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CHAPTER III
THE THEORY OF LINEAR DEPENDENCE

12. Definitions and Preliminary Theorems. Two sets of con.
stants (ay, b, ¢, d,,) and (a,, by, ¢y dy) are usually said to be propor-
tional to one another if every element of one set may be obtained
from the corresponding element of the other by multiplying by the
same constant factor. For example, (1, 2, 3, 4) and (2,4, 6, 8) are
proportional. It is ordinarily assumed that either set may be thus
obtained from the other, and in most cases this is true; but in the
case of the two sets (1, 2, 3, 4) and (0, 0, 0, 0) we can pass from
the first to the second by multiplying by 0, but we cannot pass from
the second to the first.

A more convenient definition, for many purposes, and one which

is easily seen to be equivalent to the above-mentioned one, is the
following :

DEFINITION 1. The two sets of econstants
-'EI', x;’ e x:’

P all, e o

n

are said to be proportional to each other if two constants ¢; and ey, not
both zero, exist such that

ez + ezl =0 (=12, ..n)
If ¢;#0, we have
and if e; 0, we have

.
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Thé two sets of constants z} o, - 2
0,0, ... 0,
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are evidently proportional, since if we take ¢, =0 and ¢;= any con-
stant not zero, we have a pair of ¢’s which fulfill the requirements

of our definition. -
Linear dependence may be regarded as a generalization of the
conception of proportionality, Instead of two sets of constants we

vow consider m sets, and give the following :
DEFINITION 2. The m sets of n constants each,
o, of), - 24

are said to be linearly dependent if m constants ¢y, ¢, «++ €qy Mot all zero,
exist such that
e + ez} + -+ + ez™ =10

(=1,2, - m)

(j=1,2 . n)

If this is not the case, the sets of quantities are said to be linearly
independent. ] '

In the same way we generalize the familiar conception of the
proportionality of two polynomials as follows:

DeriNITION 8. The m polynomials (in any number o:f independent
variables) fy, for -+ fo are said to be linearly dependent if m constants
U Cyy ++ Cpy M0t all zero, exist such that

e S+ efy+ o e fn=0.

If this is mot the case, the polynomials are said to be linearly inde-
pendent.* '

The following theorems about linear dependence, Whl'le‘ almost
self-evident, are of sufficient importance to deserve explicit state-
ment : : : :

TaEOREM 1. If m sets of constants (or if m polynomials) are lz.?-
early dependent,it is always possible to express one — bqft not necessari ty
any one — of them linearly in terms of the others. This set Of,; car;!}fan 3
(or this polynomial) is then said to be linearly dependent on the o ers:

This is seen at once if we remember that at least one of the ¢'s
is not zero. The relations (or relation) in which the ¢'s occur can.
then, be divided through by thise.

i i i dependence of m sets of m
* We might clearly go farther and consider the linear 1
polynomials each. The two cases of the tex", would be merely special cases from this
general point of view.
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THBOREM 2. If there exist among the sets of constants (or among the
polynomials)a smaller number of sets (or of polynomials) which are linearly
dependent, then the m sets (or the m polynomials) are linearly dependent

For suppose there are ! sets of constants (or'7 polynomials)’
which are linearly dependent (I<m), then we may take for our sef
of m ¢’s, the [ ¢'s which must exist for the I sets (or polynomials) and
(m —1) zeros

TuzorREM 8. If any one of the m sets of constants consists exclu-
sively of zeros (or if any ome of the polynomidls is identically zero), the
m sets (or the m polynomials) are linearly dependent.

For we may take for the ¢ corresponding to Ghis particular set

(or polynomial) any constant whatever, except zero, and for the other
(m —1) ¢'s, (m — 1) zeros.

13. The Condition for Linear Dependence of $ets of Constants.
In considering m sets of n constants each,

(1) 21, 28, ... g0 (I=1,2, - m)

it will be convenient to distinguish between the two cases m =n and
m>n. :

(@) m<n. We wish here to prove the following fundamental
theorem :

THROREM 1. A necessary and sufficient condition Jor the linear

dependence of the m sets (1) of n constants each, when m<n, 18 that all
the m-rowed determinants of the matriz

2

a o

il g ... el

should vanish.

That this is a necessary condition is at once obvious; for if the
m sets of constants are linearly dependent, one of the rows can be
expressed as a linear combination of the others. Accordingly if in
any of the m-rowed determinants we subtract from the elements of
this row the corresponding elements of the other rows after each row
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has been multiplied by a suitable constant, the elements of this row
will reduce to zero. The determinant therefore vanishes.

We come now to the proof that the vanishing of these deter-
minants is also a sufficient condition. We assume, therefore, that
all the m-rowed determinants of the above matrix vanish. Let us
also assume that the rank of the matrix is > 0%* (ef. De:ﬁnition 3,
§ 7). Without any real loss of generality we may (and will) assume
that the r-rowed determinant which stands in the upper left-hand corner
of the matriz does not vanish ; for by changing the order of the sets
of constants and the order of the constants in each set (and these
orders are clearly quite immaterial) we can bring one of the non-
vanishing »-rowed determinants into this position. .

We will now prove that the first (» 4 1) sets of constants are lin-
early dependent. From this the linear dependence of the m sets
follows by Theorem 2, § 12. .

Let us denote by ¢, ¢;, -~ ¢, the cofactors in the (r+ 1)-rowed
determinant which stands in the upper left-hand corner of the matrix,
and which correspond to the elements of its last column. If we remen-
ber that all the (»+1)-rowed determinants vanish, we get the relations

(J=r+1,r+2 - )

Since the sum of the products of the elements of any column of a
determinant by the cofactors of the corresponding elements of another
solumn is zero, this equation is also true whenj=1, 2, ... r.

This establishes the linear dependence of the first (r 4 1) sets of
constants, since ¢, ., being the r-rowed determinant which stands
in the upper left-hand corner of the matrix, is not zero. !

(b)) m>n. This case can be reduced to the one already considered
by the following simple device. Add to each set of n constantg m—mn
zeros. Wethen have m sets of m constants each. Their matrix con-
tains only one m-rowed determinant, and this vanishes since one, at
least, of its columns is composed of zeros. Therefore these m sets of m
constants each are linearly dependent ; and hence the original m sets
of n constants each werelinearly dependent. Thuswe get the theorem :

s
o+ €] + o+ + €2 =0

THEOREM 2. m sets of n constants each are always linearly depen-
dent if m > n.

* In general we shall have » = m — 1, but r may have any value less than m. The
only case which we here exclude is that in which all the elements of the matrix are
Z6ro, a case in which the linear dependence is at once obvious.




INTRODUCTION TO HIGHER ALGEBRA

EXERCISES

Determine whether the following sets of constants are linearly

dependent or not : i st oo

4d,
- 3d,

wifads O s1
=B = o |

0, 7s 9 2

14. The Linear Dependence of Polynomials. Suppose we have m

polynomials, T e

in any number of independent variables. A necessary and sufficient
condition for the linear dependence of these polynomials is evidently
the linear dependence of their m sets of coefficients. Thus the condi-
tions deduced in the last section can be applied at once to the case of
polynomials.

EXERCISES

Determine whether the following polynomials are linearly depends

ent or not: 162 + 30z,

6z+2y + 52— 4,
15z 49y - 18

[ 33:1+412—-413+6x4,
(o + 3z + Ta,
2z, - z, -3,
\— 0z, + 0z, — z3+ 4z, 4 8

2224 Bay+ 6y + 142412y - 4,
723 + P+ 6z-— 4y,

322~ Bay+ 3y - bz + 7
523+ 202y + 15y + 35z + 30 y — 10
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15. Geometric Iltustrations. The sets of » constants with which
we had to deal in §§ 12, 13 may, provided that not all the constants
in any one set are zero, advantageously be regarded as the homoge-
neous coordinates of points in'space of n — 1 damensions. It will
then be convenient to speak of the linear dependence or independ-
ence of these points. . The geometric meaning of linear dependence
will be at once evident from the following theorems for the
case n = 4.

Two points will here be represented by two sets of four constants

oo, Ty Yp 2p b
Ty Yp 2p Uy
which will be linearly dependent when, and only when, they are pro-
portional, that is, when the points coincide. Hence:
TarorEM 1. Two points are linearly dependent when, and only
when, they coincide.
If we have three points in space, Py, P,, P, whose cobrdinates

a8 (23, yp, 25 1), (2 Yp 2p by) (2 Yy 2 ty), respectively, and

which are linearly dependent, there must exist three constants e;,
¢y not all zero, such that

Oy

€%y + 3%y + cgzy =0,
G Y1+ Yy + 3y =0,
€121 + 032y + 325 =0,
Let us suppose the order of the points to be so taken that e; 0, and
solve for Ty Yoo 2g gt 2y = by, + ey,
1) Ys= kY1 + ey g
%=hq+%%
ta = kltl + kﬁta’
where %, = — eyfey ky= —cy/e;.  Now if
Aa:-i—By-f—Uz-[-_Dt:O
is the equation of any plane through the points P, and P,, we have

Az + B_yl + Oz, + Dt, =0,
Azy+ By, + COzy+ Dty =0,

| ui‘;\\.i-l
}‘.“”J_‘..l
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Multiplying the first of these equations by %, the second by %,, and

adding, we have, by means of the equations (1),
Azy+ By, + Czy+ Dty =0,

Hence every plane through P; and P, passes through P; also, and
the three points are collinear. :

Now, in order to prove conversely that any three collinear points
are linearly dependent, let us suppose the three points P, P, Py
collinear. We may assume that these three points are distinet, as
otherwise their linear dependence would follow from Theorem 1.
We have seen that when three points are linearly dependent, the line
through two of them contains the third. Hence if we let

:T:' = kl.'b‘l + kgﬂl‘z,
Y =k + kY
o =k + Ry,

t=kyty + oty

where &, and %, are two constants, not both zero, the point (2', ¢/,
2/, t') or P! lies on the line P, P,, and our theorem will be established

it we can show that the constants %, and %, can be so chosen that

the points P’ and P coincide. Now let ax + by + ¢z + dt =0 be the
equation of any plane through the point P, but not through P; or P,

Thus P, is determined as the intersection of this plane with the line
P,P,, so that if P!, which we know lies on PP, can be made to lis
in this plane, it must coincide with P, and the proof is complete.
The condition for P’ to lie in this plane is a2’ + by’ + ¢’ 4 dt' = 0,

Substituting for 2/, &/, 2/, ¢ their values given above, we have

ky(azy + by, + ez + dt,) + ky(azy + by, + 2, + dt,) =0,

But neither of these parentheses is zero, since the plane does not pass
through P; or Py, hence we may give to %, and %, values different
from zero for which this equation is satisfied. We have thus proved

TaEOREM 2. Three points are linearly dependent when, and only
when, they are collinear. '

The proofs of the following theorems are left to be supplied by |
the reader. It will be found that some of them are ‘readily proved
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from the definition of linear dependence, as above, while for others
it is more convenient to use the condition for linear dependence ob-
tained in § 13.

THEOREM 3. Four points are linearly dependent when, and only
when, they are complanar.

THEOREM 4. Five or more points are always linearly dependent.

Another geometric application is suggested by the following con-
siderations: ]

A set of » ordinary * quantities is nothing more nor less than a
complex quantity with n components (ef. § 21). Our first definition of
linear dependence is therefore precisely equivalent to the following:

The m complex quantities

By Ogy o+ Oy
are said to be linearly dependent if m ordinary quantities ¢, ¢,
not all zero, exist such that :

010y + Gy + o0 + cua, = 0.

e G

Now the simplest geometric interpretation for a complex quantity
with # components is as a vector in space of n dimensions,} and we
are thus led to the conception of linear dependence of vectors. The
geometric meaning of this linear dependence will be seen from the
following theorems for the case n=3:

TraroreM 5. Two vectors are linearly dependent when, and only
when, they are collinear.

TrrorEM 6. Three vectors are linearly dependent when, and only
when, they are complanar.

TuroreM 7. Four or more vectors are always linearly dependent.

In order to get a geometric interpretation of the linear dependenca
of polynomials, we must consider, not the polynomials themselves,
but the equations obtained by equating them to zero. We speak of
these equations as being linearly dependent if the polynomials are

* Two different standpoints are here possible according as we understand the term
ordinary quantity to mean real quantity, or ordinary complex quantity.

1 There are of course other possible geometric interpretations. Thus in the case
=4 we may regard our complex quantities as quaternions, and consider the meaning
of linear devendence of two, three, or four quaternions. 0 8 4 6 1 2
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linearly dependent. If then we regard the independent variables as
rectangular codrdinates, these equations give us geometric loci in
space of as many dimensions as there are independent variables.
Thus, in the cases of two and three variables, we have plane curves
and surfaces respectively. The case of two loci is of ne interest,
as they must coincide in order to be linearly dependent. In the case
of three linearly dependent loci it is easily shown that any one musé
meet the other two in all their common points and in no others.

The following theorems will serve to illustrate the geometric mean- |

ing of linear dependence :
(1) In the plane:

TrrorEM 8. Three circles are linearly dependent when, and only |

when, they belong to the same coaxial family.

THEOREM 9. Four circles are linearly dependent when, and only |

when, they have a (real or imaginary) common orthogonal circle.

TuEorEM 10. Four circles are linearly dependent when, and only |
when, the points of intersection of the first and second, and the points of |

intersection of the third and fourth, lie on a common cirele.
THEOREM 11. Five or more circles are always linearly dependent.

(2) In space(using homogeneous codrdinates):

THEOREM 12. Three planes are linearly dependent wkm, and only

when, they tntersect in a line.

TrHEOREM 13. Four planes are linearly dependent when, and only
when, they intersect in a point.

TrEOREM 14. Five or more planes are always linearly dependent.

CHAPTER IV
LINEAR EQUATIONS

16. Non-homogeneous Linear Equations. In every elementary
treatment of determinants, however brief, it is explained how to
solve by determinants a system of n equations of the first degree in
n unknowns, provided that the determinant of the coefficients of
the unknowns is not zero. Cramer’s Rule, by which this is done,
is this:

CrAMER'S RULE. If in the equations

@y + -+ g% =Fy

. (] (] . . . . .

US| A Ay Tp = km

the determinant

18 not zero, the equations have one and only one solution, namely :
a a a
1 2 n
Ty == m =L e =
S TR A R
where a; 18 the n-rowed determinant obtained from a by replacing the

elements of the ith column by the elements ki, kg, - Ky,

This rule, whose proof we assume to be known,* is of funda-
mental importance in the general theory of linear equations fo
which we now proceed.

* The proof as given in most English and American text-books merely establishes
the fact that if the equations have a solution it is given by Cramer’s formul®. That
these formulm really satisfy the equations in all cases is not commonly proved, but
way be easily estabished by direct substitution, We leave it for the reader to do this
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