A FEW PROPERTIES OF DETERMINANTS
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A FEW PROPERTIES QF DETERMINANTS Even when a matrix is square, it must be carefully noticed that
7. Some Definitions, W t is not a determinant.. .In fact, a m.atrix is not a quantity at all,*
U Slesinant notati.on e ;ssu-me that the reader is familiar wput a system of qgantltu'as. This difference bet'weeu a squ'a.re ma-
s sy » and will merely recall to him that pirix a.nd.a determlinant is clearly brought oui‘; 1.f we consider the
® midL.onden ffect of interchanging columns and rows. This interchange has ne
pffect on a determinant, but gives us a wholly new matrix. In fact.

't gy we will lay down the definition:
am ™ aﬂl

DermNiTION 2. Two square matrices

= L% L™ ‘aln
g;;heh?a element.s @y By the side of these determinants it is oft

ra‘ e to (':oneuder the system of the 2 elements arranged in
f)rder in which they stand in the determinant, but notgco bir
nto a polynomial. Such g square array of n£ i1 | Although, as we have pointed out, square matrices and deter-
of as a matriz. In fact, we will lay down the followin yminants are wholly different things, every determinant determines a
mnore general definition of this term : 8. A0Rn square matrix, the matriz of the determinant, and conversely every
square matrix determines a determinant, the determinant of the

A system of mn quantities arranged in a rectan | natriz.

2 oo sand n colum‘ns 8 called a matriz. { Every matrix contains other matrices obtained _from i_t by str.ik-
quare matriz of order n. g out certain rows or columns or both. In particular it contains
It is customar cerfain square matrices; and the determinants of these square
thus.: matrices we will call the determinants of the matrix. If the matrix
contains m rows and n columns, it will contain determinants of all
orders from 1 (the elements themselves) to the smaller of the two
integers and m and n inclusive. In many important problems all

of which either is obtained from the other by interchanging rows and
zolumns are called conjugate 1 to each other.

DeriNtTION 1.
lar array of m rows

Y to place double bars on each side of this a.rmﬂ
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* Cf., however, § 21. t Sometimes also transposed.
t If m=n, there is only one of these determinants of highest order, and it was this
which we called above the determinant of the square matrix.
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of these determinants above a certain order are zero, and it is often
of great importance to specify the order of the highest non-vanishd
ing determinant of a given matrix. For this purpose we lay down
the following definition :

DEFINITION 3. A matriz is said to be of rank r if it contains af
least one r-rowed determinant which is mot zero, while all determinants
of order higher than r which the matriz may contain are zero.

A matriz s said to be of rank 0 if all its elements are zero.

For brevity, we shall speak also of the rank of a determinant
meaning thereby the rank of the matrix of the determinant.

We turn now to certain definitions concerning the minors o
determinants; that is, the determinants obtained from the giveli
determinant by striking out certain rows and columns.

It is a familiar fact that to every element of a determinant

corresponds a certain first minor; namely, the one obtained by
striking out the row and column of the determinant in which
the given element lies. Now the elements of a determinan

of the mth order may be regarded as its (n—1)th minors,

Accordingly we have here a method of pairing off each one
rowed minor of a given determinant with one of its (n — 1)-rowed
minors.

Similarly, if M is a two-rowed minor of a determinant of the
nth order D, we may pair it off against the (n — 2)-rowed minor
obtained by striking out from D the two rows and columns whiel
are represented in M. The two minors M and N we will speak o
as complementary. Thus, in the determinant
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the two minors
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are complementary.
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In the same way we pair off with every three-rowed minor an
= 3)-rowed minor; etc. In general we lay down

DermNiTioN 4. If D 18 a determinant of the nth order and M
one of its k-rowed minors, then the (n — k)-rowed minor N obtained by
striking out from D all the rows and columns represented in M is called
the complement of M.

Conversely, M is clearly the complement of V.

Let us go back now for a moment to the case of the one-rowed
minors; that is to the elements themselves. Let a; be the element of
the determinant D which stands in the ith row and the jth column,
Let D;; represent the corresponding first minor. It will be recalled
that we frequently have occasion to consider not this minor Dy but
the cofactor Ay of a; defined by the equation Ay;=(—1)*Dy.

Similarly, it is often convenient to consider not the complement
of a given minor but its algebraic complement, which in the case just
mentioned reduces to the cofactor, and which, in general, we define
as follows:

DeriNtTION 5. If M 18 the m-rowed minor of D in which the rows
ky -+ k., and the columns ly, --- 1, are represented, then the algebraic com-
plement of M is defined by the equation

alg. compl. of M=(— 1)1+ +hmtht+m[oompl, of M].

The following special case is important :

DErINITION 6. By a principal minor of a determinant D s under-
#tood a minor obtained by striking out from D the same rows as colwmns.

Since in this case, using the notation of Definition 5, we bave
byt tbp=b+ o+l

it follows that the algebraic complement of any principal minor is equai
to its plain complement.

We have so far assumed tacitly that the orders of the minors we
were dealing with were less than the order n of the determinant
itself. By the n-rowed minor of a determinant D of the nth order
we of course understand this determinant itself. The complement
of this minor has, however, by our previous definition no meaning.
We will define the complement in this case to be 1, and, by Definition 5,
this will also be the algebraic complement.
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EXERCISE

Prove that, if M and N are complementary minors, either M and N are ¢
algebraic complements of each other, or — N is the algebraic complement o
M and — M is the algebraic complement of V.

8. Laplace's Development. Just as the elements of any row o
column and their corresponding cofactors may be used to develop
determinant in terms of determinants of lower orders, so the k-rowed
minors formed from any % rows or columns may be used, along with
their algebraic complements, to obtain a more general development
of the determinant, due to Laplace, and which includes as a specia
case the one just referred to. In order to establish this develop-
ment, we begin with the following preliminary theorem :

Taeorem 1. If the rows and columns of a determinant D
shifted in such a way as to bring a certain minor M into the upper le
hand corner without changing the order of the rows and columns either
of M or of its complement N, then this shifting will change the sign of
D or leave it unchanged according as — N or Nis the algebraie com
plement of M.

To prove this let us, as usual, number the rows and columns of
D, beginning at the upper left-hand: corner, and let the numbers of
the rows and columns represented in M, arranged in order of increas-
ing magnitude, be &y, -+ k,, and 1, -1, respectively. In order to
effect the rearrangement mentioned in the theorem, we may firs
shift the row numbered %, upward into the first position, thus carry:
ing it over £, — 1 other rows and therefore changing the sign of the
determinant &, —1 times. Then shift the row numbered k, into the
second position. This carries it over &, — 2 rows and hence changes
the sign k, — 2 times. Proceed in this way until the row numbered
k., has been shifted into the mth position. Then shift the columns
in a similar manner. "The final result is to multiply D by |

(=1 Yokt Bl =242 dm) s 1)¢1+ ST I e,

Comparing this with Definition 5, § 7, the truth of our theorem
obvious.

by its algebraic complement is identical, when expanded, with some of
the terms of the expansion of D. .

LemMA. If M is a minor of a determinant D, the product of

| complement, is in the lower right-hand corner.
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Let D=

a‘nl aﬂﬂ.

! and call the order of M, m, and its complement N. We will first
| prove our lemma in the special case in which M stands in the upper
J left-hand corner of D, so that IV, which in this case is the algebraic

What we have to

| show here is that the product of any term of M by a term of N is a
| term of D, and that this term does not come in twice to the product

MN. Any term of M may be written
(_ 1)"6’6131&2?2 e amim'.'

where the integers I, [, -+ 1,, are merely some arrangement of the
integers 1, 2, -+-m, and p is the number of inversions of order in this
arrangement. Similarly, any term of IV may be written

(_ l)yaﬂﬂr‘l, Im+l a:‘m+2, ;'m+2 ik a’ﬂ| (%)

where 1., ++ [, is merely some arrangement of the integers m 1,
=+ 1, and » is the number of inversions of order in this arrangemwent.
The product of these two terms |

(=1y*ayay, = Gy,

i§ a term of D, for the factors a are chosen in sucecession from tlLe
first, second, -+« nth rows of D, and no two are from the same col-
umn, and p+ » is clearly precisely the number of inversions of order
in the arrangement 7, 1, ++ 1,, as compared to the natural arrange-
ment, 1, 2, -~ n, of these integers. G

Having thus proved our lemma in the special case in which M
lies in the upper left-hand corner of D, we now pass to the general
case. Here we may, by shifting rows and columns, bring M into
the upper left-hand corner and IV into the lower right-hand corner.
This has, by Theorem 1, the effect of leaving each term in the
expansion of D unchanged, or of reversing the sign of all of them
according as IV or — Nis the algebraic complement of M. Accord-
ingly, since the product MN gives, as we have just seen, terms in
the expansion of this rearranged determinant, the product of M by
it algebraic complement gives terms in the expansion of D itself.
a8 was to be proved. -
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Laplace’s Development, which may be stated in the form of the
following rule, now follows at once :

THEOREM 2.  Pick out any m rows (or columns) from a determs-

nant D, and form all the m-rowed determinants from this matriz. The
sum of the products of each of these minors by its algebraie complement
18 the value of D.

Since, by our lemma, each of these products when developed con-
sists of terms of D, it remains merely to show that every term of
D occurs in one and only one of these products. This is obviously
the case; for every term of D contains one element from each of the
m rows of D from which our theorem directs us to pick out m-rowed
determinants, and, since these elements all lie in different columns,
they lie in one and only one of these m-rowed determinants, say M.
Since the other elements in this term of D obviously all lie in the
complement IV of M, this term will be found in the product MV and
in none of the other products mentioned in our theorem.

EXERCISES

1. From a square matrix of order n and rank r, s rows (or columns) are selected.

Prove that the rank of the matrix thus obtained cannot be less than » 4+ § — n.
2. Generalize the theorem of Exercise 1.

9. The Multiplication Theorem.
us to write out at once the product of any two determinants as a

single determinant whose order is the sum of the orders of the two -

iven determinants
g Ayq *** @y 0.

bl] aes By *** U 0«0
P11t Pra by e by

P *** Prn Oy *+* b

whatever the values of the p’s may be. For, expanding the large
determinant in terms of the m-rowed minors of the first n rows, all
the terms of the expansion are zero except the one written in the
first member of the equation.

Laplace’s Development enables -
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From this formula we will now deduce a far more importans
one for expressing the product of two determinants of the same
order as a determinant of that order. For this purpose let us choose
the p’s in the last formula as follows:

py=0 whenixj, p,=-1,

and let us consider for simplicity the product of two determinants
of the third order. We have

o L &5
0 g & |G a4 4 By il o
ﬁl Ba Bs|-|by b Z’3 = N 72 7s

e AEH = 0 Oalazas'
U R R S e e e T e

Go i Dbty oo

Let us now reduce this six-rowed determinant by multiplying
its first column by @; and adding it to the fourth column; then
multiply the first column by @, and add it to the fifth; then
multiply the first column by e, and add it to the sixth. In this
way we bring zeros into the last three places in the fourth row.
Next multiply the second column successively by b;, &, b, and
add it to the fourth, fifth, and sixth columns respectively.
Finally multiply the third column successively by e, ¢, ¢ and
add it to the fourth, fifth, and sixth columns. The determinant
thus takes the form

O oy oy et Fapbi e et adytagey aagtaybytage

By By By Biay+B3bi+Byey BragtByby+Bacy Biag+Bobs+Bycy
Y1 Y2 Vs Vi%+YabiH7se Vit vyt vses viag+ vl t s
=" 0 0 0 0 0

=1 0 0 0 0

e 1o 0 0

and this reduces at once to the three-rowed determinant
| o0+ ayb +agey  aay+oby +agey  @ag+ ayby + age
Bty + Bby + Byey  Brag+ Byby+ Byey  Brag+ Byby+ Bacy
Y101 +Yaby + 931 V1% +Yaba + 50 M0+ Wb+ 750y
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We have thus expressed the product of two determinants of the!
third order as a single determinant of the third order. The method
we have used is readily seen to be entirely general, and we thus gef

the following rule for multiplying together two determinants of the
nth order : ‘ '

THEOREM. The product of two determinants of the nth order
may be expressed as a determinant of the nth order in which the
element which lies in the ith row and Jth column ds obtained by
multiplying each element of the ith row of the first factor by the

corresponding element of the jth column of the second JSactor amﬁw
adding the results.

It should be noted that changing rows into columns in either or
both of the given determinants, while not affecting the value of the
product, will alter its form materially, For example,

2 3 20 41

4 5|° 34 73J=66’

2 39|
39 69|~ %

26
33

6] |30
90~ (38
and similarly the product of any two determinants of the same order
may be written in four different forms. -

2 B AT

2 4 |1 48
, 63]‘66’ -

10- Bordered Determinants. If to a determinant of the xth
order we add one or more rows and the same number of columns of
n quantities each and fill in the vacant corner with zeros, the results
ing determinant is called a bordered determinint. Thus starting from
the two-rowed determinant

s
v 0
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we may form the bordered determinants

u u
le B wy oW are ; .
B2 ! Yy Vg
v % ¥, 0 ty Uy 0 0

Ugly 3
vy v
vl 1!2 O 1 2

0 0 0 0
@ olh8 " 0 0

If in the second of these examples we use Laplace’s Development
to expand the bordered determinant according to the two-rowed
determinants of the last two rows, we see that its value is

wyougl o ow
ug uh| vy A
a quantity into which the elements , 8, v, & of the original deter-
minant do not enter. Similarly expanding the third of the above
bordered determinants according to the three-rowed determinants of
its last three rows, we see that its value is zero.

The reasoning we have here used is of general application and
leads to the following results:

TaEOREM 1. If a determinant of the nth order is bordered with
n rows and n columns, the resulting determinant has a value which
depends only on the bordering quantities.

TuroreEM 2. If a determinant of the nth order is bordered with
more than n rows and columns, the resulting determinant always has the
value zero. '

The cases of interest are therefore those in which the deter-
minant is bordered with less than # rows and columns. Concerning
these we will establish the following_ fact:

Tarorem 3. If a determinant of the nth order be bordered by p
rows and p columns (p < n) of independent variables, the resulting
determinant is a polynomial of degree 2p in the bordering quantities,
whose coefficients are the pth minors of the original determinant; and
conversely, every pth minor of the original determinant is the coeficient
of at least one term of this polynomial.
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Let us consider the special case where n =4 and p=2.
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Developing this determinant, by Laplace’s method (§ 8), in terms
of the two-rowed determinants of the last two rows, we have

@14
a
» + -+ to 6 terms.
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If now we expand each of these four-rowed determinants, by

Laplace’s method, in terms of the two-rowed determinants of their
last two columns, and then arrange the result as a polynomial in
the w's and ’s, the truth of the theorem is apparent. We leave it
to the reader to fill in the details of the proof here sketched.

11. Adjoint Determinants and their Minors.
DerINITION. If, in the determinant

Ay is the cofactor of the element &, then the determinant
Au Alﬂ

D=

y. g I
18 called the adjoint of D
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By corresponding minors of D and 2, or indeed of any two
determinants of the same order, we shall naturally understand
minors obtained by striking out the same rows and columns from
D as from D'. These definitions being premised, the fundamental
theorem here is the following :

THEOREM. If D' i the adjoint of any determinant D, and M and
M are corresponding m-rowed minors. of D and D' respectively, then
M is equal to the product of D™ by the algebraic complement of M.

We will prove this theorem first for the special case in which
the minors M and M’ lie at the upper left-hand corners of D and D'
respectively. We may then write

. Rl Ll gl

A, - A,
0 1
0 0

0
1

0 « 000 .1

Let us now interchange the columns and rows of D,
all see aﬂl

D=

L

and then form the product M’ D by the theorem of § 9. This gives

D 0 w0 0
0 D e 0 0

0 0 v D 0
a,

my m+1 um+1. m+]

Ay w1 Yo, m+1 B m+1

ayy Qog oo Oy Cnttn " O

o | Om+1,m+1

LGP 708

By, m+q

Cnt1,n s Oy
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Let us here regard a;, - ., as n? independent variables
Then the equation just written becomes an identity, from which I
since it is not identically zero, may be cancelled out, and we get

mtlymtl  *** Bymay

(1) M = prt

a’m+],n S a’n,n

Since the determinant which is written out in (1) is precisely the
algebraic complement of M, our theorem is proved in the special
case we have been considering. It should be noticed that this proof
holds even in the case m=n; cf. Corollary 2 below. ‘

Turning now to the case in which the minors Mand M’ do not |
lie at the upper left-hand corners of D and D', let us denote by a the
sum of the numbers which specify the location of the rows and
columns in M or M, the numbering running, as usual, from the up-
per left-hand corner. Then by Definition 5 §7,

(2) alg. compl. of M= (- 1)* [compl. of M].

Let us now, by shifting rows and columns, bring the determinant
M into the upper left-hand corner of D. Calling the determinant
D, as thus rearranged, D;, we have (cf. Theorem 1, §8)

(3) .Dl=(—1)“,'D.

The cofactors in D, are equal to (— 1)"4y, since the interchange of
two adjacent rows or columns of a determinant changes the sign of
every one of its cofactors. Accordin gly the adjoint of D, which we: |
will call D, may be obtained from 2’ by rearranging its rows and .
columns in the same way as the rows and columns of D were
rearranged to give D,, and then prefixing the factor (— 1) to each |
element.

Let us now apply the special case alreddy established of our
theorem to the determinant D; and its adjoint D), the m-rowed
minors M, and M, being those which are situated in the upper left-
hand corner of D, and D respectively. We thus get

M=Dp-! [alg. compl. of M.
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Now, since M, is a principal minor, its algebraic c.omplement is
the same as its ordinary complement, and this in turn is .the sa,me_ as
the ordinary complement of the minor Min D. Accordingly, using
(2), we may write
(5) alg. compl. of M, =(—1)* [alg. compl. of M].

Since the elements of M differ from those of M’ only in having
the factor (— 1) prefixed to each, it follows that

(®) My =(= 1y,
We may now reduce (4) by means of (8), (5), and (6). We thus
85 (_1pe! = (= 1)-0 DA~ 1y [alg. compl. of M].

Cancelling out the factor (— 1) from both sides of this equation,
we see that our theorem is proved. ' :

We proceed now to point out a number of spt?clal cases of this
theorem which are worth noting on account of their frequent occur-
rence.

CoroLLARY 1. If a; i any element of a determinant D of t{w
wth order, and if oy 18 the cofactor of the corresponding element Aif i
the adjoint of D, then

— n=2
Ly = D a,&-.

This is merely the special case of our general theorem in which
m=n—1, modified, however, slightly in statement by.t.he use of
the cofactor «; in place of the (n — 1)-rowed minor (— 1)* ¢,

CoroLLARY 2. If D is any determinant of the nth order and D'
s adjoint, then D =D,

This is the special case m = n.

CororLvARrY 8. If D is any determinant, and 8 is the :3300’:;24:3
minor obtained from it by striking: out its ith and kth rows and its jth
and lth columns, ‘and if we denote by Ay the cofactor of the element
which stands in the ith row and the jth column of D, then

Aok

This is the special case m = 2

D

== (_ 1)€+j+k+l_DS_




