
CHAPTER VI 

LINEAR TRANSFORMATIONS AND THE COMBINATION 
OF MATRICES 

21. Matrices as Complex Quantities. We have said in § 7 that a 
matrix of m rows and n columns is not a quantity, but a set of m11 

quantities: 'fhis statement is true only if we restrict the term 
quantity to the real and complex quantities of ordinary algebra. A 
moment's reflection, however, will show that the conception of quan
tity as used in arithmetic and algebra has been gradually enlarged 
from the primitive conception of the positive integer by using th, 
word quantity to denote entities which, at an earlier stage, would 
not have been regarded as quantities at all, as, for instance, nega
tive quantities. We will consider here only one of these extensions, 
namely the introduction of complex quantities, as this will lead us to 
look at our matrices from a broader point of view. 

If we have objects of two or more different kinds which can be 
c~unted or measured, and if we consider aggregates of such objects, 
we get concrete examples of complex quantities, as, for instance, 
5 horses, 3 cows, and 7 sheep. A convenient way to write such a 
complex quantity is (5, 3, 7), it being agreed that, in the illustra. 
tion we are considering; the first place shall always indicate horses, 
the second cows, and the third sheep. In the abstract theory of 
complex quantities we do not specify any concrete objects such as 
horses, cows, etc., but merely consider sets of quantities ( couples, 
triplets, etc.~ distinguishing these quantities by the position they 
occupy in our symbol. Such a complex quantity we often find it 
convenient to designate by a single letter, 

a= (a. b, e) 

just as in ordinary algebra we denote a fraction (f ior instance} 
which really involves two numbers, by a single letter. We speak 
here of the simple quantities a, b, e of which a is composed as its first. 
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.second, third components; and we call two complex quantities equal 
when and only wl:ten the components of one are equal respectively to 
the corresponding components of the other. Similarly a complex quan
tity is said to vanish when and only when all of its components are zero. 

\Yhat makes it worth while to speak of such sets of quantities as 
complex quantities is that it is found useful to perform certain alge-• 
braic operations on them. By the sum and diff erence of two complex 
quantities ( b 

IX¡ = a¡, 1, C1), (¼ = ( ª2' b2' ~) 

we mean the two new complex quantities 

IX¡ + '¼ = ( ª1 + '¾, b1 + b2' C1 + C2~ a¡ - (¼ = ( a¡ - '¾, b1 - b2' c1 - c2). • 

When it comes to the question of defining what we shall under
stand by the product of two complex quantities, things are by no 
means so simple. It is necessary here to lay down sorne rule accord
ing to which, when two complex quantities are giv~n, a third, which 
we call their product, is determined. Such rules may be laid down 
in an infinite variety of ways, and each such rule gives us a difieren~ 
11ystem of complex quantities. t 

W e come now to the subject of matrices. A matrix of m rows 
and n columns being merely a set of mn quantities ( which we 
assume to be either real quantities or the ordinary complex quantities 
of elementary algebra) arranged in a definite order, is, according tú 
the point of view we have explained, a complex quantity with mn 
components; and it is only a special application of the theory of 
complex quantities which we have sketched, when we lay down the 
following definitions: 

DEFINITION l. A matrix is said to be zero when and only when all 
of its elements are zero. 

DEFINITION 2. Pwo matrices are said to be equal when and only 
when they have the same number of rows and of columns, and every 
element of one is equal to the corresponding element of the other. 

. • That this is the natural meaning to be attached to the terms sum and di.ff erence 
wtll be seen by reference to the concrete illustration given above. 

t If, in particular, we wish to introduce the ordinary system of complex quanti
ties of elementary algebra, we use a system of couples, and define the product of two 

couples, a1 = (ai, b1), I½ = (112, b2), 

by the formula 1%11½ = (a1a2 - b1b2, a1b2 + a2b1). 

For further details cf. Burkhardt's .Funktionentheorie, §§ 2, 3. 
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DEFINITION 3. By the sum (or dijference) of two matrices of m 
rows and n columns each, we understand a matrix of m rows and n col
umns, each of whose elements is the sum (or dijference) of the corre
sponding elements of the given matrices. 

In order to distinguish them from matrices, we will caU the 
ordinary quantities of algebra (real quantities and ordinary comple:r: 
quantities) scalars. 

Before proceeding, as we shall do in the next section, to the 
definition of the product of two matrices, we will define the product 
of a matrix anda scalar. 

DEFINITION 4. lf a is a matrix • and k a scalar, titen by the prod
uct ka or ak we understand the matrix each of whose elements is k 
times the corresponding element of a. 

As an obvious consequence of our definitions we state the 
theorem: 

THEOREM. All the laws of ordinary algebra hold for the addition 
or subtraction of matrices and their multiplication by scalars. 

For instance, if a, b, e are matrices, and k, l scalars, 

a+b=b+a, 

a+ (b + e)= (a+ b) + e, 

ka + kb = k( a + b ), 

ka+la=(k+l)a.t 

EXERCIBE 

H r1 and r2 are the ranks of two matrices and R the rank of their sum, prove 
that 

22. The Multiplication of Matrices. Up to tbis point we have con
sidered matrices with m rows and n columns. For the sake of sim
plicity of statement, we shall confine out attention from now on to 
square matrices, that is to the case m = n. This involves no real losa 

• The notation here used, matrices being denoted by heavy-faced type, will be 
systematically followed in this book. 

t We add that, as a matter of notation, we shall write 

(-l)a:;-a. 
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of generality provided we agree to consider a matrix of m rows and 
n columns, where m * n, as equivalent to a square matrix of order 
equal to the larger of the two integers m, n and obtained from the 
given matrix ?Y filling in the lacking rows or columns with zeros. 

The quest10n now presents itself: How shall we define· the prod
uct of two square matrices of the same order? It must be clearly 
understood that we are logically free to lay down here süch definition 
as we please, and that the definition we select is preferable to others 
not on any a priori grounds, but only because it turns out to be more 
useful. W e select the following definition, which is suggested • b 
the multiplication theorem for determinants : y 

D~FINITION 1. ~e product ab of two square matrices of the nth 
order is a square matrix of the nth order in which the element which líes 
in t~e ith row and ;'th column is obtained by multiplying each element o} 
the ith row of a by the corresponding element of the ;'th column of b and 
adding the results. 

Let us denote by ªii and b;; the elements in the ith row and ;'th 
column of_ ~ and b respectively, or, as we will say for brevity, the 
element ( i, J). o~ these matrices. Then, according to our definition, 
the elemen t ( i, J) of the product ab is 

(1) a,1bu+a,2b2;+ ... +a,nb,.¡, 

while the element ( i, i) in the matrix ba is 

(2) ªub,1 + ll.¿¡bi2 + ... +a,.,-bm. 

~ince the two quantities (1) and (2) are not in general equal we 
obtam ' 

THEOREM 1. The multiplication of matrices is not in general com, 
mutative, that is, in general b b 

a * a. 
Let us now consider a third matrix e whose element ( i, ;') is ct'• 

and form the product ( ab )c. The element ( i, i) of this matrix is 

(ai1b11 + ª,2b21 + ... + a;,ibn1)cu 
+(a,1b12 + ªi2b2'l. + ... + ai,A2)c'JJ 

(8) + . . . . . . . . . 
+( ª,1b1n + a,2b2n + .. · + a,nbnn)c,rj. 

• ~toricall_y this definition :VM suggested to Cayley by the consideration of thG 
compos1t1on of )mear transformat10ns; cf. § 23. 
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On the other hand, the element (i, j) of the matrix a(bc) ia 

a,i(bucli + b12C2;+ ··· + b1,.Cn;) 

( 4) + a,lb21Ci; + b22c2i + ... + b2ncn¡) 
+. . . . . . . . . . 

Since the two quantities (3) and ( 4) are equal, we have established 

THEOREM 2. The multiplication of matrices is associative, that i,, 

(ab )e= a(bc). 

Finally, since the element (i,j) of the matrixa(b + e) isclearly 
eq ual to the sum of the elements ( i, j) of the matrices ab and ac, we 
have the result 

THEOREM 3. Phe multiplication of matrices is distributive, that i,, 
a(b +e)= ab + ac. 

Besides the commutative, associative, and distributive laws, there 
is one other principie of elementary algebra which is of constant use, 
namely, the principie that a product cannot vanish unless at least one 
of the factors is zero. Simple examples show that this is not true in 
the algebra of matrices. W e have, for instance, 

(5) 
ªn ª12 O 
ª21 ª22 Ü 

ªa1 ªa~ O 

o o o o 
o o o = o 
b31 ba2 bsa O 

o o 
O O =0, 
o o 

whatever the values of the a's and b's may be. Hence 

THEOREM 4. From the vanishing of the product of two or mor, 
matrices, we cannot irifer that one of the f actors is zero. 

The process of cancelling out non-vanishing factors which enter 
throughout an equation will, therefore, be inadmissible in the algebra 
of matrices. · 

W e next state a result which follows at once from the similarity 
between the theorem for the multiplication of determinants and our 
definition of the product of two matrices : 

THEOREM 5. The determinant of a matrix which is obtained bg 
multiplying together two or more matrices is equal to the product of th, 
tleterminants of these matrices. 
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The conception of the conjugate of a matrix, as defined in § 7, 
Definition 2, is an important one, and the following theorem concern
ing it is often useful: 

THEOREM 6. Phe conjugate of the product of any number oj 
matrices is the product of their conjugates taken in the reverse order. 

In order to prove this theorem we first notice that its truth in the 
case of two matrices follows at once from the definition of the prod
uct of two matrices. I ts truth will therefore follow in all cases if, 
assuming the theorem to be true for the product of n - l matrices, 
we can prove that it is true for the product of n matrices. Let us 
write 

Then, from what we have assumed, 

b' = a~ .. · t¼ afi, 

where we use accents to denote conjugates. Accordingly, 

(a1~ ... a,.)'= (a1b )' = b'a~ = a~ "• !¼a{, 

a.nd our theorem is proved. 
In conclusion we lay down the following : 

DEFINITION 2. A square matrix is said to be singular if its deter
minant is zero. 

According to the convention made at the beginning of this sec
tion, it will be seen that all matrices which are not square are 
singular. 

EXERCISES 

l. DEFINITION. A matrix a is called a divisor of zero if a matrix b different 
from zero exists such that either ab = O or ba = O. 

Prove that every matrix one of whose rows or columna is composed wholly of 
r.eros is a divisor of zero. 

2. lf it is possible to pass from a to b by means of an elementary transforma
tion ( cf. § 19, Definition 1 ), prove that there either ex.iats a non-singular matrix e 
auch that 

or a non-singular matrix d such that 

I' 

ac = 11, 

da=b. 

BlBLlOTECAUNNERSITARIA 
"ALFONSO ~" 
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3. Ii ali the elements of a matrix are real, and if the product of this matri¡ 
and its conjugate is zero, prove that the matrix itself is zero. 

4. If the corresponding elements of two matrices a and b are conjugate imagi• 
naries, and, b' being the matrix conjugate to b, if 

ab'=O, then a= b = O. 

23. Linear Transformation. Before going farther with the 
theory of matrices we will take up, in this section and the next, the 
closely allied subject of linear transformation, which may be regarded 
as one of the most important applications of the theory of matrices. 

In algebra and analysis we frequently have occasion to introduce, 
in place of the unknowns, or variables, we had originally to deal 
with, certain functions of these quantities which we regard as new 
unknowns or variables. Such a transformation, or change of vari
ables, is particularly simple, and for many purposes particularly 
important, if the functions in question are homogeneous linear poly
nomials. It is then callad a homogeneous linear transformation, or, 
as we shall say for brevity, simply a linear transformation. If x1, •· • x. 
are the original variables, and zí, ... x~ the new ones, we have, as the 
formulre for the transformation, 

¡ ~~~a¡~ X¡~ ~-· ~ a~nX•: 

X~ = lln¡X¡ + ... + annX•• 

The square matrix 

a= 

is called the matrix of the transformation, and the determinant of 
this matrix, which we will represent by a, is called the determinant 
of the transformation. Inasmuch as the transformation is com
pletely determinad by its matrix, no confusion will arise if we speak 
of the transformation a. 

In most cases where we have occasion to use a transformation it is 
important for us to be able, in the course of our work, to pass back to 
the original variables, and for this purpose it must be possible, not 
merely to express xi, •·· x~ as functions of x1, •·· xn, but also to express 
x1, ••• x,. as functions of r¡, ... x!,. In the case of linear transforma· 
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tions this can in general be done. For the equations of the transfor
mation may be regarded as non-homogeneous linear equations in 
x1, .• . xn, and if the determinant a of the transformation is not zero, 
they can be solved and give 

X1=-:!ii Xi+•·•+~~, 
a a 

A 

where Aw · · · Ann are the cofactors of ªw · · · ª"" in a. 
This transformation A is called the inverse of the transformation 

a, but it must be remembered that it exists only if a =1= O. A linear 
transformation for which a= O is called a singular transformation. 
If a is non-singular, its in verse A is also non-singular, since the deter, 
minant of A is a-1 (cf. Corollary 2, § 11). 

DEFINITION. The spedal linear transf ormatior,, 

Xi= X¡, X~= x2,. ••• X~= x., 

whose matrix is 1 O 
O 1 

I = .. 

o 
o 

O O 1 
is called the identical transf ormation. 

The determinant of this transforma.tion is l. 
W e turn now to the subject of the composition of linear trans, 

formations. If we introduce a new set of variables x1 as functions 
of the original variables x, and then make a second transformation 
by introducing a third set of variables x11 as functions of the vari
ables x1, these two transformations can obviously be combinad and 
the variables x11 expressed directly in terms of the x's. If the two 
transformations which we combine are linear transformations, it 1s 
readily seen that the resulting transformation will also be linear, 
The precise formulre are important here, and for the sake of simplic• 
ity we will write them in the case of three variables, a case whieh 
will be seen to be perfectly typical of the general case. 
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Let 

¡ Xi = a11X1 + ª1r2 + ª1r3, 
a ~ = a~x1 + ª22X2· + ª2sXs, 

X~ = ªa1X1 + ª82~ + a33X3, 
¡ xl = bu Xi + b1r~ + b1ila, 

b X~ = b21Xi + b22X~ + b2ila, 

:t; = b31Xi + ba2~ + baars, 
be two linear transformations. 
va.lues from a, we get 

Replacing the x''s in b by theit 

:if{ = ( ªubu + ª21b12 + ªa1b1s)x1 

+ ( ª12b11 + ª22b12 + a32b1a)x, 

+ ( ª1ab11 + ª2sb12 + ªsab1a)xa, 

~ = (aub21 + ª21b22 + ªa1b2a)x1 

+ ( ª12b21 + ª22b22 + a32b2a)x2 

+ ( ªrnb21 + ª2ab22 + a33b23)xa, 

x~ = ( auba1 + ª21ba2 + ªs1baa)x1 

+ ( ª12ba1 + ª22bs2 + ªs2b33)x2 

+ ( ª1abs1 + ª2sb32 + ªaab33)xs. 

It will be seen that the matrix of this transformation is ba 
Hence, 

THEOREM. If we pass from the variables x to the variables x' by a 
linear transformation of matrix a, and from the variables z to the vari
ables z' by another linear transformation of matrix b, then the. linear 
transformation of matrix ba will carry us directly from the variables :i: 

to the variables x". * 

24. Collineation. W e come now to an important geometrica.l 
application of the subject of linear transformati?n. For ~he sake ?f 
simplicity we begin with the case of three variables, wlnch we will 
regard as the homogeneous coordinates of points in aplane. 

The equations { x' = a
1
x + b

1
y + c

1
t, 

w f=y+~+~ 
f! = ªsX + bsJJ + C3t 

• This result may be remembered conveniently by means of the following symbolil 
notation, which is often convenient. Let us denote the transformation a by thl 
symbolic equation x' = a(x), and the transformation b by x" = b(x'). The result <4 
combining these two transformations is then x" = b(a(x)) or simply x" = ba(z) . 
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may be regarded as defining a transformation of the points of the 
plane; that is, if (x, y, t) is an arbitrarily given point, we can com
pute, by means of (1), the coordinates (z, y', t') of a second point 
into which we regard the first point as being transformed. The 
only exception is when the computed values of x', y', t! are a.U three 
zero, in which case there is no point into which the given point is 
transformed. This exceptional case can clearly occur only when the 
determinant of the transformation (1) is zero. Let us then confine 
our attention to non-singular linear transformations. In this case, 
not only does every point (x, y, t) correspond to a definite point 
(i, y', t!), but conversely, every point (x', y', t') corresponds to a 
definite point (x, y, t), since the transformation (1) now has an inverse 

X= :4J_X1 + 4z 11' +:4st1 
]) 1)/7 ]) ' 

B B B (2) y= ]S x' + 1) y' + j;t!, 

t=~ '+f1 '+f'nt! 
])X ])'!J ]) ' 

where J) is the determinant of (1), and .A¡, B,, O. are the cofactors 
in D. 

The points (x, y, t) of the line 

(3) ax+ fJy + ryt = O 

are transformed by means of the non-singular transformation (1) 
into points of another line, 

(4) «A1+fl:1 +'YC'1:z;1 + aA2+fl;2+'YC'2y1 + aAs+ !3ffs+'YOat1 =0, 

as we see by using formulre (2). Conversely every point of the line 
(4) corresponds, as we see by using (1), to a point on (3). That is, 
the transformation establishes a one-to-one correspondence between 
the points on the two lines (3) and (4~ or, as we say, it transforms 
the line (3) into the line ( 4 ). On account of this property of trans
forming straight lines into straight lines, the transformation is called 
a collineation. The transformation is also known as a projective 
transformation, for it may be shown that it can be effected by pro
jecting one plane on to another by mean.s of straight lines radiating 
from a point in space. 
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What we have here said in the case of two dimensions ap~liel.i 
with no essential change to three dimensions. The transformation 

\ 

z' = a1x + b1y + c1z + d1t, 

y' = a.¡i; + b?JJ + CzZ + d2t, 

w i=y+~+y+~ 
t' =ª•X+ b4Y + C4Z + d4t 

·ves us, provided its determinant is not zero, a one-to-one tr~ns, 
formation of the points of space, which carries _over _planes m~ 

lanes and therefore also straight lines into stra1ght lmes, and is 
P ' . . f r f space The same called a collineation or pr0Ject1ve trans or1?a 1º~ 0 · 
idea can be extended to spaces of higher d1m_ ens1~ns. 

f di The transfor• Quite as important is the case o one mens1011. 

mation {x' = a1x + b¡t, 
(6) r = a.¡i; + b2t 

. . d d . ts determinant is not zero, a one-to-one trans. 
g1ves us, prov1 e ~ r This we call a projective trans-
formation of the pomts on a me. . . . . thi se 
formation of the line, tbe term collineatwn bemg m s ca 

obviously inadequate. d • bl to ress 
I . 'bl lthough for most purposes not es1ra e, exp 
t is poss1 e, a . (6) (1) ( 5) in one two, and three 

the projective transformat1ons ' ' ' 
dimensions in terms of non-homogeneous, instead of bomogeneouP 

coordinates. We thus get the formulre 

1 a1X + b1Y + c1Z +di 
X'= ªiX + b1, X= a,X + b4Y + c4Z + d,' 

ª2X + h2 d 
1 ª2X + b2 Y+ C2Z + 2, 

{

X' - a¡X + b1 y+ C¡ (9) y = - X+ b y+ c z + d 
- ªsX + bs y+ ca' ª• • • 4 

'b J y a
3
X + b8 Y+ c8Z + d3 . Y1 - ª2X + b2 + C2 Z' = b y z + d . 

- a8X + b3Y + c8' ª•X+ • + c• • 

These fractional forms may, in particular, be used t;~~vanta~ 
. e their denominators reduce to mere constants. is spem 
m cas hi bis known asan affine transformation, may clearly be char• 
case, w c . · t fi ite points • 
acterized by saying that all finite pomts go m o n . 

• If we consider the still more specia.l case in which th~ con~tan~-~;:ei:ri: 
8) d (9) are zero that is áffine transformatíons m w i 

numerators of ( an ' f ul •s) and (9) hovfl the form (6) aod 
ia transformad into itaelf, we see that our orm ie l 
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These affine transformations are of much importance in mechanicg, 
where they are known as homogeneous strains; cf., for instance, 
Webster's J)ynamics ( Leipzig, Teulmer), pp. 427-444. 

Although we propose to leave the detailed discussion of singular 
transformations to tte reader (see Exercise 1 at the end of this sec
tion1 we will give one theorem concerning them. 

THEOREM l. If the points P 1, P 2, ••• are carried over by a singu
lar projective transformation into the points P;, P~, •··, then, if our 
transformation is in one dimension, tite points P' will all coincide; 
iJ in two dimensiona, tliey will all be collinear ,· if in three dimensúm,, 
they will all be cornplanar, etc. 

Suppose, for instance, tha.t we ha.ve to deal with two dimensions. 
Sin0e the determinant of the collineation (1) is supposed to be zero, 
the three polynomials in the second members of (1) are linearly de
pendent; that is, there exist three constants, k1, k2

, k
8

, not all zero, 
and such tbat for all values of x, y, t, 

(10) 

Accordingly ali points (x', y', t') obtained by this transformation 
lie on the line (10). 

Similar proofs apply to the cases of one dimension and of three 
or more dimensiona. 

THEOREM 2. Any three distinct points on a line may be carried 
over respectively into any tliree distinct points on the line by one, and 
only one, prqjective transformation. 

Let the three initial points be P1, P 2, P
8

, with homogeneous coor
dinates (X¡, ti), (x2, t2~ (x8, t8) respectively, and let the points into 
which we wish them transformed be Pi, P~, P~ with coordinates 
(~, ~~ (x'21 ~~ (rg, ta')· The projective transformation 

z' = ax+ /3t, 
t' =ryx+ ot 

(1) respectively. Thus (6) may be regarded either as the general projective transfor
lD&tion of a. line (if x, t are regarded as homogeneous coordina.tes) or as a special 
afflne transformation of the plane (if x, t are regarded as non-homogeneous coordi
Dates). Similarly (1) may be regarded eitber as the general projective transformation 
of a plane, or as a special afflne transformation of space. 
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carries over any given point (x, t) into a point (x', tf) whose positio~ 
depends on the values of the constants a, {3, ry, o. Our theorem 18 

true if it is possible to find one, and, except for a constant factor 
which may be introduced throughout, only ope, set of seven_ co~
stants- four, a, {3, ry, o, and three others, p1, p2, p8, none of which ia 

zero - which satisfy the six equations 

{

P1Xi = ax¡ + f3t1, {P2X~ = axz + f3t2, 

PA = ryx1 + ot1, p2t~ = ryx2 + ot2, 
{
pi/a = ax3 + /3ta, 

Psfa = "fX3 + 0ts• 

Since the :z:'s and t's are ali known, we have here six homogeneous 
linear equations in seven unknowns. Hence there are alway~ solu
tions other than zeros, the number of independent ones dependmg on 
the rank of the matrix of the coefficients. Transposing and rear, 
ranging the equations, we have 

Xi"f + t¡O - fiP1 = O, 
-x'zP2 = o, 
- t'zP2 = o, 

-x'sPa= O, 

- t~a=O, 

The ~atrix of these equations is of rank six. For consider the 
determinant of the :flrst six columna with its sign reversed, 

X¡ t¡ o o x' 1 o 
Xz t2 o o o x' 2 

o o X¡ t¡ t' o 
1>= 

1 

o o tz o t' X2 2 

X3 ta o o o o 
o o X3 ta o o 

Since P
1
, P2, P8 are distinct, there exist two constants c1, e, 

neither of which is zero, such that 

C1X1 + CzXz + X3 = 0, 

c1t1 + C:it'J + t1 = 0. 
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.Hence, adding to the fifth row of D c1 times the first row and c2 times 
the second, and to the sixth row c1 times the third row and c2 timea 
the fourth, we ha ve 

X¡ t¡ o o .x{ o 
X:¡ t2 o o o ~ 
o o X¡ t¡ f¡ o - 1x1t1nXi~, D= o o o ~ 

-c1c2 • , 
X2 t2 X2 t2 f¡ ~ 

o o o o C¡Xi e~ . 
o o o o cA C2~ 

and this is not zero, since Pi and P~ are distinct as well as P 1 
and P2• 

In the same way we see that the determinants obtained by 
i¡triking out the sixth and the fifth columna respectively of the 
matrix are not zero. Accordingly, by Theorem 4, § 17, we see that 
the equations have a solution in which none of the quantities 
p1, p2, p3 are zero, and that every solution is proportional to this 
one. Ali these solutions obviously yield the same projective trans
formation of the line. 

ÜOROLLARY. The transformation just determined is non-singular. 

This f ollows, by a reference to Theorem 1, from the fact that it 
does not carry P1, P2, P8 into a single point. 

EXERCISES 

l. Discuss singular projective transformations in one, two, and three dimen
siona; noting, in particular, the effect of the rank of the matrix of the transfor
mation, first, on the distribution of the points which have no corresponding points 
after the transformation, and secondly, on the distribution of the points into which 
'lo points are carried over by the transformation. 

2. Prove that any four complanar points no three of which are collinear may 
be carried over into any four points in the plane, no three of which are collinear, 
by one and only one collineation. 

3. State and prove the corresponding theorem in n dimensions. 

4. Prove that the transformation from a first system of homogeneous coordi• 
nates to a second is effected by a non-singular linear transformation. Consider , 
the case of one, two, and three dimensiona. 


