a reason which will 
presently appear. 

If we denote by k the scalar matrix just written, and by a a1 ~ 
matrix of the same order as k, we obtain readily the formula 

W b=~=~ 

If now, besides the scalar matrix k, we have a second scalar matrix 
¡ in which each element in the principal diagonal is l, we have the 

two formulre 

(2) 

(3) 

k+l =l +k= (k+ l)I, 

k1 =lk=kll. 

Formula (1) shows that scalar matrices may be replaced ~y ordina_ry 
scalars when they are to be multiplied by other matrices ; wh1le 
formulre (2) and (3) show that scalar matrices combined with one 
another not only obey all the laws of ordinary scalars, but that e~ch 
scalar matrix may in such cases be replaced by the scalar wh1ch 
occurs in each element of its principal diagonal provided that at the 
end of tbe work the resulting scalar be replaced by the correspond• 
ing scalar matrix-
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For these reasons we may, in the algebra of matrices, replace all 
scalar matrices by the corresponding scalars, and then consider that 
all scalars which enter into our work stand for the corresponding 
scalar matrices. If we do this, the u .. üt matrix I will be represented 
by the symbol 1. 

DEFINITION 2. By the adjoint A of a matrix a is understood 
another matrix of the same order in whiali the element in the ith row 
and jth column is the cofactor of the element in the jth row and ith 
column of a.* 

lt will be seen that when a is non-singular, 

(!) 

but it should be noticed that while every matrix has an adjoint, only 
non-singular matrices have inverses. 

Equation (4) may be written in the form 

:s) Aa=aA=al, 

a forro in which it is true not merely when a is non-singular, but also, 
as is seen by direct multiplication, when the determinant of a is zero, 

Finally we éome to a few important theorems concerning the 
rank of the matrix obtained by multiplying together two given 
matrices. In the first place, we notice that the rank of the product 
is not always completely determined by the ranks of the factors. 
This may be shown by numerous examples, for instance, in formula 
(5~ § 22, the ranks of the factors are in general two and one, and the 
rank of the product is zero, while in the formula 

a11 a13 O O O O O O a12 

ª21 ª22 o . o o 1 = o o ª22 

a81 a82 0 000 00a32 

the ranks of the factora are in general the same, namely two and 
one, while the rank of the product is one. 

But though, as this example shows, the ranks of the factors ( even 
together with the order of the matrices) do not suffi.ce to determine 
the rank of the p1:oduct, there are, nevertheless, important inequali­
ties between these ranks, one of which we now proceed to deduce. 

• Notice tbe intercbange of rows and columna here, which in tbe case of adjoint 
determiuants, being ~:nmater.ial and sometimes inconvenient, was not made. 
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For this purpose consider the two matrices 

ª11 · .. ªin bu · · · b¡,. 

a= b= 

and their product ab. 

THEOREM 5. .Any k-rowed determinant of the matrix ab Í8 equal 
to an aggregate of k-rowed determinants of b eaeh multiplied into a 
polynomial in the a' s, and also to an aggregate of k-rowed determinant, 
of a eaeh multiplied by a polynomial in the b's. 

For any k-rowed determinant of ab may be broken up into a sum 
of determinants of the kth order in such a way that each column of 
each determinant has one of the b's as a common factor.* After 
taking out these common factora from each determinant, we have 
left a determinant in the .i's which, if it does not vanish identically, is 
a k-rowed determinant of a. Or, on the other hand, we may break 
up the k-rowed determinant of ab into a sum of determinants of the 
lcth order in such a way that each row of each determinant has one 
of the a's as a common factor. After taking out these common factors 
from each determinant, we have left a determinant in the b's which, 
if it does not vanish identically, is a k-rowed determinant of b. 

~'roro the theorem just proved it is clear that if all the k-rowed 
determinants of a or of b are zero, the same will be true of all the 
k-rowed determinants of ab. .Hence 

THEOREM 6. The rank of the produet of two matrices eannot 
exeeed the rank of either factor. t 

• Tbe truth of this statement and the following will be evident if the reader 
actually writes out the matrix ab. 

t Thus if r1 and r2 are the ranks of the two factora and R is the rank of the prod­
uct, we have RSri, R5,r2• This is one half of Sylvester's "Law of Nullity," of 
which the other balf may-be stated in the form R 2: r1 + r2 - n, where n is the order 
~f the matrices ; cf. Exercise 8 at the end of this section. Sylvester defines the nullity 
of a matrix as the difference between its order aud its rank, so that his statement of 
the law of nullity is : The nullity of the product of two matrices is at least as grea& 
as the nullity of either factor, and at most as great as the sum of the nullities of tJie 
factora. 
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There is one important case in which this theorerr, enables us to 
determine completely the rank of the product, namely, the case in 
which one of the two matrices a or b is non-singular. Suppose first 
that a is non-singular, and denote the ranks of b and ab by r and R 
respectively. By Theorem 6, R ~ r. We may, however, also regard 
b as the product of a-1 and ab, and hence, applying Theorem 6 
again, we have r ~ R. Combining these two resulta, we see that 
r=R. 

On the other hand, if b is non-singular, and we denote the ranks 
of a and ab respectively by r and R, we get from Theorem 6, R ~ r; 
and, applying this theorem again to the equation -

(ab) b-1 = a, 

we have r ~ R. Thus again we get r = R. 
We have thus established the result: 

THEOREM 7. Jf a matrix of rank r is multiplied in either order by 
a non-singular matrix, the rank of the produet is also r. 

EXERCISES 

l. Prove that a necessary and sufficient condition that two matrices a and b 
of the same order be equivalent is that there exist two non-singular matrices 
e and d such that 

dac = b. 
Cf. § 22, Exercise 2, and § 19, Exercise 4. 

2. Prove that a necessary and sufficient condition that two matrices a and b 
of the same order be equivalent is that there exist four matrices e d e f such 
that ' ' ' 

dac = b, a = fbe. 

3. Prove that every matrix of rank r can be written as the sum of r matrices 
of rank one.• 

[~uGGESTION. Notice that the special matrix mentioned in § 19, Exercise 3, can be 
so wr1tten. J 

• A matrix of rank one has been called by Gibbs a dyad, since it may (cf. 
i 19, Ex. 6) be regarded as a product of two complex quantities (a1, a2, ... an) and 
(_bi, b2, ··· bn), Tbe sum of any number of dyads is called a dyadic polynomial, or 
Blmply ~ dya_dic. Every matrix is therefore a dyadic, and vice versa. Gibbs's tbeory 
of dyad1cs, lil the case n = 3, is ~xplained in the Vector Analysis of Gibbs-Wilson, 
Chap. V. Geometric language is used here exclusively, the complex quantities 
(a1, a2, _a3) and (bi, b2, bs) from which the dyads are built up being interpreted as 
Yectors lil space of three dimensiona. This theory is equivalent to Hamilton's theorv 
of the Linear Vector Function in Quaternioua. · 
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f. Prove that a necessary and sufficient condition that a matrix be a divisor 
of uro (cf. § 22, Exercise 1) is that it be singular. 

[SuGGEBTION. Consider equivalent matrices.] 

5. Prove that the inverse of the product of any number of non-singular 
matrices is the product of the inverses of these matrices taken in the revene 
order. 

Hence deduce a similar theorem concerning the adjoint ~f a product of &DJ 
number of matrices, whether these matrices are singular or not. 

What theorem concerning determinante can be inferred? 

6. Prove that tbe conjugate of the inverse of a non-singular matrix is tbe 
in verse of the conjugate; and that the conjugate of the adjoint of any matril 
is the adjoint of the conjugate. 

7. Prove that if a matrix has the property that its product with every matm 
of the same order is commutative, it is necessarily a scalar matrix. 

8. If r1 and r2 are the ranks of two matrices of order n, and R the rank of 
their product, prove that 

[SuGGBSTION. Prove this theorem first on the supposition that one of the two 
matrices which are multiplied together is of the form mentioned in Exercise 8, § 19, 
using also at this point ·Exercise 1, § 8. Then reduce the general case to this one bJ 
means of Exercise 1 of this section.] 

26. Sets, Systems, and Groups. These tbree words are tbe 
teohnical names for conceptions which are to be met with in ali 
branches of matbematics. In fact the first two are of such gener­
ality that they may be said to for~ the logical foundation on which 
all mathematics rests. t In this section we propose, after having 
given a brief explanation of these three conceptions, to show how 
they apply to the special subjects considered in this chapter. 

Tbe objects considered in mathematics-we use the word objetA 
in the broadest possible sense- are of the most varied kinds. We 
bave, on the one hand, to mention a few of the more important onet, 
the different kinds of quantities ranging all the way from · the posi• 
tive integers to complex quantities and matrices. Next we have Ül 
geometry not only points, lines, curves, and surfaces but also such 

• Cf. the footnote to Theorem 6. 
t For a popular exposition of the point of view here alluded to, see my address el 

The Fundamental Conceptions and Method& of Mathematies, St. Louis Congresa " 
Arts and Science, 1904. Reprinted in Bu!!. Amer. Math. Soc., December, 1904. 
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things as displacements ( rotations, translations, etc.~ collineations, 
and, in fact, geometrical transformations in general. Then in vari­
ous parts of mathematics we have to deal with the Theory of 
Substitutions, that is, with the various changes which can be made 
in the order of certain objects, and these substitutions themselves 
may be regarded ·as objects of mathematical study. Finally, in 
mechanics we have to deal with such objects as forces, couples, 
velocities, etc. 

These objects, and ali others which are capable of mathematical 
consideration, are constantly presenting themselves to us, not singly, 
but in sets. Such sets ( or, as they are sometimes called, classes) of 
objects may consist of a finite or an infinite number of objects, or 

' elements. W e mention as examples : 
(1) All prime numbers. 
(2) All lines which meet two given lines in space. 
(3) All planes of symmetry of a given cube. 
(4) All substitutions which can be performed on five letters. 
(5) All rotations of aplane about a given line perpendicular to it. 
Having thus gained a slight idea of the generality of the con-

ception of a set, we next notice tbat in many cases in which we bave 
to deal with a set in mathematics, there are one or more rules by 
which paira of elements of the set may be combined so as to give 
objects, either belonging to the set or not as the case may be. As 
examples of such rules of combination, we mention addition and , 
multiplication both in ordinary algebra and in the algebra of ma­
trices ; the procesa by which two points, in geometry, determine a. 
line; the process of combining two displacements to give another 
displacement, etc. 

Such a set, with its associated rules of combination, we will call 
a mathematical system, or simply a system. * 

W e come now to a very important kind of system known as a 
group, which we define as follows : 

• This definition is sufficiently general for our immediate purposes. In general, 
however, it is desirable to admit, not merely rules of combination, but also relations be­
tween the elements of a system. In fact we may have merely one or more relations 
and no rules of combínation at ali. From this point of view the positive integers with 
lhe relation of greater and less would form a system, even though we do not introduce 
any rule of combination such as addition or multiplication. It may be added that rulea 
of combination may be regarded as merely relations between three objects ; cf. the 
addl'81!8 referred to above. 

q 
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D EFINITION. A system consisting of a set of elements and one rul, 
of combination, which we will denote '!:y o, is called a group if the f ollow­
ing conditions are satisfied : 

(1) If a and b are any elements of the set, whether distinct or ,w~ 

a o b is also an element of the set.* 
(2) The associative law holds; that is, if a, b, e are any element, 

of the set, ( a o b) o e = a o ( b o e). 

( 3) The set contains an elemerit, i, called the identical elemen~ 
which is such that every element is unchanged when combined with it, 

ioa= aQi= a. 

( 4) Jj a is any element, tlie set also i:ontains an element a', called th, ' 
inverse of a, such that a' 0 a = a O a' = i. 

Thus, for example, the positive and negative integers with zero 
form a group if the rule of combination is addition. In this case 
zero is the identical element, and the inverse of any element is its 
negative. These same elements, however, do not forro a group if 
the rule of combination is multiplication, for while conditions (l} 
(2), and (3) are fulfilled (the identical element being 1 in this case} 
condition (-1) is not, since zero has no reci procal. 

Again, the set of all real numbers forms a group if the rule 
of combination is addition, but not if it is multiplication, since in 
this case zero has no inverse. If we exclude zero from the set, we 
have a group if the rule of combination is multiplication, but not Ü 

it is addition. 
As an example of a group with a finite number of elements we 

mention the four numbers 

+1, -1, +-v'"=I, -v-1 

with multiplication as the law of combination. 
In order to get an example of a group of geometrical operations, 

let us consider the translations of a plane, regarded as a rigid lamina, 
in the directions of its own lines. Every such translation may be 
represented both in magnitude and in direction by the length and 

• A system satisfying condition (1) is sometimes said to have "the group proP, 
erty." In the older works on the subject this condition was the only one to be 
explicitly mentioned, the others, however, being tacitly assumed. 
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direction of an arrow lying in the plane in question. Two such 
translations performed in succession are obviously equivalent to a 
translation of the same sort represented by the · arrow obtained by 
combining the two given arrows according to the law of the paral-
1elogram of forces. The set of all translations with the law of 
combination just explained is readily seen to form a group if we 
include in it the null translation, i.e. the transformation which leaves 
every point in the plane fixed. This null translation is then the 
identical element, and two translations are the inverse of each other 
if they are equal in magnitude and opposite in direction. 

Ali the groups we have so far mentioned satisfy, not only the 
four conditions stated in the definition, but also a fifth condition 

' · viz. that the law of combination is commutative. Such groups are 
called commutative or Abelian groups. In general, however, groups 
do not have this property. As examples of non-Abelian groups, 
we may mention first the group of ali non-singular matrices of a 
given order, the rule of combination being multiplication ; and 
secondly the group of all matrices of a given order whose· deter­
minants have the value ± 1, the rule of combination being again 
multiplication. This second group is called a subgroup of the first 
since ali its elements are also elements of the first group, and th; 
rule of combination is the same in both cases. A subgroup of the 
group last mentioned is the group of ali matrices of a given order 
whose determfoants have the value + 1,* the rule of combination 
being multiplication. 

We add that non-Abelian groups may readily be built up whose 
elements are linear transformations, or collineations. On the other 
band, Abelian groups may be formed from matrices if we take as our 
'ule of combination addition iustead of multiplication. 

'l:1, Isomorphism. 

DEF~ITION. Pwo groups are said to be isomorphict if it is possible 
to establish a one-to-one correspondence between their elements of such a 

• These are called unimodular matrices; or, more accurately, properly unimodula1 
matrices to distinguish them from the improperly unimodular matrices whose determi­
nants have the value - l. It should be noticed that these last matrices taken by them, 
sel ves do not constitute a group, since they do not even have the group property. 

t 8imply isomorphic would be the more complete term. We shall, however, 110& 
be eoncerned wifü isomorphism whieh is not simple. 
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sort that if a, b are any elements of the first group and a', b' the conw 
sponding elements oJ: the second, then a' o b' corresponds to a o b. • 

W e proceed to illustrate this definition by some example&¡ 
leaving to the reader the proofs of the statements we make. In each 
case we omit the statement of the rule of combination in the case of 
transformations, where no misunderstanding is possible. 

FrnsT ExAMPLE. (a) The group of the four elements 

1, v' - 1, - 1, - v' - 1, 

the rule of combination being multiplication. 
(b) The group of four rotations about a given line through anglea 

of Oº, 90°, 180°, 270º. 
These two groups may be proved to be isomorphic by pairing the 

elements against one another in the order in which they have jlllll 
been written. 

SoooND ExAMPLE. (a) The group of the f our matrices 

(1 º) (- 1 º) (1 01, 0-1,0 º) (-1 º) -1, O 1, 

the rule of combination being multiplication. 
(b) The group of the following four transformations: the iden, 

tical transformation ; reflection in a plane ; reflection in a second 
plane at right angles to the first; rotation through

0

180º about the 
line of intersection of these two planes. 

(e) The group consisting of the identical transformation and li 
three rotations through angles of 180° about three straight lin• 
through a point at right angles to one another. 

Tbe two groups of Example 1 are not isomorphic with the three 11 
Example 2 in spite of the fact that there are the same number of eJe. 
ments in all the groups. This follows from the presence of twe 
elements in the groups of Example 1 whose squares are not the 
identical element. 

• 'fhis idea of isomorphism may obvio11Bly be extended to the case of any two 8ft 
tems provided merely that there are the same number of rules of combination in bo6 
cases. ThM the system of all scalar matrices on the one band and of all scalars on dll 
other, the rules of combination being in both cases addition and multiplication, a.re°" 
viously isomorphic. It is for this rea.son that no confusio¡!. arises ü no distinctiOD ~ 
made between scalar matrices and scal&rs. 
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THIRD ExAMPLE. (a) The group of all real quantities; the rule 

of combination being addition. 
(b) The group of all scalar matrices of order k with real ele­

ments; the rule of combination being addition. 
(e) The group of all translations of space paraliel to a given 

line. 

FOURTH EXAMPLE. (a) The group of ali non-singular matrices 
of order n, with multiplication as the rule of combination. 

(b) The group of all non-singular homogeneous linear transfor­
mations in n variables. 

W e might be tempted to mention as a group of geometrical trans­
form~tions isom~rphi~ wi~h the last two groups, the group of ali 
non-smgular collmeat10ns m space of n - 1 dimensions. This, how­
ever, would be incorrect, for the correspondence we have established 
between collineations and linear transformations is not one-to-one. 
to every linear transformation corresponds one collineation. but t~ 
eve~y collineation correspond an infinite n_umber of linear t~ansfor­
mat10ns, whose coefficients are proportional to one another. * In 
order to get a group of geometrical transformations isomorphic with 
th~ group of non-singular matrices of the nth order it is sufficient 
to mterpret the variables x1, • • • x,. as non-homogeneous coordina tes in 
space of n dimensions, and to consider the geometric transformation 
effected by non-singular homogeneous linear transformations of 
these x's. These transformations are those affine transformations of 
:pace of n dimensions which leave the origin unchanged ; cf. the 
ootnote on p. 70. Thus the group of all non-singular matrices of 

the nt? or~er i~ isomorphic with a certain subgroup of the group 
of co~meat10ns m space of n dimensions, not with the group of ali 
non-smgular coliineations in space of n - 1 dimensions. 

An essential difference between these two groups is that one 

. • Tbis does not really prove tbat tbe groups are not isomorphic, since it is con­
eei~able tbat'some other correspondence migbt be established between tl!eir elements 
whicb would be one-to-one and of such a sort as to prove isomorphism Even tbe 
fact to be · ted · ' pom out presently, tbat tbe groups depend on a different number of 
p&rameters does not settle tbe question. A reference to the result stated in Exercise 7 
§_25, shows that tbe groups are not isomorpbic · for according to it the only non: 
Blil!!nlar e 11· t' b' · ' ' ' tra~sfo O • mea ion w ich 1s commutative with all collineations is tbe identica! 

rmat10n, whereas all linear transformations with scalar matrices hav11 this 
Pl'Operty, 
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depends on n2 parameters ( the n2 coefficients of the linear transforma 
tion' while the other depends only on n2 - 1 parameters (the ratioa 
of the coefficients of the collineation ). 

We can, however, by looking at the subj.ect a little differently, 
obtain a group of matrices isomorphic with the group of ali non­
singular collineations in space of n - 1 dimensions. For this purpose 
we need merely to regard two matrices as equal whenever the ele­
ments of one can be óbtained from those of the other by multiplying 
all the elements by the same quautity not zero. When we take this 
point of view with regard to matrices, it is desirable to indicate it 
by a new terminology and notation. According to a suggestion of 
E. H. Moore of Chicago, we will call such matrices fractional 
matrices, and write them 

ªu ª12 ª1s 

ª21 ª22 ª2s , etc. 

ªs1 ªs2 ª88 

Agreeing that fractional matrices are to be added and ,nul• 
tI¡,lied according to the same rules as ordinary matrices, we may now 
say that the group of all non-singular collineations in space of n -1 
dimensions is isomorphic with the group of all fractional matrices of 
the nth order whose determinants are not zero. * 

To take another example, the groups in the second example l!,bove 
are isomorphic with the group whose elements are the four fractional 
matrices 

1 O 

O 1 

1 O 

O -1 
,~, 
1 1 o 

O 1 

-1 O 

and where the law of combination is multiplication. These four 
matrices, if regarded as ordinary matrices, would not even satisfy 
the first condition for a group. 

The reader wishing to get a further insight into the theory of 
groups of linear transformations will find the following three treat-

• It shouJd be noticed that we cannot speak of tbe value of the determinant of • 
fractionaJ matrix unJess this value is zero, for ü we multipJy ali the eJements of thl 
matrix by e we do not changa the matrix, but do multiply the determinant by d', 
There is in particular no such thing as a unimoduJar fractionaJ matrix. We may. 
however, speak of the rank of a fract.lonaJ matrix. 
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ment.s interesting and instructive. They duplicate each other to 
only a very slight extent. 

Weber, Algebra, Vol. II. 
Klein, Vorlesungen über das Ikosaeder. 
Lie-Scheff ers, Vorlesungen über continuirliche Gruppm. 

EXERCISES 

l. DEFINITION. A group is said to be of order n if it contains n, and ooly n, 
elements. 

If a gronp of order n has a subgroup, prove that the order of this subgroup is 
a factor of n. 

[SuooESTION. Denote the eJements of the subgroup by a1 ••• at, and Jet b be any 
other element of the g.roup. Show that ba1, ba2, ... ba~ are ali eJements of the group 
distinct from ea.ch other and distinct from the a's. If there are still other eJementa, 
Jet e be one and consider the eJementa ca1, ... ca1 , etc. J 

2. Prove that ü a is any element of a group of finite order, it is possible by 
multiplying a by itself a sufficient number of times to get the identical element. 

DEFINITION. The lowest power to which a can be raised so as to give tho! identical 
tlement is called the period of a. 

3. Prove that every element of a group of order n has as its period a factor 
of n (1 and n included). . 

4. DEFINITION, A group is called cyclic if all its elements are powers of a 
lingle element. 

Prove that ali cyclic groups of order n are isomorphic with the group of rota­
tions about an axis through angles O, w, 2 w, ... ( n - 1) w, where w = 2 1r ¡ n, and 
that conversely every such group of rotations is a cyclic group. 

5. Prove that every group whose order is a prime number i& a cyclic group. 

6. Prove that ali gruups of order 4 are either cyclic or isomorphic with the 
groups of the second example above. A group of this Ja3t lrind is called a fours 
group (Vierergruppe). 

7. Obtain groups with regard to one or the other of which all groups of 
order 6 are isomorphic. 

8. Obtai.n gronps with regard to one or the other of which all groups of 
order 8 are isomorphic. 


