CHAPTER VI

LINEAR TRANSFORMATIONS AND THE COMBINATION
OF MATRICES

21. Matrices as Complex Quantities. We have said in § 7 that a =

matrix of m rows and n columns is not a quantity, but a set of mn

quantities: This statement is true only if we restrict the term

quantity to the real and complex quantities of ordinary algebra. A
moment’s reflection, however, will show that the conception of quans
tity as used in arithmetic and algebra has been gradually enlarged
from the primitive conception of the positive integer by using the
word quantity to denote entities which, at an earlier stage, would
not have been regarded as quantities at all, as, for instance, nega-
tive quantities. We will consider here only one of these extensions,
namely the introduction of complex quantities, as this will lead us to
look at our matrices from a broader point of view.

If we have objects of two or more different kinds which can be =

counted or measured, and if we consider aggregates of such objects,
we get concrete examples of complex quantities, as, for instance,
5 horses, 3 cows, and T sheep. A convenient way to write such a
complex quantity is (5, 8, T), it being agreed that, in the illustras
tion we are considering, the first place shall always indicate horses,

the second cows, and the third sheep. In the abstract theory of =

complex quantities we do not specify any concrete objects such as

horses, cows, etc., but merely consider sets of quantities (couples, 1

triplets, etc.), distinguishing these quantities by the position they
occupy in our symbol. Such a complex quantity we often find i
convenient to designate by a single letter, '

a=(a.b, o)

just as in ordinary algebra we denote a fraction (% for instance), =

which really involves two numbers, by a single letter. We speak
here of the simple quantities a, b, ¢ of which « is composed as its first,
60 :
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second, third components ; and we call two complex quantities equal
when and only when the components of one are equal respectively to
the corresponding components of the other. Similarlya complex quan-
tity is said to vanish when and only when all of its components are zero.

What makes it worth while to speak of such sets of quantities as
complex quantities is that it is found useful to perform certain alge-
braic operations on them. By the sum and difference of two complex

e o= (o by @), o=(ab,0)
we mean the two new complex quantities
o+ ey =(ay+ ay b+ by o +0) oy — g =(ay — a5 b — by, 6 — ep)*

When it comes to the question of defining what we shall under-
stand by the product of two complex quantities, things are by no
means so simple. It is necessary here to lay down some rule accord-
ing to which, when two complex quantities are given, a third, which
we call their product, is determined. Such rules may be laid down
in an infinite variety of ways, and each such rule gives us a differen
system of complex quantities.

We come now to the subject of matrices. A matrix of m rows
and n columns being merely a set of mn quantities (which we
assume to be either real quantities or the ordinary complex quantities
of elementary algebra) arranged in a definite order, is, according to
the point of view we have explained, a complex quantity with mn
components; and it is only a special application of the theory of
complex quantities which we have sketched, when we lay down the
following definitions:

DerixiTioN 1. A matriz is said to be zero when and only when all
of its elements are zero.

DeriNITION 2. Two matrices are said to be equal when and only
when they have the same mumber of rows and of columns, and every
element of one is equal to the corresponding element of the other.

* That this is the natural meaning to be attached to the terms sum and difference
Wwill be seen by reference to the concrete illustration given above.

1 If, in particular, we wish to introduce the ordinary system of complex quanti-
ties of elementary algebra, we use a system of couples, and define the product of twa
s, &= (a1, b), = (an, ba),
by the formula 010l = (@1@s — byby, arba + @sby).

For further details ¢f. Burkhardt’s Funktionentheorie, §§2, 3.
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DEFINITION 3. By the sum (or difference) of two matrices of m
rows and n columns each, we understand a matriz of m rows and n eol-
umns, each of whose elements is the sum (or difference) of the corre-
sponding elements of the given matrices.

In order to distinguish them from matrices, we will call the
ordinary quantities of algebra (real quantities and ordinary complex

quantities) scalars.
Before proceeding, as we shall do in the next section, to the

definition of the product of two matrices, we will define the product
of a matrix and a scalar.

DeriniTION 4. If a 48 a matriz * and k @ scalar, then by the prod-
uct ka or ak we understand the matriz each of whose elements 18 k
times the corresponding element of a.

As an obvious consequence of our definitions we state the
theorem:
THEOREM. All the laws of ordinary algebra hold for the addition
or subtraction of matrices and their multiplication by scalars.
For instance, if a, b, ¢ are matrices, and %, ! scalars,
a+b=b+a,
at+(b+c)=(a+b)+e¢
ka + kb =k(a+b),
ka+la=(k+l)a.}

EXERCISE
If #; and »; are the ranks of two matrices and R the rank of their sum, prove
that
A ] R ng + Ty
22. The Multiplication of Matrices. Up to this point we have con-
sidered matrices with m rows and n columns. For the sake of sim-
plicity of statement, we shall confine our attention from now on to

square matrices, that is to the case m =n. This involves no real loss

* The notation here used, matrices being denoted by heavy-faced type, will be

gystematically followed in this book.
+ We add that, as a matter of notation, we shall write

(-Da=-a

|
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of generality provided we agree to consider a matrix of m rows and
n columns, where m = n, as equivalent to a square matrix of order
equal to the larger of the two integers m, n and obtained from the
given matrix by filling in the lacking rows or columns with ZETros.
The question now presents itself: How shall we define the prod-
uct of two square matrices of the same order? It must be clearl
understood that we are logically free to lay down here sich deﬁnitioi
as we please, and that the definition we select is preferable to others
10t on any & priori grounds, but only because it turns out to be more
useful. 'We select the following definition, which is suggested * b
the multiplication theorem for determinants: ;

DE‘.FINI’I‘ION 1. The product ab of two square matrices of the nth
?rd,’er 8 4 square matriz of the nth order in which the element which lies
n the ith row and jth column is obtained by multiplying each element of

the ith row of a. by the corresponding el :
g element of the 4th col
adding the results. f the jth column of b and

Let us denote by a; and b; the elements in the th row and Jth
column of a and b respectively, or, as we will say for brevity, the
element (4, 7) of these matrices. Then, according to our deﬁni:ﬁion
the element (¢, /) of the product ab is :

(@) by + byt - + aybyy
while the element (7, ;) in the matrix ba is
(2) ahbml + (12]5"2 + e + aﬁ:"b.inu

Si o :
obtaillime the two quantities (1) and (2) are not in general equal, we

THEOREM 1. The multiplication of matrices is not in general com

mutative, that is, in general ab = ba

Let us now consider a third matrix ¢ whose element (7, J) 18 e
and form the product (ab)e. The element (4 7) of this matrix is 3
(@ishyy + aighyy + - + TPy )0y

F(@igbiy + tighyy + - + @inDpg)a;
(3) o LS AR e
H(@iby, + Uigbog + -+ + BinD )

* Historically this definition was su ‘
E geested to Cayley by th i i
Composition of linear transformations; cf. § 23. e, 1 001151(131'#10“ e
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On the other hand, the element (¢, 7)) of the matrix a(bc) is
: y(byy0y + 612‘72:‘ + oo 4 biutyy)

(4) *+ “iz(bm"u = 522"2: v bzn )
e
4 am(bm% + bnz'-'"af g + bﬂﬂeﬂj)

Since the two quantities (3) and (4) are equal, we have established

TaeoreM 2. The multiplication of matrices s associative, that s,

(ab)e = a(bc).

Finally, since the element (7, /) of the matrixa (b + c) is clearly '
equal to the sum of the elements (%, 7) of the matrices ab and ac, we

have the result

TaroreM 8. The multiplication of matrices is distributive, that is,

a(b+c)=ab + ac.

Besides the commutative, associative, and distributive laws, there

is one other principle of elementary algebra which is of constant use,

namely, the principle that a product cannot vanish unless at least one

of the factors is zero. Simple examples show that this is not true in

the algebra of matrices. We have, for instance,
@y 8, 0 By P 0
(5) gy, Gy 0)-10 0 O || =0
dg ag 0 by by by 0

0 0
0 0f=0,
0 0

whatever the values of the a’s and #’s may be. Hence

TarorREM 4. From the vanishing of the product of two or more

matrices, we cannot infer that one of the factors is zero.
The process of cancelling out non-vanishing factors which enter

throughout an equation w111 therefore, be inadmissible in the algebra

of matrices.

We next state a result which follows at once from the similarity
between the theorem for the multiplication of determinants and out
definition of the product of two matrices:

THEOREM 5. The determinant of a matriz which is obtained by

multiplying together two or more matrices is equal to the product qf the

determinants of these matrices.
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The conception of the conjugate of a matrix, as defined in §7T,
Definition 2, is an important one, and the following theorem concern-
ing it is often useful:

THEOREM 6. The conjugate of the product of amy number of
matrices 18 the product of their conjugates taken in the reverse order.

In order to prove this theorem we first notice that its truth in the
case of two matrices follows at once from the definition of the prod-
uct of two matrices. Its truth will therefore follow in all cases if,
assuming the theorem to be true for the product of n— 1 matrices,
we can prove that it is true for the product of n matrmes. Let us

it
write o
Then, from what we have assumed,
b'=aj .. a; al,
where we use accents to denote conjugates. Accordingly,
(arty = &) = (a,b) = V=, - ajal,

and our theorem is proved.
In conclusion we lay down the following :

DEFINITION 2. A square matriz ts said to be singular if its deter-
minant is zero.

According to the convention made at the beginning of this sec-
tion, it will be seen that all matrices which are not square are
singular.

EXERCISES
1. DermvitioN. A matriz a is called a divisor of zero if @ matriz b different

Jrom zero exists such that either ab = 0 or ba = (.

Prove that every matrix one of whose rows or columns is composed wholly of
28108 is a divisor of zero.

» If it is possible to pass from a to b by means of an elementary transforma-

twn (cf § 19, Definition 1), prove that there either exists a non-singular matrix ¢
such that
ac =b,

Or & non-singular matrix d such that
da=h

BIBLIOTECA UNIVERSITARIA
“ALFONSO REYES”
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8. If all the elements of a matrix are real, and if the product of this mairig
and its conjugate is zero, prove that the matrix itself is zero.

4. If the corresponding elements of two matrices a and b are conjugate imagis

naries, and, b’ being the matrix conjugate to b, if

ab’=0, thena=1b = 0.

23. Linear Transformation.
theory of matrices we will take up, in this section and the next, the
' closely allied subject of linear transformation, which may be regarded
as one of the most important applications of the theory of matrices.

In algebra and analysis we frequently have occasion to introduce,

in place of the unknowns, or variables, we had originally to deal
with, certain functions of these quantities which we regard as new
unknowns or variables. Such a transformation, or change of vari-
ables, is particularly simple, and for many purposes particularly
important, if the functions in question are homogeneous linear poly-
- nomials. It is then called a homogeneous linear transformation, or,
as we shall say for brevity, simply a linear transformation. If z,, - 2,
are the original variables, and 2, .- 2}, the new ones, we have, as the
formule for the transformation,

e
Ty =y T+ o G
L]

T =0y %y + - + Gy

The square matrix

is called the matrix of the transformation, and the determinant of
this matrix, which we will represent by a, is called the determinant
of the transformation. Inasmuch as the transformation is com-
pletely determined by its matrix, no confusion will arise if we speak
of the transformation a. :
In most cases where we have occasion to use a transformation it is
important for us to be able, in the course of our work, to pass back to
the original variables, and for this purpose it must be possible, nof
merely to express z;, --- z, as functions of z,, --- z,, but also to express

2y, - z, a8 functions of #}, ... z,. In the case of linear transformas

Before going farther with the
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tions this can in general be done. For the equations of the transfor.
mation may be regarded as non-homogeneous linear equations in
2y, -+ &, and if the determinant a of the transformation is not ZEro,
they can be solved and give :

x1=‘%11 k. onn +%fux;,

Zn

=%$;+ R +é;ﬂx:n
where A4, -~ 4,, are the cofactors of a,, - a,, in a.

This transformation A is called the #nverse of the transformation
a, but it must be remembered that it exists only if 0. A linear
transformation for which a=0 is called a singular transformation.
If a is non-singular, its inverse A is also non-singular, since the deter
minant of A is ¢ (cf. Corollary 2, § 11).

DEFINITION.  The special linear transformation

By= By L=y, ¥ =By
whose matriz is 1900
01 ..0

0 0
W called the identical transformation.

The determinant of this transformation is 1.
We turn now to the subject of the composition of linear trans

formations. If we introduce a new set of variables z' as functions

of the original variables z and then make a second transformation
by introducing a third set of variables '/ as functions of the yari-
ables 2/, these two transformations can obviously be combined and
the variables 2/ expressed directly in terms of the z’s. If the two
transformations which we combine are linear transformations, it is
Teadily seen that the resulting transformation will also be linear.
:I‘he precise formula are important here, and for the sake of simplic-
1ty we will write them in the case of three variables, a case which
will be seen to be perfectly typical of the general case.
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Let
A=
T} = 01121 + Qyay + ATy
81 Ty = Gy Ty + AogTy + AngTy
e
Ty = Ug Ty + Uggy + UgyTyy

] = b2 + byoz) + by,
b{ 2 = by} + 622:”; = 623“‘{;’
2y = by + bygy + bygi,

be two linear transformations.
values from a, we get

(2] = (ay,by + agd + agibis)2y
+ (@1ab11 + Pggd1s + agsb15) 7,
+ (@yab1y + Aaghia + agsdyg)ag

Replacing the #’s in b by theit

2y = (ay3by; + agiboy + a5,055)2,
+ (@490y; + Aggbay + Agybig) 7,
+ (@15ba1 + Aggbay + agbag) s,

g = (aybg; + Ggbgy + agby)2;
+ (@yahgy + taslgy + tgabss)zy
+ (@13b3; + @ashgy + agghss)zs

It will be seen that the matrix of this transformation is ba
Hence,

THEOREM. If we pass from the variables z to the variables 2’ bya
linear trangformation of matriz a, and from the variables 2’ to the vari- |
ables 2! by another linear transformation of matriz b, then the linear
trangformation of matriz ba will carry us directly from the variables &
to the variables z'' . * -

24. Collineation. We come now to an important geometrical
application of the subject of linear transformation. For the sake of
simplicity we begin with the case of three variables, which we will "
regard as the homogeneous codrdinates of points in a plane, |

The equations o' =az+by+eft,

(1) y' = agx + by + g,
t = aw+ by + gt

* This result may be remembered conveniently by means of the following symbolis
notation, which is often convenient. Let us denote the transformation a by the |
symbolic equation z'=a(z), and the transformation b by 2/’ = b(2/). The result of
combining these two transformations is then z// = b(a(x)) or simply «'' =ba(2).

LINEAR TRANSFORMATIONS AND MATRICES 69

may be regarded as defining a transformation of the points of the
plane; that is, if (z, y, ¢) is an arbitrarily given point, we can com-
pute, by means of (1), the coérdinates (2, ¥/, t') of a second point
into which we regard the first point as being transformed. The
only exception is when the computed values of 2, y', ¢ are all three
zero, in which case there is no point into which the given point is
transformed. This exceptional case can clearly occur only when the
determinant of the transformation (1)is zero. Let us then confine
our attention to non-singular linear transformations. In this case,
not only does every point (z, y, t) correspond to a definite point
(@, ¥ t'), but conversely, every point (2, ¥, ) corresponds to a
definite point (, ¥, ¢), since the transformation (1) now has an inverse
b b

By e

z' + %y’ + %3 ¢,

e

[ p=214 4.

s
Il Il
%

SR &

) o+

t

Il

where D is the determinant of (1), and 4, B, C,are the cofactors
in D.
The points (z, g, t) of the line

are tra:nsformed by means of the non-singular transformation (1)
mnto points of another line,

(4) “A1+B§1+701xf+“Az"‘Bgz‘*"YOzyr+“Aa+%33+7036r=

0,

88 we see by using formule (2). Conversely every point of the line
(4) corresponds, as we see by using (1), to a point on (3). That is,
the transformation establishes a one-to-one correspondence between
the points on the two lines (3) and (4), or, as we say, it transforms
the line (8) into the line (4). On account of this property of trans-
forming straight lines into straight lines, the transformation is called
a aollineation. The transformation is also known as a projective
fran_qformatz'on, for it may be shown that it can be effected by pro-
Jecting one plane on to another by means of straight lines radiating
from a point in space.
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What we have here said in the case of two dimensions appliee
with no essential change to three dimensions. The transformation
' =ax+by+ez+ dyt,

y' = agz + by + gz + dot,
2 = ag + bgy + gz + dyt,
t=ax+by+ez+dd

()

gives us, provided its determinant is not zero, a one-to-one trans.
formation of the points of space, which carries over planes into
planes, and therefore also straight lines into straight lines, and is =
called a collineation or projective transformation of space. The same ‘
idea can be extended to spaces of higher dimensions.

Quite as important is the case of one dimension. The transfor
mation {;r'= a,x + bit,
(6) i

t = agx + byt

gives us, provided its determinant is not zero, a one-to-one trans
formation of the points on a line. This we call a projective trans =
formation of the line, the term collineation being in this case
obviously inadequate.

It is possible, although for most purposes not desirable, to express

the projective transformations (6), (1), (5) in one, two, and three

dimensions in terms of non-homogeneous, instead of homogeneous

coordinates. We thus get the formule

= q_l_X' + bl : 'X’
agX + by

Xl'= &Y+ 61Y+ cl

agX + b Y + 03’

pr= X +hT+e

as X + by ¥ + ¢

e X+5Y+eZ+ dy
4 X+ 0, Y +eZ+dy
@ lp-aXth Y+ epZi+dy
4, X +b,Y +cZ+d,
,_ 0 X+ 8V + el +dy
e X+6 Y+ ez +dg

m X

llb ,

These fractional forms may, in particular, be used to advantage
in case their denominators reduce to mere constants. This special
case, which is known as an affine transformation, may clearly be char-
acterized by saying that all finite points go into finite points.®

* Tf we consider the still more special case in which the constant terms in the
numerators of (8) and (9) are zero, that is, affine transformations in which the origil
is transformed into itself, we see that our formulm (8) and (9) heve the form (6) ané
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These affine transformations are of much importance in mechani
where they are known as homogencous strains; cf., for inst .
Webster’s Dynamics (Leipzig, Teubner), Pp- 427—44;. pisy
Althoug_h we propose to leave the detailed discussion of sineul
t-ransformatlons to the reader (see Exercise 1 at the end of th'gu -
tion), we will give one theorem concerning them. oy

) . Y 1
l I HE'ORE. M 1. Ifthe }?omt.s P, P, - are carried over by a singu-
ar projective transformation into the points P, Pl -, then, if our
- S : : o L .
transformation is in one dimension, the points P’ will all ct;inez'de :
s’

if in two dimensions, they will all be colli if &
‘ - wear; if i th YY)
they will all be complanar, ete. i DeAENS

' Suppose, for i‘nstance, that we have to deal with two dimensions
Since the determm.ant of the collineation (1) is supposed to be zero.
the three polynomials in the second members of (1) are linearly de:

pendent ; that is, there exist three cons
- stants, k., & '
and such that for all values of 2, y, t, e

(10) k' + by + kt =0.

Accordingly all points (2, ¢/, ¢ . ! v
lie on the line (10). (&, 9/, ¢) obtained by this transformation

Similar proofs appl ;
pply to the cases of one d i
or more dimensions. o Ctmension, and of fhree

THEOREM 2. Any three distinct points on a line may be carried

:Ler respectwfaly 'z'nto any three distinct points on the line by one, and
Y ome, projective transformation. ,

dini;;:z t(he tthree initial points be Py, P,, Py, with homogeneous cobr-
which w: I;Vils)},l (:1:12; tg)‘t (e ftS) respectively, and let the points into
hem - trs . P : e
(@5 &), (2}, ), (2, &' o orme.(l l?t’ P}, P, P} with cobrdinates
1 (Zg &), (23, 8').  The projective transformation

I’:a;r_]_ﬁt’
=z + 8t

1) respecti
I(nztioup::t::g; ('iI;hus (6) may be regarded either as the general projective transfor-
e tmnsfomationm, ; ahre regardefi as homogeneous codrdinates) or as a special
B (1)0 the plane (if z,- ¢ are regarded as non-homogeneous cotrdi-
e y _may be regarded either as the general projective transformatio
y Or as a special affine transformation of space. 3

il
! li [.‘h!‘

b |' il i‘ h"m |
'I‘ \\l il
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carries over any given point (z £) into a point (2, #') whose position :

depends on the values of the constants B, 9, 8. Our theorem i
true if it is possible to find one, and, except for a constant factor
which may be introduced throughout, only one, set of seven con-
stants — four, &, B, v, 8, and three others, p;, pc;, pg none of which iy
zero — which satisfy the six equations

piy =azy + Bty [pyrh=0zy + Bty  [pgh=0zy+ Bty
pits =z + 8y, |pole =2+ 8, |pgth =z + Ot

Since the #’sand ¢'s are all known, we have here six homogeneous
linear equations in seven unknowns. Hence there are always solu-
tions other than zeros, the number of independent ones depending on
the rank of the matrix of the coefficients. Transposing and rear
ranging the equations, we have

-7y =;
zyy + 4,8 — tipy =0,
- méPz =0,
=ty i

— zipg =0,

za+t,8

zya+ 1,0
T + t23
zy0+ t,8

Ty + tgs = t:lPS =0.

The matrix of these equations is of rank six. For consider the
determinant of the first six columns with its sign reversed,

. 0.0 0
t. Zy
0 0
0 ty
rg 0
0 0 0

Since P,, P, P; are distinet, there exist two constants ¢, &

peither of which is zero, such that
ey + gty + 23 =0,
ety + ety +tg =0
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Hence, adding to the fifth row of D ¢, times the first row and ¢, times
the second, and to the sixth row ¢, times the third row and ¢, times
the fourth, we have 4

!
o) €y

!
ety oty

and this is not zero, since P and P} are distinct as well as P
and P,. l

‘In the same way we see that the determinants obtained by
stnk:mg out the sixth and the fifth columns respectively of the
matrix are not zero. Accordingly, by Theorem 4, § 17, we see that
the equations have a solution in which none of the quantities
Pi» Py Pg are zero, and that every solution is proportional to this
one. All these solutions obviously yield the same projective trans-
formation of the line.

CoroLLARY. The transformation just determined is non-singular.

This follows, by a reference to Theorem 1, from the fact that it
does not carry Py, P, P, into a single point.

EXERCISES

1 1 Dls‘cuss singular projective transformations in one, two, and three dimen-
sions ; noting, in particular, the effect of the rank of the ms,tr;x of the transfo
Iation, first, on the distribution of the points which have no correspondin intr :
after T;he transformation, and secondly, on the distribution of the points inti Poh' ;1]
10 points are earried over by the transformation. g5

. 2. ;Prove tha:t; any four complanar points no three of which are collinear may
; carried over into any four points in the plane, no three of which are collinear
y one and only one collineation. ' ’

3. State and prove the corresponding theorem in n dimensions.

b 4. Prove that the transformation from a first system of hom(;.vgeneous codrdi-
= €3 to a second is effected by a non-singular linear transformation. Consider
e case of one, two, and three dimensions.




