
CHAPTER V 

SOME THEOREMS CONCERNING THE RANK OF A MATRIX 

19. General Matrices. In order to show that a given matrix 
1s of rank r, we have first to show that at least one r-rowed deter
minant of the matrix is not zero, and secondly that all (r + 1 )· 
~owed determinants are zero. This latter work may be considerably 
shortened by the following theorem : 

THEOREM l. If in a givffl matrix a certain r-rowed determinant 
is not zero, and all the (r+1)-rowed determinants of which this r-rowed 
determinant is a first minor are zero, thffl all the (r+l)-rowed deter
minants of the matrix are zero. 

W e will assume, as we may do without loss of generality, that 
the non-vanishing r-rowed determinant stands in the upper left. 
hand corner of the matrix. Let the matrix be 

and consider the r + 1 sets of n quantities each which lie in the first 
r + 1 rows of this matrix. These r + 1 sets of quantities are linearlJ 
dependent, as will be seen by reference to the proof of Theorem 1, 
§ 13, for although we knew there that all the (r + 1 )-rowed deter
minants were zero, we made use of this fact only for those (r + 1) 
rowed determinants which we now assume to be zero. Moreover. 
since the r sets of constants which stand in the first r rows of our 
matrix are linearly independent, it follows that the (r + l)th row ii1 
linearly dependent on the first r. Precisely the same reasoning 
shows that each of the subsequent rows is linearly dependent on the 
first r rows. Accordingly, by Theorem 5, § 17, any r + 1 rows are 
linearly dependent ; and therefore, by Theorem 1, § 13, ali the (r+ 1} 
rowed determinants of our matrix are zero, as was to be proved. 
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Still another method of facilitating the determination of the rank 
of a matrix is by changing the fortn of the matrix in certain ways 
which do not change its rank. In order to explain this method, we 
begin by laying down the following definition : 

DEFINITION l. By an eleme;itary transf ormation of a matrix W< 
understand a transformation of any one of the f ollowing f orms : 

(a) the interchange of two rows or of two columns; 
(b) the multiplication of each element of a row (or column) by thn 

,ame constant not zero ; 
(e) the addition to the elements of one row (or column) of the prod

ucts of the corresponding elements of another row ( or column) by one and 
the same constant. 

lt is clear that if we can pass from a matrix a to a matrix b by one 
of these transformations, we can pass back from b to a by an elemen
tary transformation. 

DEFINITION 2. Two matrices are said to be equivalent if it is possi
ble to pass from one to the other by a finite number of elementary trans
formations. 

THEOREM 2. If two matru:es are equivalent, they have the same rank. 

I t is evident that the transform1t.tions (a) and (b) of Definition 1 
do not change the rank of a matrix, since they do not affect the van
ishing or non-vanishing of any determinant of the matrix. In order 
to prove our theorem, it is therefore sufficient to prove that the rank 
of a matrix is not changed by a transformation (e). 

Suppose this transformation consists in adding to the elements of 
the pth row of a matrix a k times the elements of the qth row, 
thus giving the matrix b. Let r be tbe rank of tbe matrix a. We 
will first show that this rank cannot be increased by the transforma
tion, that is, tbat all (r + 1 }rowed determinants of tbe matrix b are 
zero. By hypothesis all the (r + 1 }-rowed determinants of the 
matrix a are zero, and sorne of these determinants are clearly not 
changed by the transformation, namely, those which do not contain 
the pth row, or which contain both the pth and the qth row. The 
other determinants, which contain the pth row but not the qth, take 
on after the transformation the form A± kB wbere A and B are 
(r+ 1)-rowed determinants of a, and are therefore zero. Thus we 
see that the transformation (e) never increases the rank of a matrix. 
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Moreover, the rank of b cannot be less than that of a, for then the 
transformation (e) which carries b into a would increase the rank of 
b, and this we have just seen is impossible. 

This theorem can often be used to advantage in determining the 
rank of a matrix, for by means of elementary transformations it ia 
often easy to simplify the matrix v~ry materially. 

EXERCISES 

Determine the ranks of the following matrices: 

L 14 12 6 8 2 
6 104 21 9 17 
7 6 3 4 1 

35 30 15 20 5 

1 75 O 
171 - 69 
301 O 
114 - 46 

116 - 39 O 
402 123 45 
87 - 417 -169 

268 82 30 

3. Prove that any matrix of rank r can be reduced by means of element.aay 
transformations to a form where the element in the ith row and ith column is t 
when i;;ir, while all the other elements of the matrix are zero. 

t. Hence prove that two matrices with m rows and n columns each are alwaya 
equivalent when they have the same rank. 

5, Prove that a necessary and sufficient condition that the matrix 

ª"' ... ª" 

a..i ... a..,. 

be of rank O or 1 is that there exist m + n constant.s ~ "• a., p., ••• /J,. such thai 
/J¡J =«; P;-

20. Symmetrical Matrices. 

DEFINITION. The square matriz 

ªu ª12 ... ª1• 

ª21 ª211 • •• ª2n 

a,.1 a,.2 a,.,. 

(and also its determinant) is said to be symmetrical if the paira of term• 
which are situ,ated symmetrically with respect to the principal diagonal 
are equal. That is, if a,i = ª"· 
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We will denote by ~ an i-rowed principal minor of a. It is 
our main object in this section to show how the rank of the symmet
rical matrix may be determined by an examination of the principal 
minors only. This may be done by means of the following three 
theorems. 

THEOREM 1. lJ an r-rowed principal minor M,. of the symmetrical 
matriz a is not zero, while all the principal minora obtained by adding 
one row and the same column, and also all those obtained by adding two 
rowa and the same two colwmns, to M, are uro, then the rank of a is r. 

Let the non-vanishing minor be the one which stands in the upper 
left-hand corner of a, and let B4 denote the determinant obtained by 
Rdding the ath row and the ,Bth column to M,. 11 we can show that 
Ba/i = O for all unequal values of a and ,8 our theorem will be proved, 
Cf. Theorem 1, § 19. Give to the integers a and ,8 any two unequal 
values, and let (J denote the determinant obtained by adding to M, the 
wth and ,Bth rows and the ath and ,Bth columns of a. Tben we have, 
by hypothesis, M,-=1= O, B .... = O, Bflfl ~ O, 0= O. Let ~ be the two
rowed principal minor of the adjoint of (J which corresponds to the 
complement of M,. in (J. Then by Corollary 8, § 11, we have 

But 

Therefore 

~=OM,=0. 

Mí=B..,,.B1313 -B~. 

Ba.a=O. 

THEOREM 2. If all the (r+ 1 )-rowed principal minors of the sym
metrical matriz a are zero, and also all the (r+ 2)-rowed principal 
minora, then the rank of a is r or less. 

If r = O, all the elements in the principal diagonal are zero and all 
the two-rowed principal minors are zero. 

That is, 

and therefore, since aii = aii = O, aii = O. That is, every element is 
zero and hence the rank is zero, and the theorem is true in this 
special case. 

Now, assume it true when r= k; that is, we assume that when all 
(k+ 1)-rowed principal minors are zero and ali (k+2)-rowed principal 
minors are zero, the rank of a is less than k+ 1. Then it follows that 
'7hen all ( k + 2)-rowed, and all (k+ 8)-rowed principal minors are zero. 
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the r~nk of a is less than k + 2. For in this case, if all ( k + 1 }rowed 
principal minors are zero, the rank is less than k + 1, by hypothesis, 
and if sorne (k+l)-rowed principal minor is not zero, the rank is ex
actly k + 1, by the last theorem. We see then that if the theorem is 
tt"pe for r = k it is true for r = k + 1. But we have pro ved it true for 
r = O, hence it is true for all values of r. 

THEOREM 3. lf the rank of tlie symmetrical matrix a is r > O, there 
is at least one r-rowed principal minor of a which is not zero. 

For all (r+l)-rowed principal minora ar~ zero, and, if all r-rowed 
principal minora were zero also, the rank of a would be r-1 or less, 
by the last theorem. 

We close with a theorem of a somewhat special character which 
will be found useful la ter ( cf. Exercises 4-6, § 50). 

THEOREM 4. JJ the rank of the symmetrical matrix a is r > O, we 
may shift the rows ( at the same time shifting the columns in the same 
w11y, thus keeping a symmetrical) in such a way that no consecutive two 
of the set of quantities 1u· M M 11r lf.Lo, ¡, 2' •• • 1Ur 

shall be zero and M,-::1= O ; Mo being unity, and the other M's being the 
principal minors of a of orders indicated by theii- subscripts, which stand 
in the upper l~ft-hand corner of a after the shifting. 

By definition we have Mo * O. Leaving aside for the moment 
the special case in which all the elements of the principal diagonal are 
zero, let us suppose the element a;, is not zero. Then by sbifting tbe 
ith row and column to the first place, we have M1 * O. We bave 
tn~s fixed the first row and column, but we are still at liberty to 
shift all the others. Now consider the two-rowed principal minor 
obtained by adding to M¡ one row and the same column. Leaving 
aside still the special case in which these are all zero, let us suppose 
that the two-rowed determinant obtained by striking out ali the rows 
and columna except those numbered 1 and i1 is not zero. Then, by 
shifting the i1th row and column into the second place, we have 
Mz * O. W l.l next have to consider the three-rowed principal minors 
of which Mz is a first minor. We can evidently proceed in this way 
until we have so shifted our rows and columns that none of the quan
tities Jfo, M¡, ... M,. are zero, unless at a certain stage we find that 
all the principal minors of a certain order which we have to consider 
are zero. In this case we should have so shifted our first k rows and 
columns that none of the quantities Jfo, M1, ••• M,, are zero. but we 
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should then :find that all (k+ 1 )-rowed principal minors of which M,, 
is a first minor vanish, so that, however we may shift the last n - k 
rows and columns, we have M¡,+1 = O. Let us then examine the 
(k+2)-rowed principal minors of which M,, is a secoud minor.* 
These can (by Theorem 1) not all be zero as otherwise the rank of a 
would be k < r. That is, if Mu 1 = G, we can so arrange tbe rows 
and columns that Mi,+2 * O. Thus we see tbat the rows and col
umns of a may be so shifted that no consecutive two of the M's are 
zero. Now, if M,_1 = O, the above proof shows that we can make 
M, * O. But even though M,_ 1 * O we can still make M, * O, for by 
hypothesis t all the determinants obtained by adding to M,_

1 
two 

rows and the same two columns vanish, and if all those obtained by 
adding one row and the same column were zero also, the rank of a 
wonld be r - 1, by Theorem 1. 

A symmetrical matrix is said to be arranged in normal form wben 
no consecutive two of the M's of Theorem 4 are zero and M,. * O. 

EXERCISES 

1. Determine the ranks of the following matrices: 

2 1 11 2 o 4 10 1 
1 o 4 -1 4 8 18 7 

11 4 56 5 10 18 40 17 
2 -1 5 -6 1 7 17 3 

1 o o 1 4 o 1 b d 
o 1 o 2 5 1 o e e 
o o 1 3 6 b e 2bc cd+be 
1 2 3 14 32 d e cd+be 2de 
4 5 6 32 77 

2. By a skew-symmetric determinant, or matri:x:, is meant one in which aiJw 
- aµ (and therefore ª"=O). 

Establish for sqch matrices theorems similar ro Theorems 1, 2, 3 of this section. 

3. By considering the effect of changing rows inro columns, prove that a skew
symmetric determinant of odd order is always zero. 

4. Prove that the rank of a skew-symmetric matrix is always even. 

• The tacit assumption is here made that when k = r -1, r < n, as otherwise Mt+t 
1rould bave no meaning. The case r = n can, bowever, obviously not occur here, for 
then we should bave Mt+ I =a* O. 

t Bere again we assume that r< n, for if r= n, M, =a*O 


