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Sometimes parentheses are used, thus : 

ª11 ª12 ªin 

ª21 ª22 ª211 

CHAPTER II a,,. 

A FEW PROPERTIES OF DETERMINANTS Even when a matrix is square, it must be carefully noticed that 

7. Some Definitions W th is nota determinant. In fact, a matrix is not a quantity at all, .. 
the d te . : e assume at the reader is familiar ut a system of quantities. This difference between a square ma• 
d te e. rmtªt notation, and will merely recall to him that b rix and a determinant is clearly brought out if we consider the 

e rmman ° the nth order ffect of interchanging columns and rows. This interchange has ne 
ffect on a determinant, but gives us a wholly new matrix. In fact. 

ªu ª12 lli11 e will lay down the definition: 

DEFINITION 2. Two square matrices 

. . . . 
we understand a certa'n h · 1 
1 th 2 1 

1 omogeneous polynom1al of the nth de ªni ... ªnn 
n . en e ements a;;, By tlie side of these determinants ·t . f 

des1rable to consider the system of the 2 1 
1 

IS 
O of which either is obtained from the other by interchanging rows and 

d . . n e ements arranged in , 
or er m wh1ch they stand in the det . t b . Jolumns are called conJugate t to each otlzer. 
into . ermman ' ut not comb1 
f ª poly~omial. Such a square array of n2 elements we sp 

o as a matrix.. In fact, we will lay down the following som 
more general definition of this term: ew 

DEFINITION 1 A 8 te ,~ .• 
l · Y8 ~m 0J mn quantities arranged in a rectan 
ar array of m rows and n columns is called a matrix. 1/ m - n 

say that we have a square matrix of order n. - ' 
It . 

thus: IS customary to place double bars on each side of this a.r 

ª11 ª12 ªin 

ª21 ª22 ª211 

. . 
ªmi ami) ª-00 

Although, as we have pointed out, square matrices and deter
minants are wholly different things, every determinant determines a 
square matrix, the matrix of the determinant, and conversely every 
square matrix determines a determinant, the determinant of the 
natrix. 

Every matrix contains other matrices obtained from it by strik
ing out certain rows or columns or both. In particular it contains 
certain square matrices; and the determinants of these square 
matrices we will call thP. determinants of the matrix. If the matrix 
contains m rows and n columns, it will contain determinants of all 
orders from 1 (the elements themselves) to the smaller of the two 
integers and m and n inclusive.+ In many important problems all 

• Cf., however, § 21. t Sometimes also tl'ansposed . 
t If m = n, there is only one of these determinants of highest order, and it was thiii 

which we called above the determinant of the squa!'e i:ii.atriL 
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of these determinants above a certain order are zero, and it is ofte 
of great importance to specify the order of the highest non-vanish 
ing determinant of a gi ven matrix. ]'or this purpose we lay dow 
the following definition : 

DEFINITION 3. A matrix is said to be of rank r if it contains 
least one r-rowed determinant which is not zero, while all determina 
of order higher than r which the matrix may contain are zero. 

A matrix is said to be of rank O if all its element8 are zero. 

For brevity, we shall speak also of the rank of a determinan 
meaning thereby the rank of the matrix of the determinant. 

W e turn now to certain definitions concerning the minors o 
determinants; that is, the determinants obtained from the give 
determinant by striking out certain rows and columns. 

It is a familiar fact that to every element of a determinan 
corresponds a certain first minor; namely, the one obtained b 
striking out the row and column of the determinant in whic 
the given element lies. Now tbe elements of a determinan 
of the nth order may be regarded as its (n-l)th minora. 
Accordingly we have here a method of pairing off each on 
rowed minor of a gi ven determinant with one of its ( n -1 )-row 
minors. 

Similarly, if M is a two-rowed minor of a determinant of th 
nth order D, we may pair it off against the (n - 2)-rowed minor 
obtained by striking out from ]) the two rows and columns whi 
are representad in M. The two minors M and N we will speak o 
as complementar-y. Thus, in the determinant 

ªu ª12 ªis ª14 ªis 
ª21 ª22 ª2s ª24 ªu 
ªa1 ªs2 ªaa ªa4 ªas ' 
ª41 ª42 ª48 a44 ª46 
ªsi ªs2 ªss ªs4 aóó 

the two minors 

¡a21 
ª12 ªu ªu ª2al, ª42 ª44 ª46' ªsi ªss ªs2 ªs4 aóó 

are complementary. 

A FEW PR.OPERTIES OF DE'l:'ERMINANTS 

In the same way we pair off with every three-rowed minor an 
ln-3)-rowed minor; etc. In general we lay down 

DEFINITION 4. Jj ]) is a determinant of the nth order and M 
one of its k-rowed minors, then the (n-k)-rowed minor N obtained by 
striking out from ]) all the rows and columns represented in Mis called 
the complement of M. 

Conversely, Mis clearly the coroplement of N. 
Let us go back now for a moment to the case of the one-rowed 

minors; that is to the elements tbemsel ves. Let a¡; be the element of 
the determinant J) which stands in the ith row and the jth column. 
Let J)v represent the corresponding first minor. lt will be recalled 
that we frequently have occasion to conshler not this minor Dij but 
the cofactor A¡; of aij defined by the equation A;;= ( - 1 y+í Dij. 

Similarly, it is often convenient to consider not the complement 
of a given minor but its algebraic compleme11t, which in the case just 
mentioned reduces to the cofactor, and which, in general, we define 
as follows: 

DEFINITION 5. Jj Mis the m-rowed minor of D in wltich the rows 
ki, • • • k,,. and the columns l11 • • • lm are represented, then the algebraic comr 
plement of Mis defined by the equation 

alg. compl. of M =(-l)k1 +· .. H•+1,+···+ 1111[compl. of M]. 

The following special case is important: 

DEFINITION 6. By a principal minor of a determinant D is under
ltood a minor obtained by striking out from D the same raws as columns. 

Since in this case, using the notation of Definition 5, we bave 

lci + .. · + km = li + .. · + l,,., 
it follows that the algebraic complement of any principal minor is equa / 
to its plain complement. 

W e have so far assumed tacitly that the orders of the minors we 
were dealing with were less than the order n of the determinant 
itself. By the n-rowed minor of a determinant D o~ the nth order 
we of course understand this determinant itself. The complement 
of this minor has, however, by our previous definition no meaning. 
We will define the complement in this case to be 1, and, by Definition 5, 
this will also be the algebraic complement. 
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EXERCISE 

Prove that, if M and N are complementary minors, either M and N are th 
algebraic complements of eacb other, or - N is the algebraic complement 
M and - Mis the algeb!aic complement of N. 

a Laplace's Development. Just as the elements of any row o 
column and their corresponding cofactors may be used to develop 
determinant in terms of determinants of lower orders, so the k-row 
minors formed from any k rows or columns may be used, along wit 
their algebraic complements, to obtain a more general developmen 
of the determinant, due to Laplace, and which includes as a speci 
case the one just referred to. In order to establish this develop
ment, we begin with the following preliminary theorem : 

THEOREM 1. If the rows and columns of a determinant ]) b, 
shifted in such a way as to bring a certain minor M into the upper lefo 
l,.and cornP.r without changing the order of the rows and columns either 
of Mor of its complement N, then this shifting will change the sign o 
]) or leave it unchanged according as - N or Nis the algebraic com
plement of M. 

To prove this let us, as usual, number the rows and columns of 
]), beginning at the upper left-hand· corner, and let the numbers of 
the rows and columns represented in M, arranged in order of increas
ing magnitude, be k1, ... km, and l1, , .. zm respectively. In order to 
effect the rearrangement mentioned in the theorem, we may fim 
shift the row numbered k1 upward into the first position, thus carry
ing it over k1 - 1 other rows and therefore changing the sign of the 
determinant k1 -:--1 times. Then shift the row numbered k

2 
into the 

second position. This carries it over k2 - 2 rows and hence cbanges 
tbe sign k2 - 2 times. Proceed in this way until the row numbered 
km has been shifted into the mth position. Then shift the columna 
in a similar manner. The final result is to multiply]) by 

Comparing this with Definition 5, § 7, the truth of our theorem i, 
obvious. 

LE!IIMA. If Mis a minor of a determinant ]), the product of M 
by its algebraic complement is identical, when expanded, with some oJ 
the terms of the expansion of ]). 
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Let 

a,.,. 

and call the order of M, m, and its complement N. W e will first 
prove our lemma in the special case in which M stands in the up,er 
left-hand comer of ]), so that N, which in this case is the algebraic 
complement, is in the lower right-hand corner. What we have to 
show here is that the product of any term of M by a term of N is a 
term of ]), and that this term does not come in twice to the product 
MN. Any term of M may be written 

( - l 'fa1,1 ª21, ... ª"'zm, 

where the integers l1, 12, ... lm are merely sorne arrangement of the 
integers 1, 2, ... m, and µ, is the number of inversions of order in this 
arrangement. Similarly, any term of N may be written 

( - 1 /am+l, 1,.+1 a,,.+2, 1,,.+2 ... ª"• 1., 

where lm+I• ... l,. is merely sorne arrangement of the integers m ..- 1, 
... n, and v is the number of inversions of order in this arrangeroent. 
The product of these two terms 

( -1 y+•a111 ª212 ... ª•,n' 
is a term of ]), for tbe factors a are chosen in succession from tl:.e 
first, second, ... nth rows of ]), and no two are from tbe same col
umn, ánd µ,+vis clearly precisely the number of inversions of order 
in the arrangement l1, l2, • .. ln, as compared to the natural arrange-
ment, 1, 2, • .. n, of these integers. • 

Having thus proved our lemma in the special case in which M 
lies in the upper left-hand comer of JJ, we now pass to the general 
case. Here we may, by shifting rows and columns, bring M into 
tbe upper left-hand comer and N into the lower right-hand comer. 
This has, by Theorem 1, the effect of leaving each term in the 
expansion of ]) unchanged, or of reversing the sign of all of them 
according as N or - Nis the algebraic complement of M. Accord
ingly, since the product MN gives, as we have just seen, terms in 
the expansion of this rearranged determinant, the product of M by 
its algebraic cornplement gives terms in the expansion of ]) itself. 
as was to be proved. 
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Laplace's Development, which may be stated in the form of the 
following rule, now follows at once : 

THEOREM 2. Piak out any m rows ( or aolumns) from a determi
nant ]), and f orm all the m-rowed determinants from this matrix. The 
sum of th.e produats of eaah of these minors by its algebraia aomplement 
is the value of ]) . 

Since, by our lemma, each of these products when developed con
sists of terms of ]), it remains merely to show that every term of 
]) occurs in one and only one of these products. This is obviously 
the case; for every term of ]) contains one element from each of the 
m rows of ]) from which our theorem directs us to pick out m-rowed 
determinants, and, since these elements all lie in different columns, 
they lie in one and only one of these m-rowed determinants, say M. 
Since the other elements in this term of ]) obviously all lie in the 
complement N of M, this term will be found in the product MN and 
in none of the other products mentioned in our theorem. 

EXERCISES 

l. From a square matrix of order n and rank: r, s rows ( or columns) are select.ed. 
Prove that the rank of the matrix th ns obtained cannot be less than r + s - n. 

2. Generalize the theorem of Exercise l. 

9. The Multiplication Theorem. Laplace's Development enables 
us to write out at once the product of any two determinants as a 
single determinant whose order is the sum of the orders of the two 
given determinants o ... o 

• 

· · · = Pu ·· · Pin bu .. · b1m , 

whatever the values of the p's may be. For, expanding the large 
determinant in terms of the n-rowed minors of the first n rows, ali 
the terms of the expansion are zero except the one written in the 
first member of the equation. 
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From this formula we will now deduce a far more important 
one for expressing the product of two determinants of the same 
order as a determinant of that order. For this purpose let us choose 
the p's in the last formula as follows: 

Pii=O when i-'F/, P,i= - 1, 

and let us consider for simplicity the product of two determinants 
of the third order. We have 

ª1 ª2 a3 o o o 
/31 /32 /33 o o o 

ª1 "2 a3 ª1 ª2 a3 o o o 
/31 /32 /33 b1 b2 b3 'Y1 'Y2 "/3 = o o -1 ª1 ª2 ª3 'Y1 'Y2 'Ya ª1 ª2 ªa o -1 o b1 b2 bs 

o o -1 ª1 ª2 ªs 

Let us now reduce this six-rowed determinant by multiplying 
its first column by a1 and adding it to the fourth column; then 
multiply the first column by a2 and add it to the fifth; then 
multiply the first column by a8 and add it to the sixth. In this 
way we bring zeros into the last three places in the fourth row. 
Next multiply the second column successively by b1, b2, b8 and 
add it to the fourth, fifth, and sixth columns respectively. 
Finally multiply the third column successively by a1, a2, c8 and 
add it to the fourth, fifth, and sixth columna. The determinant 
thus takes the form 

ª1 "2 "a ª1 ª1 + "2b1 + ªsª1 ª1 ª2 + «2b2 + "a 02 ª1 ªs + ª2 ba + ªa ªs 
/31 /32 f3a /31 ª1 + f32b1 + f3a01 /31 ª2+ f32b2+ f3a02 f31as+ f32bs + f3a0a 

'Y1 'Y'J. 'Ya 'Y1ª1 +'Y2b1 +'Yaª1 'Y1 ª2+ 'Y2b2 +'Yaª2 'Y1 ªa+ 'Y2ba+ 'Yaªs 
-1 o o o o o 

O -1 o o o o 
o o -1 o o () 

and this reduces at once to the three-rowed determinant 

~~+~~+«a~ ~~+~~+«a~ ~~+"2~+"3~ 
/31 ª1 + f32b1 + f3a01 /31 ª2 + f32b2 + f3s 02 /31 ª3 + f32bs + /33a3 · 

'Y1ª1 +'Y2b1 +'Ysª1 'Y1ª2+'Y2b2+'Yaª2 'Y1ªa+'Y2ba+'YaC3 
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W e have thus expressed the product of two determinants of the 
third order as a single determinant of the third order. The method 
we have used is readily seen to be entirely general, and we thus get 
the following rule for multiplying together two determinants of the 
nth order: · 

THEOREM. The product of two determinants of the nth order 
may be expressed as a determinant of the nth order in which tlu 
element which líes in the ith row and jth column is obtained by 
multiplying each element of the ith row of the first factor by tlu 
corresponding element of th9 jth column of the second factor and 
adding the results. 

It should be noted that changing rows into columns in either or 
both of the given determinants, while not affecting the value of the 
product, will alter its forro materially. For exaruple, 

I! !l·l~ ~l=l;! !~/=66
' 

1: : 1 . 1 ! ! 1 = 1 :: :~ 1 = 66' 

and similarly the product of any two deterruinants of the same order 
may be written in four different forms. 

10. Borde-red Determinants. If to a deterruinant of the ntb 
order we add one or more rows and the same number of columns of 
n quantities each and fill in the vacant corner with zeros, the result
ing determinant is called a bordered determinánt. Thus starting froIII 
the two-rowed determinant 
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we may form the bordered determinants 

u' a fJ U¡ u' u" 
'ª fJ U¡ 1 1 

1 o u' u" a fJ U1 'Y U2 2 2 

o 'Y o U2 u' o o o "I U2, 2 Vl V2 

o V1 V2 o o v' v' o o o V¡ Vz 1 2 
v' v' o o v" v" o o o 1 2 

1 2 

1f in the second of these examples we use Laplace's Development 
to expand the bordered determinant according to the two-rowed 
determinants of the last two rows, we see that its value is 

a quantity into which the elements a, fJ, ry, o of the original deter
minant do not enter. Similarly expanding the third of the above 
bordered determinants according to the three-rowed determinants of 
its last three rows, we see that its value is zero. 

The reasoning we have here used is of general application and 
leads to the following results: 

THEOREM l. Jf a determinant of the nth order is bordered with 
n rows and n columns, the resulting determinant has a value whiah 
depends only on the bordering quantities. 

THEOREM 2. If a determinant of the nth order is bordered with 
more than n rows and columns, the resulting determinant always has the 
value zero. 

The cases of interest are therefore those in wbich tbe deter
minant is bordered with less than n rows and coJ.umns. Concerning 
these we will establish the 

0

following, fact: 

THEOREM 3. Jf a determinant of the nth order be bordered by p 
rows and p columns (p < n) of independent variables, the resulting 
determinant is a polynomial of dPgree 2 p in the bordering quantities, 
whose coejficients are the pth minors of the original determinant; and 
conversely, every pth mínor of the original determinant is the coefficient 
of at least one term of this pol,11nomial. 
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Let us consider the special case where n = 4 and p = 2. 

ªn ª12 ªrn a14 U¡ u' l 
ª21 ª22 ª2a ª24 U2 u' 2 

])= 
U3¡ ªs2 ªas a84 U3 u' 3 

ª•1 ª42 ª•s ª« U4 u' 4 

'111 '112 '113 V4 o o 
v' l v' 2 v' 8 v' 4 o o 

Developing this determinant, by Laplace's method (§ 8), in terma 
of the two-rowed determinants of the last two rows, we have 

ªis ªu U1 u' 1 
¡vl '1121 ª28 ª24 U2 u' 

])= 1 2 + • • • to 6 terms. v' u' V1 2 ªsa a84 U3 8 

ª4a a44 U4 u' 4 

li now we expand each of these four-rowed determinants, by 
Laplace's method, in terms of the two-rowed determinants of theit 
last two columns, and then arrange the result as a polynomial in 
the u's and v's, the truth of the theorem is apparent. W e leave it 
to the reader to fill in the details of the proof here sketched. 

11. Adjoint Determinants and their Minors. 

DEFINITION, Jj, in the determinant 

A., is the cof actor of the element á,;, then the determinant 

Au A¡n 

])'= . . • 

is called the adjoint of P 
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By corresponding minors of ]) and J)', or indeed of any two 
determinants of the same order, we shall naturally understand 
minors obtained by striking out the same rows and columna from 
J) as from ])'. These definitions being premised, the fundamental 
theorem here is the following : 

THEOREM. Jj lY is the adjoint of any determinant ]), and M and 
M' are corresponding m-rowed minors of D and ])' respectively, then 
M' is equal to the product of Dm-i by the algebraic complement of M. 

W e will prove this theorem :first for the special case in which 
the minors M and M' lie at the upper left-hand corners of ]) and D' 
respectively. We may then write 

An ... A1m ... Á¡n 
. . . 

Ám1 Ámm Ámn 

M'= o o 1 o ... o 
o o o 1 o 

. . . . 
o ... o o o 1 

Let us now interchange the columns and rows of ]), 

ªn ªni 

and then form the product M']) by the theorem of § 9. This gives 

D O O O O 
O D ... O O O 
. . . . . . . . . . . . . . 

M'J)= o o D o o 
a¡,m+l ª2,m+} am,m+l ªm+1,m+l an,tn+l 

ªin ª211 an,n ªm+1,n ª• 
ªm+l,m+l an,111+1 

=D"' . . 
ªm+t,• a .. 
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Let us here regard ªw • •· ann as n2 independent variables. 
Then the equation just written becomes an identity, from which JJ. 
since it is not identically zero, may be cancelled out, and we get 

(1) M's])"l·l 
. . . . 
. . . . . . 

•.. a n,11 

Sin~e the determinant which is written out in (1) is precisely the 
algebra1c complement ~f ~ our theorem is proved in the special 
case we have been cons1dermg. It should be noticed that this proof 
holds even in the case m=n; cf. Corollary 2 below. 

Turning now to the case in which the minors M and M' do not 
lie at the upper left-hand corners of 1) and D', let us denote by a the 
sum of the numbers which specify the location of the rows and 
columns in Mor M', the numbering running, as usual, from the up
per left-hand corner. Then by Definition 5, § 7, 

(2) alg. compl. of M = ( - 1/ [ compl. of M]. 

_Let us now, by shifting rows and columns, bring the determinant 
M mto the upper left-hand corner of JJ. Calling the determinant 
JJ, as thus rearranged, JJ1, we have (cf. Theorem 1, § 8) 

(3) 

Th~ cofactors in IJ1 are equal to ( - 1 tAv, since the interchange of 
two adJacent _rows or columna of a determinant changes the sign of 
every one of 1ts cofactors. Accordingly the adjoint of 1) which we 
will call JJi, may be obtained from IJ' by rearranging it;• rows and 
columns in the same way as the rows and columna of 1) were 
rearranged to give JJ1, and then prefixing the factor (-1)° to each 
element. 

Let us now apply the special case already established of our 
th_eorem to the determinant JJ1 and its adjoint Ui, the m-rowed 
mmors M;_ and M¡ being those which are sit~ated in the upper left• 
hand corner of IJ1 and .D¡ respectively. We thus get 

(4) M'¡=JJt-1 [alg. compl. of M;_J. 
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Now, since M¡ is a principal minor, its algebraic complement is 
the same as its ordinary complement, and this in turn is the same as 
the ordinary complement of the minor M in D. Accordingly, using 
(2), we may write 

(5) alg. compl. ofM1 =(-1)4 [alg. compl.of M]. 

Since the elements of M¡ diff er from those of M' only in having 
the factor (-1)ª prefixed to each, it follows that 

(6) M¡ = (- l)maM1• 

We may now reduce (4) by means of (3~ (5~ and (6). We thus 

get (- l)maM' = (-1)4<m-1>J}"l-1(- l)° [alg. compl. of M]. 

Cancelling out the factor ( - 1 )ma from both sides of this equation, 
we see that our theorem is proved. 

We proceed now to point out a number of special cases of this 
theorem which are worth noting on account of their frequent occur
rence. 

CoROLLARY l. If ªv is any element of a determinant IJ of the 
'ltth arder, and if ªv is the cof actor of the corresponding element Aii in 
the adjoint of IJ, then 

This is merely the special case of our general theorem in which 
m = n - l, modified, however, slightly in statement by the use of 
the cofactor a;; in plac~ of the ( n - 1 )-rowed minor ( - 1 y+j ªiJ·• 

CoROLLARY 2. If D is any determinant of the nth arder and IJ' 
ita adjoint, then 

This is the special case m = n. 

COROLLARY 3. 1f 1J is any determinant, and 8 is the second 
minar obtained f1:om it by striking· out its ith and kth rows and its jth 
and lth columns, and if we denote by Áí; the cof actor of the element 
which stands in the ith row and the jth column of IJ, then 

IÁ¡¡ ~1 = (-1)i+i+k+l1)8, 
Akf Akl 

This is the special case m = 2. 
D 


