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4 INTRODUCTION TO HIGHER ALGEBRA

5. Prove that a projective transformation in space effects on every plane a
two-<limensional, and on every line a one-dimensional, projective transformation;
while at the same time the positions of the plane and line are changed.

[Suecesrion. If p and p are any two corresponding planes, assume in any way a
pair of perpendicular axes in each of them, and denote by (2, ¥y, &), and (2}, ¥}, 4)
respectively the systems of two-dimensional homogeneous coordinates based on these
axes. Then show, by using the result of Exercise 4, that the transformation of one
plane on the other will be expressed by writing @], g, ¢| as homogeneous linear poly-

nomials in 2, ¥y, ¢-]

25, Further Development of the Algebra of Matrices. We proceed
to establish certain further properties of matrices, leaving, however,
much to the reader in the shape of exercises at the end of the section.

The theory of linear transformations suggests to us at once certain
properties of matrices. The first of these is :

TaeoREM 1. The matriz

has the property that if a is any matriz whatever
Ia=al=a.

For the linear transformation of which a is the matrix will evi-

dently not be changed by being either followed or preceded by the
identical transformation of which I is the matrix.

If we do not wish to use the idea of linear transformation, we may
prove the theorem directly by actually forming the products Ia and aL

This theorem tells us that I plays in the algebra of matrices the
same role that is played by 1 in ordinary algebra. For this
reason I is sometimes called the unit matriz or idemfactor. .

Let us now consider any non-singular linear transformation and
its inverse. These two transformations performed in succession in
either order obviously lead to the identical transformation. This

gives us the theorem :
. TeeoreM 2. If
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i# a non-singular matriz of determinant a, and if Ay denote in the ords
wary way the cofactors of the elements of a, the matriz

called the inverse of a, and denoted by a™', is a non-singular matriz
which has the property that

gal=gla=1

This suggests that we define positive and negative integral
powers of matrices as follows :

DEFINITION 1. If p is any positive integer and a any matriz we
u:ndersmnd by a? the product aa --- a to p factors. If ais a non-
singular matriz, we define its negative and zero powers by the for-
mulee

a’?=(a'y, a'=L
From this definition we infer at once
THEOREM 3. The laws of indices

afa? = arte, (ap)q = gP?

hold for all matrices when the indices p and g are positive integers, and
for all non-singular matrices when p and q are any integers.

We turn now to the question of the division of one matrix by
:.nother. We naturally define division as the inverse of multiplica-
‘;?1;13 andlz 51{1;06 multiplication is not commutative, we thus get two

istinet kinds of division ; a divided b i
i y b being on the one h
matrix x such that - oy 0, -

a=bx,
on the other hand a matrix y such that
a=yb.

hoen account of this ambiguity, the term division is not ordinarily used
re. We have, however, as is easily seen, the following theorem :
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TugoreM 4. Ifa s any matriz and b any non-singular mateiz
there exists one, and only one, matriz x which satisfies the equation

a = bx,
and one, and only one, matriz y which satisfies the equation
a=yb,
and these matrices are given respectively by the formule
x=b'a, y=ab™\

A special class of matrices is of some importance ; namely, those

of the type
s A O

0"k W

0 0 - k

Such matrices we will call sealar matrices for a reason which will |
presently appear.

If we denote by k the scalar matrix just written, and by a ary
matrix of the same order as k, we obtain readily the formula

1) ka = ak = fa.

If now, besides the scalar matrix k, we have a second scalar matrix
1in which each element in the principal diagonal is [/, we have the |
two formulse

2 k+1=1+k=(k+])IL

(3) Kl =1k = kL

Formula (1) shows that scalar matrices may be replaced by ordinary
scalars when they are to be multiplied by other matrices; while:
formula (2) and (3) show that scalar matrices combined with one
another not only obey all the laws of ordinary scalars, but that each
scalar matrix may in such cases be replaced by the scalar which
oceurs in each element of its principal diagonal provided that at the
end of the work the resulting scalar be replaced by the correspond:
ing scalar matrix.
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For these reasons we may, in the algebra of matrices, replace all
scalar matrices by the corresponding scalars, and then consider that
all scalars which enter into our work stand for the corresponding .
scalar matrices. If we do this, the uait matrix I will be represented
by the symbol 1.

DEFINITION 2. By the adjoint A of a matriz a is understood
another matrixz of the same order in which the element in the ith row
and jth column ts the cofactor of the element in the jth row and ith
column. of a.*

It will be seen that when a is non-singular,
(4) A=aa’,

but it should be noticed that while every matrix has an adjoint, only
non-singular matrices have inverses.
Equation (4) may be written in the form

15) Aa=aA=ql,

aform in which it is true not merely when a is non-singular, but also,
as is seen by dirpct multiplication, when the determinant of a is zero,

Finally we come to a few important theorems concerning the
rank of the matrix obtained by multiplying together two given
matrices. In the first place, we notice that the rank of the product
18 not always completely determined by the ranks of the factors.
This may be shown by numerous examples, for instance, in formula
(9): § 22, the ranks of the factors are in general two and one, and the
rank of the product is zero, while in the formula

Ay Ay 0 0 0 0 9.9 a,
Ay ag 0.0 0 1f=|0 0 oy
Byt Gpg D 0 0 0 00 ay

the ran%:s of the factors are in general the same, namely two and
ong, while the rank of the product is one.
But though, as this example shows, the ranks of the factors (even

together with the order of the matrices) do not suffice to determine

t.h'e rank of the product, there are, nevertheless, important inequali-
lies between these ranks, one of which we now proceed to deduce.

N .
o .bfﬂtlce the interchange of rows and columns here, which in the case of adjoint
Tiinants, being immaterial and sometimes inconvenient, was not made.
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For this purpose consider the two matrices
97" G biy -+ bya

kl

bnl R bfm

Gpy *** Opy

and their product ab.

THEOREM 5. Any k-rowed determinant of the matriz ab is equal

to an aggregate of k-rowed determinants of b each multiplied nto @
polynomial in the a's, and also to an aggregate of k-rowed determinants
of a each multiplied by a polynomial in the b’s.

For any k-rowed determinant of ab may be broken up into a sum

of determinants of the kth order in such a way that each column of |

each determinant has one of the &'s as a common factor.* After
taking out these common factors from each determinant, we have
left a determinant in the a's which, if it does not vanish identically, i§
a k-rowed determinant of a.
up the k-rowed determinant of ab into a sum of determinants of the

kth order in such a way that each row of each determinant has one"
of the a’s as a common factor. After taking out these common factors ‘
from each determinant, we have left a determinant in the &’s whichy

if it does not vanish identically, is a A-rowed determinant of b.

From the theorem just proved it is clear that if all the £-rowed
determinants of a or of b are zero, the same will be true of all the
k-rowed determinants of ab. Hence

THEOREM 6.

* The truth of this statement and the following will be evident if the reader
actually writes out the matrix ab.

t Thus if 7, and r; are the ranks of the two factors and R is the rank of the prod:
uct, we have B<r;, R<r; This is one half of Sylvester’s ** Law of Nullity,” of
which the other half may_be stated in the form RZT; + 1y — m, where n is the order
of the matrices ; of. Exercise 8 at the end of this section. Sylvester defines the nullity
of a matrix as the difference between its order and its rank, so that his statement of

the law of nullity is : The nullity of the product of two matrices is at least as great

as the nullity of either factor, and at most as great as the sum of the nullities of thé
factors.

Or, on the other hand, we may break

The rank of the product of two matrices cannot
exceed the rank of either factor.t ‘
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There is one important case in which this theorem enables us to
determine completely the rank of the product, namely, the case in
which one of the two matrices a or b is non-singular. ~Suppose first
that a is non-singular, and denote the ranks of b and ab by r and R
respectively. By Theorem 6, E<r. We may, however, also regard
b as the product of a™ and ab, and hence, applying Theorem 6
a,ga.i; we have r< B. Combining these two results, we see that
r = 1.

On the other hand, if b is non-singular, and we denote the ranks
of a and ab respectively by » and R, we get from Theorem 6, B<r;
and, applying this theorem again to the equation 53

(a.b) b_l — a,

‘we have r < B. Thus again we get r = R,
We have thus established the result :

THE:'.OREM 1. If a matriz of rank r is multiplied in either order by
a non-singular matriz, the rank of the produet is also r.

EXERCISES

1. Prove that a necessary and sufficient condition that two matrices a and b
of the same order be equivalent is that there exist two non-singular matrices
¢ and d such that b

ac = b.

d
Ci. § 22, Exercise 2, and § 19, Exercise 4.

2. Prove that a necessary and sufficient condition that two matrices a and b
of the same order be equivalent is that there exist four matrices ¢, d, e, £ such

that
dac = b, a = fbe.

3. Prove that every matrix of rank r can be written as the sum of r matrices
of rank one.*

[Suscrsrion. Notice that the special matrix mentioned in § 19, Exercise 3, can be
80 written. ) ,

* A matrix of rank one has been called by Gibbs a dyad, since it may (cf.
$19, Ex. 5) be regarded as a product of two complex quantities (@1, @z, -+ ay) and
('bh by, «+ b,). The sum of any number of dyads is called a dyadie polynomial, or
Simply a.; dyadic. Every matrix is therefore a dyadic, and vice verss. Gibbs's the,ory'
gl dyadics, in the case m =3, is explained in the Vecfor Analysis of Gibbs-Wilson,
1ap, V. Geometric lancuage is used here exclusively, the complex quantities
(61,_615, _as) and (b1, by, b3) from which the dyads are built up being interpreted as
VeCtors in space of three dimensions. This theory is equivalent to Hamilton’s theory
of the Linear Vector Function in Quaternions. , i
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4. Prove that a necessary and sufficient condition that a matrix be a divia@'gl.f"‘
of zero (cf. § 22, Exercise 1) is that it be singular. 3

[Sucersrion. Consider equivalent matrices.]

5. Prove that the inverse of the product of any number of non-singuh;:;
matrices is the product of the inverses of these matrices taken in the reverss

order.
Hence deduce a similar theorem concerning the adjoint of a product of any

number of matrices, whether these matrices are singular or not.
What theorem concerning determinants can be inferred ?

6. Prove that the conjugate of the inverse of a non-singular matrix is the |
inverse of the conjugate; and that the conjugate of the adjoint of any matrix
is the adjoint of the conjugate.

il
7. Prove that if a matrix has the property that its product with every matix
of the same order is commutative, it is necessarily a scalar matrix.

8. If r, and r, are the ranks of two matrices of order n, and R the rank of ;

their product, prove that RZH ry—n¥ i

[Sueessrion. Prove this theorem first on the supposition that one of the o
matrices which are multiplied together is of the form mentioned in Exercise 8, § 16,
using also at this point Exercise 1, § 8. Then reduce the general case to this one by
means of Exercise 1 of this section. ]

26. Sets, Systems, and Groups. These three words are the
technical names for conceptions which are to be met with in all‘
branches of mathematics. In fact the first two are of such gener
ality that they may be said to form the logical foundation on which
all mathematics rests. In this section we propose, after having
given a brief explanation of these three conceptions, to show how
they apply to the special subjects considered in this chapter. =

The objects considered in mathematics — we use the word objed
in the broadest possible sense —are of the most varied kinds. We
have, on the one hand, to mention a few of the more important one
the different kinds of quantities ranging all the way from'the posi
tive integers to complex quantities and matrices. Next we have il
geometry not only points, lines, curves, and surfaces but also such

* (1, the footnote to Theorem 6.
t For a popular exposition of the point of view here alluded to, see my address-@m
The Fundamental Conceptions and Methods of Mathematics, St. Louis Congre&f{.‘,l
Arts and Science, 1904. Reprinted in Bull. Amer. Math. Soc., December, 1904.

H
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things as displacements (rotations, translations, ete.), collineations,
and, in fact, geometrical transformations in general. Then in vari-
ous parts of mathematics we have to deal with the Theory of
Substitutions, that is, with the various changes which can be made
in the order of certain objects, and these substitutions themselves
may be regarded as objects of mathematical study. Finally, in
mechanics we have to deal with such objects as forces, couples,
velocities, ete.

These objects, and all others which are capable of mathematical
consideration, are constantly presenting themselves to us, not singly,
but in sets. Such sets (or, as they are sometimes called, classes) of
objects may consist of a finite or an infinite number of objects, or

" elements. We mention as examples :

(1) All prime numbers.

(2) All lines which meet two given lines in space.

(8) All planes of symmetry of a given cube.

(4) All substitutions which can be performed on five letters.

(6) All rotations of a plane about a given line perpendicular to it.

Having thus gained a slight idea of the generality of the con-
ception of a set, we next notice that in many cases in which we have
to deal with a set in mathematics, there are one or more rules by
which pairs of elements of the set may be combined so as to give
objects, either belonging to the set or not as the case may be. As
examples of such rules of combination, we mention addition and
multiplication both in ordinary algebra and in the algebra of ma-
trices ; the process by which two points, in geometry, determine a
ling; the process of combining two displacements to give another
displacement, etc.

Such a set, with its associated rules of combination, we will call
& mathematical system, or simply a system.*

- We come now to a very important kind of system known as a
group, which we define as follows : ‘

# This definition is sufficiently general for our immediate purposes. In general,
howcmr, it is desirable to admit, not merely rules of combination, but also relations be-
tween the elements of a system. In fact we may have merely one or more relations
4nd 1o rules of combination at all. From this point of view the positive integers with
the relation of greater and less would form a gystem, even though we do not introduce
any rule of combination such as addition or multiplication, Tt may be added that rules
G_f combination may be regarded as merely relations between three objects ; cf. the
address referred to above.

q
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. |
DEFINITION. A system consisting of a set of elements and one rulg
of combination, which we will dendte by o, is called a group if the follows

ing conditions are satisfied :
(1) If a and b are any elements of the set, whether distinet or not,

aob is also an element of the set* :
(2) The associative law holds ; that s, if a, b, ¢ are any elements

of the set, (aob)oc=ao(boc).

(8) The set contains an element, 1, called the identical element,
which is such that every element is unchanged when combined with i, ;

.

zoa=aoi=a.

(4) If a is any element, the set also contains an element a', called the *

inverse of a, such that kit Sl AP

Thus, for example, the positive and negative integers with zero “
form a group if the rule of combination is addition. In this case
zero is the identical element, and the inverse of any element is it§
negative. These same elements, however, do not form a group it
the rule of combination is multiplication, for while conditions (1)
(2), and (8) are fulfilled (the identical element being 1 in this case),
condition (4) is not, since zero has no reciprocal.

Again, the set of all real numbers forms a group if the rule
of combination is addition, but not if it is multiplication, since in
this case zero has no inverse. If we exclude zero from the set, we~
have a group if the rule of combination is multiplication, but not il
it is addition. '

" As an example of a group with a finite number of elements we
mention the four numbers

PR T o = gy TR P

with multiplication as the law of combination.

In order to get an example of a group of geometrical operations:
Jet us consider the translations of a plane, regarded as a rigid laming,
in the directions of its own lines. Every such translation may bé
represented both in magnitude and in direction by the length and

* A system satisfying condition (1) is sometimes said to have ‘“the group prop
erty.” In the older works on the subject this condition was the only one to bé

explicitly mentioned, the others, however, being tacitly assumed.
|

* viz. that the law of combination is commutative.
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direction of an arrow lying in the plane in question. Two such
translations performed in succession are obviously equivalent to a
translation of the same sort represented by the arrow obtained by
combining the two given arrows according to the law of the paral-
lelogram of forces. The set of all translations with the law of
combination just explained is readily seen to form a group if we
include in it the null translation, i.e. the transformation which leaves
every point in the plane fixed. This null translation is then the
identical element, and two translations are the inverse of each other
if they are equal in magnitude and opposite in direction.

All the groups we have so far mentioned satisfy, not only the
four conditions stated in the definition, but also a fifth condition,
Such groups are
called commutative or Abelian groups. In general, however, groups
do not have this property. As examples of non-Abelian groups,
we may mention first the group of all non-singular matrices of a
given order, the rule of combination being multiplication ; and
secondly the group of all matrices of a given order whose deter-
minants have the value 41, the rule of combination being again
multiplication. This second group is called a subgroup of the first,
since all its elements are also elements of the first group, and the
rule of combination is the same in both cases. A subgroup of the
group last mentioned is the group of all matrices of a given order
whose determinants have the value + 1,* the rule of combination
being multiplication.

We add that non-Abelian groups may readily be built up whose
elements are linear transformations, or collineations. On the other
hand, Abelian groups may be formed from matrices if we take as our
*ule of combination addition instead of multiplication.

27. Isomorphism.

DEF?NITION. Two groups are said to be isomorphict if it is possible
 establish @ ome-to-one correspondence between their elements of such a

*‘These are called unimodular matrices ; or, more accurately, properly unimodular
Matrices to distinguish them from the improperly unimodular matrices whose determis
nants have the value —1. It should be noticed that these last matrices taken by thems
selves d‘? not constitute a group, since they do not even have the group property,

t Simply isomorphic would be the more complete term. We shall, howevex, ot
be soncerned with isomorphism whish is not simple, A
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sort that if a, b are any elements of the first group and o', V' the cor .
sponding elements of the second, then a' o' corresponds to aob.*

We proceed to illustrate this definition by some exampl%j
leaving to the reader the proofs of the statements we mgke. In emﬁ}l
case we omit the statement of the rule of combination in the case of
transformations, where no misunderstanding is possible.

First ExaMpLE. (@) The group of the four elements
U o e e e
the rule of combination being multiplication.
(b) The group of four rotations about a given line through anglés
of 0°, 90°, 180°, 270°. : . i
These two groups may be proved to be isomorphic by pairing 1;1113E
elements against one another in the order in which they have jus

been written.
SecoNp ExAMPLE. (a) The group of the four matrices
1 0 /-1 01 O) (—- 1 0)
(0 1),( 0 —1),( -1\ 0 1)
the rule of combination being multiplication. : N
(b) The group of the following four transformations : the idem

tical transformation ; reflection in a plane; reﬂectipn in a secu}ijﬂ;;i
plane at right angles to the first ; rotation through 180° about M

line of intersection of these two planes. '

(¢) The group consisting of the identical tra,nsformam(?n andl‘
three rotations through angles of 180° about three straight limé
hrough a point at right angles to one another. 3
t Tfe twg groups of Examgple 1 are not isomorphic with the thre&;f@%}
Example 2 in spite of the fact that there are the same number of eles{
ments in all the groups. This follows from the presence of Wfiiﬁ
elements in the groups of Example 1 whose squares are not il
identical element.

* This idea of isomorphism may obviously be extended to the case f:uf a,x.1y two lm\
tems provided merely that there are the same number of rules of combination in y
cases. This the system of all scalar matrices on the one hand and oflalli sc?,}a,rslcn:_.
other, the rules of combination being in both cases addition and multiplication, are ol
viously isomorphic.
made between scalar matrices and scalars,

1t is for this reason that no confusior arises if no distinction#

LINEAR TRANSFORMATIONS AND MATRICES 85

TaIRD ExAMPLE. (@) The group of all real quantities; the rule
of combination being addition. ,

(6) The group of all scalar matrices of order % with real ele-
ments ; the rule of combination being addition.

(¢) The group of all translations of space parallel to a given

line.

Fourter ExampLe. (@) The group of all non-singular matrices
of order n, with multiplication as the rule of combination.

(0) The group of all non-singular homogeneous linear transfor-
mations in n variables.

We might be tempted to mention as a group of geometrical trans-
formations isomorphic with the last two groups, the group of all
non-singular collineations in space of » — 1 dimensions. This, how-
ever, would be incorrect, for the correspondence we have established
between collineations and linear transformations is not one-to-one ;
fo every linear transformation corresponds one collineation, but to
every collineation correspond an infinite number of linear transfor-
mations, whose coefficients are proportional to one another* In
order to get a group of geometrical transformations isomorphie with
the group of non-singular matrices of the nth order it is sufficient
to interpret the variables z,, .- 2, as non-homogeneous cobrdinates in
space of » dimensions, and to consider the geometric transformation
éffected by non-singular homogeneous linear transformations of
these 2’s. These transformations are those affine transformations of
space of » dimensions which leave the origin unchanged ; cf. the
footnote on p. 70. Thus the group of all non-singular matrices of
the nth order is isomorphic with a certain subgroup of the group
of eollineations in space of n dimensions, not with the group of all

-mon-singular collineations in space of # — 1 dimensions.

An essential difference between these two groups is that one

* This does not really prove that the groups are not isomorphic, singe it is con-
teivable that'some other correspondence might be established between their elements
Which would be one-to-one and of such a sort as to prove isomorphism. Even the
fact, to be pointed out presently, that the groups depend on a different number of
Parameters does not settle the question. A reference to the result stated in Exercise %
4§25, shows that the groups are not isomorphie ; for, according to it, the only non-
singular collineation which is commutative with all ecollineations is the identical

fﬂ'ansforms,tion, whereas all linear transformations with sealar matrices have this
Property,

IIU ||
118
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depends on #? parameters (the n? coefficients of the linear fransforma .
tion} while the other depends only on #*—1 parameters (the ratios

of the coefficients of the collineation).

We can, however, by looking at the subject a little differently,
obtain a group of matrices isomorphic with the group of all non
singular collineations in space of n — 1 dimensions. For this purpose
we need merely to regard two matrices as equal whenever the ele-
ments of one can be obtained from those of the other by multiplying
all the elements by the same quantity not zero. When we take this
point of view with regard to matrices, it is desirable to indicate it
by a new terminology and notation. According to a suggestion of
E. H. Moore of Chicago, we will call such matrices fractional
matrices, and write them

]an LD

a
12
gy

Y

@y

(g dgg || 5 €hCs

@ a
91 o9
gy (g Ogg

Agreeing that fractional matrices are to be added and mul
tiplied according to the same rules as ordinary matrices, we may now:
say that the group of all non-singular collineations in space of n—1
dimensions is isomorphic with the group of all fractional matrices of
the nth order whose determinants are not zero.*

To take another example, the groups in the second example aboye

are isomorphic with the group whose elements are the four fractional

matrices
1y, 0
0.1

-1 0

P = s

and where the law of combination is multiplication.

v

These four

matrices, if regarded as ordinary matrices, would not even satisfy

the first condition for a group.

The reader wishing to get a further insight into the theory of |

groups of linear transformations will find the following three treaf:

# It should be noticed that we cannot speak of the value of the determinant of &
fractional matrix unless this value is zero, for if we multiply all the elements of the
matrix by ¢ we do not change the matrix, but do multiply the determinant by €%
There is in particular no such thing as a unimodular fractional matrix.” We may
however, speak of the rank of a fractional matrix.

-
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ments interesting and instructive.
only a very slight extent.
Weber, Algebra, Vol. II. ;
Klein, Vorlesungen iiber das Tkosaeder.
Lie-Scheffers, Vorlesungen iiber continuirliche Gruppen.

They duplicate each other to

EXERCISES

1. DEFINITION. A group is said to be of order n if it contains n, and only n,
elements.

If a group of order n has a subgroup, prove that the order of this subgroup is
a factor of n.

[SveeestioNn. Denote the elements of the subgroup by a; -- @i, and let b be any
other element of the group. Show that bay, bag, - ba are all elements of the group
distinet from each other and distinct from the g’s. If there are still other elements
let ¢ be one and consider the elements cay, «- ca;, ete.] :

"4.:. P‘rové that if a is any element of a group of finite order, it is possible by
multiplying @ by itself a sufficient number of times to get the identical element.

DeriNition.  The lowest power to which a can be raised so as to give the identical
element is called the period of a.

8. Prove that every element of a group of order n has as its period a factor
of n (1 and n included).

. 4. DermvitioN. 4 group is called cyclic if all its elements are powers of a
single element.

j Prove that all cyclic groups of order n are isomorphic with the group of rota-
tions about an axis through angles 0, @, 2 w, + (n—1) w, where w =2 7/n, and
that conversely every such group of rotations is a eyclic group. ;

9. Prove that every group whose order is a prime number is a cyclic group.

6. Prove that all groups of order 4 are either cyelic or isomorphic with the

. Broups of the second example above. A group of this last kind is called a Jours

group ( Vierergruppe).

7. Obtain groups with regard to one or the other of which all groups of
order 6 are isomorphic.

8. Obtain groups with regard to one or the other of which all groups of
order 8 are isomorphic.




