INTRODUCTION TO HIGHER ALGEBRA

CHAPTER 1

POLYNOMIALS AND THEIR MOST FUNDAMENTAL
PROPERTIES

1. Polynomials in One Variable. By an integral rational func-
tion of z, or, as we shall say for brevity, a polynomial in #, is meant
a function of z determined by an expression of the form

(@) 6,8% + Cgx% + o + 2%,

where the «'s are integers positive or zero, while the ¢’s are any con-
stants, real or imaginary. We may without loss of generality
agsume that no two of the «’s are equal. This being the case, the
expressions ¢ are called the terms of the polynomial, ¢; is called
the coefficient of this term, and «; is called its degree. The highest
degree of any term whose coefficient is not zero is called the degree
of the polynomial.

It should be noticed that the conceptions just defined — terms,
coefficients, degree — apply not to the polynomial itself, but to the
particular expression (1) which we use to determine the polynomial,
and it would be quite conceivable that one and the same function of
z might be given by either one of two wholly different expressions
of the form (1). We shall presently see (cf. Theorem 5 below)
that this cannot be the case except for the obvious fact that we
may insert in or remove from (1) any terms we please with zero
coefficients.

By arranging the terms in (1) in the order of decreasing «'s and
supplying, if necessary, certain missing terms with zero coefficients,
we may write the polynomial in the normal form

{2) ayz" + 2"+ o + 4,17+ 0,

k "
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It should, however, constantly be borne in mind that a polynomial
in this form is not necessarily of the nth degree; but will be of the

nth degree when and only when a,= 0.

DErINITION.  Two polynomials, fi(z) and fy(z), are said to be
identically equal (fy=f,) if they are equal for all values of z. A
polynomial f(z) is said to vanish identically (f=0) if i vanishes for
all values of .

We learn in elementary algebra how to add, subtract, and multi-
ply * polynomials; that is, when two polynomials fi(z) and f,(z) are
given, to form new polynomials equal to the sum, difference, and

product of these two.

THEOREM 1. If the polynomial
f@)=a,2" + a;2" '+ - +a,

vanishes when z = a, there exists another polynomial
$i(2)=a, 2" + aj2" + - +al,,
f@)=(z— a)d,(2).

such that

For since by hypothesis f(«)= 0, we have
(@) =f(z) - f@)=ay(2" — &) + ay (2" — &) 4+ + a,_,(z — @)
Now by the rule of elementary algebra for multiplying together

two polynomials we have
vt — ot =(2— a)(F 4wt o0 + D).

Hence
f(@)=(z — a)|ap(@* ! + ez + oo + &) + a,(2" + a2 4 o
+a&* )4 o + a4, ]

If we take as ¢,(#) the polynomial in brackets, our theorem is

proved.
Suppose now that 8is another value of z distinet from « for which

Jf(z) is zero. Then #(8)=(B=a)by(8)=0;

* The question of division is somewhat more complicated and will be considered
in §63.
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and since B—ea=0, ¢,(8)=0. We can therefore apply the theo-
rem justv; proved to the polynomial ¢,(z), thus getting a new
polynomial $a(2)= 0"+ Al P el

$1(2)= (2~ B)¢y(2),

A2)= (2~ a)(z — B)gy().

such that

and therefore

Proceeding in this way, we get the following general result:
THEOREM 2. If ay, ay, -+ a; are k distinet constants, and if
F@)= a2 + @ 4 o +a,
and F() = Flag) =+ = f(a) =0,
then J(@)=(2— ) (2 — ) - (2 — ) (),
where $(#)= a2t + bz o 4 B,

(n2),

; Applying this theorem in particular to the case n = k, we see that
if the polynomial f(z) vanishes for n distinct values ey Gy, o+ at, Of 2,
then

J(@)= (2 — o)) (2 — ag) e (2 - &y).
Accordingly, if a,# 0, there can be no value of z other than Qg o
for which f(z)=0. We have thus proved

THEOREM 3. A polynomial of the nth degree in z cannot vanish
Jor more than n distinet values of z.

Since the only polynomials which have no degree are those all of
whose coefficients are zero, and since such polynomials obviously
vanish identically, we get the fundamental resuls :

THEOREM 4. A necessary and sufficient condition that a polyno-
mial in x vanish identically i3 that all its coefficients be zero.

Since two polynomials in z are identically equal when and only
when their difference vanishes identically, we have

: TrEOREM 5. A necessary and sufficient condition that two polyno.
mials in z be identically equal is that they have the same coefficients.

This theorem shows, as was said above, that the terms, coefficients,
and degree of a polynomial depend merely on the polynomial itself,
not on the special way in which it is expressed.
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2. Polynomials in More than One Variable. A function of (2, ¥)
is called a polynomial if it is given by an expression of the form

e @ yPr + cuztayPs + oo + 2%y,

where the a’s and 8's are integers positive or zero.
More generally, a function of (z;, 2,, -+ 2,,) is called a polynomial
if it is determined by an expression of the form

(1) 31551“:3;2-31 e T cleﬂzg;zﬁf.- S L R ckxla"xzﬁk oo VR

where the a's, 8's, «-- ¥'s are integers positive or zero.

Here we may assume without loss of generality that in no two
terms are the exponents of the various 2’s the same ; that is, that if
a;=a; Bi.:Bj'! S e T

then vV

This assumption being made, ¢;z,%z,% .- z," is called a ferm of the
polynomial, ¢; its coefficient, a; the degree of the term in z,, B; in z,,
ete., and a;+ B+ -+ v; the total degree, or simply the degree, of
the term. The highest degree in z; of any term in the polynomial
whose coefficient is not zero is called the degree of the polynomial
in z;, and the highest total degree of any term whose coefficient is
not zero is called the degree of the polynomial.

Here, as in § 1, the conceptions just defined apply for the present
not to the function itself but to the special method of representing
it by an expression of the form (1). We shall see presently, how-
ever, that this method is unique.

Before going farther, we note explicitly that according to the
definition we have given, a polynomial all of whose coefficients are zero
has no degree.

When we speak of a polynomial in » variables, we do not nec-
esrarily mean that all » variables are actually present. One or mors
of them may have the exponent zero in every term, and hence not
appear at all. Thus a polynomial in one variable, or even a con-
svant, may be regarded as a special case of a polynomial in any
larger number of variables.

A polynomial all of whose terms are of the same degree is said
to be homogeneous. Such polynomials we will speak of as forms,*

*There is diversity of nsage here. Some writers, following Kronecker, apply the

term form to all polynomials. On the other hand, homogeneons polynomials are often
spoken of as quantics by English writers-
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distinguishing between binary, ternary, quaternary, and in general
n-ary forms according to the number of variables involved, binary
forms involving two, ternary three, etc. :

Another method of classifying forms is according to their
degree. We speak here of linear forms, quadratic forms, cubic
forms, etc., according as the degree is 1, 2, 8, ete. We will, how-
ever, agree that a polynomial all of whose coefficients are zero may
also be spoken of indifferently as a linear form, quadratic form,
cubic form, ete., in spite of the fact that it has no degree.

If all the coefficients of a polynomial are real, it is called a real
polynomial even though, in the course of our work, we attribute
imaginary values to the variables.

It is frequently convenient to have a polynomial in more than one
variable arranged according to the descending powers of some one
of the variables. Thus a normal form in which we may write a
polynomial in » variables is

Po(Zp - Za) 21" + @+ 2) 2" e+ B o0 ),
the ¢’s being polynomials in the n — 1 variables (z,, - ,).
We learn in elementary algebra how to add, subtract, and multiply
polynomials, getting as the result new polynomials.

DEFINITION.  Two polynomials in any number of variables are
said to be identically equal if they are equal for all values of the vari-
ables. A polynomial is said to vanish identically if it vanishes for
all values of the variables.

THEOREM 1. A necessary and sufficient condition that a 'polyna-
mial in any number of variables vanish identically is that all its coeffi-
eients be zero.

That this is a sufficient condition is at once obvious. To prove
that it is a necessary condition we use the method of mathematical
induction. Since we know that the theorem is true in the case of
one variable (Theorem 4, § 1), the theorem will be completely proved
if we can show that if it is true for a certain number n — 1 of vari
ables, it is true for » variables.

Suppose, then, that

f(”v zn)qu(,(xg, ST AR by(@gy ++- z,,)xl”"l-}- ot b (T o 7,)

vanishes identically. If we assign to (a - 2,) any fixed values
(@5 -+ @), f becomes a polynomial in 2, alone, which, by hypothesis,
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vanishes for all values of z;. Hence its coefficients must, by Theorem
4,§1, all be zero: & (2 ve g)=0 (i=0,1, cr m).

That is, the polynomials ¢y by *** Pm vanish for all values of the
variables, since (zh +++ z,) Was any set of values. Accordingly, by
the assumption we have made that our theorem is true for polyno-
mials in n — 1 variables, all the coefficients of all the polynomials
bp by *** bn a1 ZET0. These, however, are simply the coefficients
of f. Thus our theorem is proved.

Since two polynomials are identically equal when and only
when their difference is identically zero, we infer now at once the

further theorem :

TaEOREM 2. A necessary and sufficient condition that two poly-
nomials be identically equal is that the coefficients of their corresponding

terms be equal.

We come next to

TreoreM 3. If f; and f, are polynomials in any number of vari-
ables of degrees my and my respectively, the product f,f, will be of de-
gree my + My

This theorem is obviously true in the case of polynomials in one
variable. If, then, assuming it tc be true for polynomials in 7 — 1
variables we can prove it to be true “or polynomials in n variables,
the proof of our theorem by the method of mathematical induction
will be complete.

Let us look first at the special case in which both polynomials
are homogeneous. Here every term we get by multiplying them
together by the method of elementary algebra is of degree my+ My
Our theorem will therefore be proved if we can show that there is ab
least one term in the product whose coefficient is not zero. For
this purpose, let us arrange the two polynomials f; and f according
to descending powers of zy,

fl(-’aﬁ,u xn)§¢)6(23-2, :E,,) T’lkl : 7 ‘f’i(fza xﬂ)xlh-2 - AT
fz(xp 5 x”)E(i)[;F (xz’ ¥ mﬂ)ﬂ:lh + ﬁb{’(ﬂ"% cus xﬂ)zllf’l + wes,

Here we may assume that neither ¢} nor ¢; vanishes identically.
Since f; and f; are homogeneous, ¢! and ¢y will also be homogeneous
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of degrees m; — k, and my — k, respectively. In the product f, f; the
terms of highest degree in 2, will be those in the product

6 (23 -+ ) By (25 -+

and since we assume our theorem to hold for polynomials in n—1
variables, ¢;¢) will be a polynomial of degree m,+my—k, — Ky
Any term in this product whose coefficient is not zero gives us when
ltiplied by z**
m}lll plie iﬁ)? 2t a term of t‘he product f; f, of degree m; + my
whose coefficient is not zero. Thus our theorem is proved for the
case of homogeneous polynomials.
Let us now, in the general case, write f, and f; in the forms

.fl(zl’ x“)E (ﬁ;’(rl! xﬂ)+ ¢l,;:;—l(r1! x")_}. caey
fE(xl! xn)E ¢i;"x,(xh el xﬂ) A ¢:;L-—1(x1‘l i xn) s

where ¢/ .and /' are homogeneous polynomials which are either of
degrees 1 an_d 4 respectively, or which vanish identically. Since,
b)rr 1])‘p&)th8ﬁls, fl and f, are of' degll-ees m, and m, respectively,
! and ¢! will not vanish identically, but will be of degrees
my and my. i
The terms of highest degree in the product f; f; will therefore be
the terms of the Product ¢l dor, and this being a product of homo-
geneous polynomials comes under the case just treated and is there-
fore of degree m, +m, The same is therefore true of the product
fif and our theorem is proved.

By a successive application of this theorem we infer

%
xn)ggl rthy,

C.OROLLARY. If k polynomials are of degrees My, Mg, == My Te-
spectively, their product is of degree my+ my+ -« + My

We mention further, on account of their great importance, the
two rather obvious results :

THEOREM 4. If the product of two or more polynomials i8 identi-
cally zero, at least one of the factors must be identically zero.

For if none of them were identically zero, they would all have
definite degrees, and therefore their product would, by Theorem 3,
have a definite degree, and would therefore not vanish identically.

; It is from this theorem that we draw our justification for cancel-
ling out from an identity a factor which we know to be not identi-
cally zero.
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THEOREM 5. If f(2y -+ 2,)i8 a polynomial which is not identically
zero, and if $(zy, - ,) vanishes at all points where f does not vanish,
then ¢ vanishes identically.

This follows from Theorem 4 when we notice that fo =0.

EXERCISES ‘
1. If fand ¢ are polynomials in any number of variables, what can be inferred
from the identity /?=¢? concerning the relation between the polynomials /and ¢?

2. If f and f, are polynomials in (i Zs) Which are of degrees m; and my
respectively in 21, prove that their product is of degree my + my 10 &;.

3. Geometric Interpretations. In dealing with functions of a
single real variable, the different values which the variable may
take on may be represented geometrically by the points of a line;
it being understood that when we speak of a point # we mean the
point which is situated on the line at a distance of z units (to tl.le
right or left according as is positive or negative) from a certain
fixed origin 0, on the line.
two real variables, the sets of values of the variables may be pictured
geometrically by the points of a plane, and in the case of three real
variables, by the points of space ; the set of values represented b.y a
point being, in each case, the rectangular codrdinates of that point.

When we come to functions of four or more variables, however, this
geometric representation 18 impossible.

The complex variable z = & + ¢ depends on the two independent |

real variables £ and 7 in such a way that to every pair of real values
(€, n) there corresponds one and only one value of z. The different
values which a single complex variable may take on may, therefore,
be represented by the points of a plane in which (&, 5) are used as
cartesian coordinates. In dealing with functions of more than one
complex variable, however, this geometric representation is impos-

sible, since even two complex variables r=§E+n, y=E+n 1 are |

equivalent to four real variables (&, 9, &, ny)-

By the neighborhood of a point z=a we mean that part of the
line between the points s=a—eand z=a+e (« being an arbitrary
positive constant, large or small), or what s the same thing, all
points whose cobrdinates z satisfy the inequality |z —a | < e ®

# We use the symbol |Z | to denote the absolute value of Z, i.e. the numerica: =

value of Z if Z is real, the modulus of Z if Z is imaginary.

Similarly, in the case of functions of
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Similarly, by the neighborhood of a point (@, §) in a plane, we
ghall mean all points whose cobrdinates (z, ) satisfy the inequalities

|z—a|<a, |y—bl<B,

where @ and B are positive constants. This neighborhood thus con-
gists of the interior of a rectangle of which (g, b) is the center and
whose sides are parallel to the codrdinate axes.

By the neighborhood of a point (4, 3, ¢) in space we mean all
points whose coordinates (2, y, 2) satisfy the inequalities

le—a|l<w |y—bl<B |z—c|<y.

In all these cases it will be noticed that the neighborhood
may be large or small according to the choice of the constants
a B - ;

If we are dealing with a single complex variable z =&+ i, we
understand by the neighborhood of a point ¢ all points in the plane
of complex quantities whose complex codrdinate z satisfies the in-
equality | — a| < @, « being as before a real positive constant. Since
|z — a| is equal to the distance between = and «, the neighborhood of
a now consists of the interior of a circle of radius « described about
@ as center.

It is found convenient to extend the geometric terminology
we have here introduced to the case of any number of real or
complex variables. Thus if we are dealing with n independent
variables (;, @y + 2,), we speak of any particular set of values
of these variables as a point in space of n dimensions. Here

-we have to distinguish between real points, that is sets of values

of the z’s which are all real, and dmaginary points in which
this is not the case. In using these terms we do not propose
even to raise the question whether in any geometric sense there
is such a thing as space of more than three dimensions. We
merely use these terms in a wholly conventional algebraic
sense because on the one hand they have the advantage of
conciseness over the ordinary algebraic terms, and on the other
hand, by calling up in our minds the geometric pictures of three
dimensions or less, this terminology is often suggestive of new

relations which might otherwise not present themselves to us so
readily.
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By the neighborhood of the point (ay, @y, -+ @,) We understand all

points which satisfy the inequalities
|2y — | <y [Ty @y| <ty [ By — Ca| <y

where ¢, &, - &, are real positive constants.

If, in particular, (a;, @y -+ @x) is a real point, we may speak of
the real neighborhood of this point, meaning thereby all real points
(2, %y ++* &,) which satisfy the above inequalities.

As an illustration of the use to which the conception of the
neighborhood of a point can be put in algebra, we will prove the
following important theorem :

TaroreM 1. A" necessary and sufficient condition that a poly-
nomial f(z, -+ z,) vanish identically s that it vanish throughout the
neighborhood of a point (ay, -+ @,).

That this is a necessary condition is obvious. To prove that it
is sufficient we begin with the case n=1.

Suppose then that f(z) vanishes throughout a certain neighbor-
hood of the point #=a. If f(z) did not vanish identically, it would
be of some definite degree, say k, and therefore could not vanish at
more than % points (cf. Theorem 3, § 1). This, however, is not the
case, since it vanishes at an infinite number of points, namely all
points in the neighborhood of z=a. Thus our theorem is proved
in the case n=1.

Turning now to the case n = 2, let

F(z, y)=o(9)7* + Sy ()" 1+ - + dul(y)

be a polynomial which vanishes throughout a certain neighborhood'

of the point (a, b), say when
|lz—al<e, |y—0]<B.

Let y, be any constant satisfying the inequality
| |y — 0l <B.

Then f(z, y,) is a polynominal in z alone which vanishes whenever
|z—a|<a Hence, by the case n=1 of our theorem, f(z, y,)= 0.

That is,
$(Y0) = “r"1(yo) = «=¢(Y§)= 0.
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Thus all these polynomials ¢ vanish at every point g, in the neigh-
borhood of y =25, and therefore, by the case n=1 of our theorem
they are all identically zero. From this it follows that for ever}:
value of 2z, f(z, y) vanishes for all values of y, that is F=0, and
our theorem is proved. ;

We leave to the reader the obvious extension of this method of
proof to the case of n variables by the use of mathematical induction

From the theorem just proved we can infer at once the following;

’ TH}'!JOREM 2. ’A necessary and sufficient condition that two polyno-
mials in the variables (zy,---z,) be identically equal is that they be
equal throughout the neighborhood of a point (ay,---a,).

EXERCISES

_1. Theorem 3, § 1 may be stated as follows: If f is a polynomial in one
variable which is known not to be of degree higher than n, then if 7 vanishes at
n+ 1 distinct points, it vanishes identically. : =

Establish the following generalization of this theorem :

: If /is a polynomial in (z, y) which is known not to be of higher degree than
nin z, and nof of higher degree than m in y, then, if 7 vanishes at the
(n+1) (m+1) distinet points: ]

. (1) (;:l, 2, n+1)
it vanishes identically. J= k2 midi
vari:}.ﬂe(ienerahze the theorem of Exercise 1 to polynomials in any number of

3. Prove Theorem 4, § 2 by means of Theorem 1 of th i
‘ : e t 2
from this result deduce Theorem 3, § 2. fiiieatin

4. Do Theorems 1 and 2 of this section hold if we i
: consider only real
mials and the real neighborhoods of real points ? ’ e

4. Homogeneous Coirdinates. Though only two quantities are
necessary in order to locate the position of a point in a plane, it is
frequejntly more convenient to use three, the precise values o’f the
quantities being of no consequence, but only their ratios. We will

represent these three quantities by #, y, ¢, and define their ratios by

I 3

5 _—=

(4 t

v;here X and Y are the cartesian codrdinates of a point in a plane.
hl.ls (2, ?, 5) will represent the point whose abscissa is 2 and whose
ordinate is §. Any set of three numbers which are proportional to
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(2, 3, 5) will represent the same point. So that, while to every
set of three numbers (with certain exceptions to be noted below
there corresponds cne and only one point, to each point there cor-
respond an infinite number of different sets of three numbers, all
of which, however, are proportional.

When ¢=0 our definition is meaningless; but if we consider’
the points (2, 8, 1), (2 3, 0.1), (2 3, 0.01), (2, 3, 0.001), .-, which
are, in cartesian cobrdinates, the points (2, 3), (20, 30), (200, 300),
(2000, 8000), ---, we see that they all lie on the straight line through
the origin whose slope is 3. Thus as ¢ approaches zero, z and g
remaining fixed but not both zero, the point (z, g, t) moves away
along a straight line through the origin whose slope is y/z. Hence
it is natural to speak of (z, y, 0) as the point at infinity on the line
whose slope is y/z. If ¢ approaches zero through negative values,
the point will move off along the same line, but in the opposite
direction. We will not distinguish between these two cases, but:
will speak of only one point at infinity on any particular line. It
can be easily verified that if 4 point moves to infinity along any lines
parallel to the one just considered, its homogeneous codrdinates may
be made to approach the same values (z, y, 0) as those just obtained.
It is therefore natural to speak of the point at infinity in a cer-

" tain direction rather than on a definite line. Finally we will agrees
that two points at infinity whose codrdinates are propo=tional shallf
be regarded as coinciding, since these codrdinates may be regarded
as the limits of the coérdinates of one and the same point which
moves further and further off.*

If =y =1t=0, we will not say that we have a point at all, since
the codrdinates of any point whatever may be taken as small as we
please, and so (0, 0, 0) might be regarded as the limits of the codr-
dinates of any fixed or variable point.

# It should be noticed that in speaking of points at infinity we are, considering:
the matter from a purely logical point of view, doing exactly the same thing that w§
did in § 8 in speaking of imaginary points, or points in space of n dimensions ; that is;
we are speaking of a set of quantities as a * point’’ which are not the codrdinates of
any point. The only difference between the two cases is that the codrdinates of out
“tpoint at infinity ** are the limits of the codrdinates of a true point.

Thus, in particular, it is a pure convention, though a desirable and convenient
one, when we say that two points at infinity shall be regarded as coincident when and
only when their codrdinates are proportional. We might, if we chose, regard oll
points at infinity as coincident. There is no logical compulsion in the matter.
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The equation _
AX?24+ BXY+CY*+ DX+ EY + F=0

becomes, in homogeneous codrdinates,

22 x 2
P zY ¥ 4 gy ey DY
32+Bt2+0t2 +Dt+ t+ =0,

ar A2* + By + 2+ Dat + Eyt + F2 =0,

a homogeneous equation of the second degree; and it is evident that
if the codrdinates X, ¥ in any algebraic equation be replaced by
the coérdinates 2, y, ¢, the resulting equation will be homogeneous,
and of the same degree as the original equation. It is to this fact
that the system owes its name, as well as one of its chief advantages.

Th i
e equation A By 4 0t=0

represents, in general, a line, but if A = B=0, ('« 0, it has no true
geometric locus. It is, in this case, satisfied by the coérdinates of all
points at infinity, and by the codrdinates of no other point. We shall
therefore speak of it as the equation of the line at infinity. The reader
may easily verify, by using the equation of a line in terms of its inter-
cepts, that if a straight line move further and further away, its homo-
geneous equation will approach more and more nearly the form ¢=0.

In space of three dimensions we will represent the point whose
cartesian coordinates are X, ¥, Z by the four homogeneous coérdi-
nates z, y, 2, t, whose ratios are defined by the equations

=X LoV "=l
t s v

17
We will speak of (z, y, 2, 0) as “the point at infinity” on a line
whose direction cosines are
z y y 2 1
Vi + g2 4 22 \/w2+y3+zz’ Va2t 442

(0, 0, 0, 0) will be excluded, and ¢ =0 will be spoken of as the equa
tion of the plane at infinity.

Extending the same terminology to the general case, we shall
sometimes find it convenient to speak of (;, @, - #,) not as a point
In space of n dimensions, but as a point represented by its homo-
geneous codrdinates in space of m—1 dimensions, Two points
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whose codrdinates are proportional will be spoken of as identical,
a point whose last codrdinate is zero will be spoken ~f us a point at
infinity, and the case z;= .- =z, =0 will not be spoken of as a
point at all. This terminology will be adopted only in connection
with homogeneous polynomials, and even then it must be clearly
understood that we are perfectly free to adopt whichever terminol-
ogy we find most convenient. Thus, for instance, if f(z,, z, z,) is
a homogeneous polynoriial of the second degree, the equation f=0
may be regarded either as determining a conic in a plane (z, 2, 74

being homogeneous codrdinates) or a quadric cone in space (z;, Zy 75 &

being ordinary cartesian coordinates).

Homogeneous coérdinates may also be used in space of one

dimension. We should then determine the points on a line by two
coordinates z,¢ whose ratio z/t is the non-homogeneous codrdinate
X, i.e. the distance of the point from the origin. It is this repre-
sentation that is commonly made use of in connection with the
theory of binary forms.

5. The Continuity of Polynomials.

DEFINITION. A funetion f(zy, -+ 2,) i8 said to be continuous at the
point (e, - ¢,) if, no matter how small a positive quantity e be chosen,
a neighborhood of the point (ey, - ¢,) can be found so small that the dif.
Jerence between the value of the function at any prnt of this neighbor
hood and its value at the point (¢, - ¢,) 18 in absolu’e value less than e,

That is, f is continuous at (e, -+« ¢,) if, having chosen a positive
quantity e, it is possible to determine a positive & such that

| f (2 o 2a) — S (e - €) | < €

for all values of (z; --- z,) which satisfy the inequalities,
]zl—-cl| < 8, Jfg'_’("g] & 81 Fa Izu-cu| < .

TaEOREM 1. If two functions are continuous at a point, their
sum 18 continuous at this point.

Let f; and f; be two functions continuous at the point (e, -+ ¢,)
and let %, and k, be their respective values at this point. Then, no
matter how small the positive quantity'e may be chosen, we may
take 8, and &, so small that

i—Fl<ie
[fe‘—kzl<%€

when | 2;—¢; | < &,

when |z, —¢] < &.
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Accordingly
i—kl+fi=kl<e
where & is the smaller of the two quantities &, and &,; and, since
|A|+|B|Z|A+ B|, we have
Vi—Ey+fa— k| = |(fy +1y) — (b, + k)| <e when |z, —¢|< 8.

Hence f + f, is continuous at the point (g &)

when [#,—¢;| < §,

COROLLARY. If a finite number of functions are continuous at a
point, their sum is continuous at this point.

THEOREM 2. If two functions are continuous at a point, their
product s continuous at this point.

LeF Ji and f, be the two functions, and k; and k, their values at
the point (e, -+ ¢,) where they are assumed to be continuous. We
have to prove that however small ¢ may be, & can be chosen so small
that

(1) fifa— k| <e when |z, —¢,| < 8.

Let 7 be a positive constant, which we shall ultimately restrict to a

gertam degree of smallness, and let us choose two positive constants
and g, such that

i : A i 'I"'j <7

lfe—Fy|<n

Now take & as the smaller of the two quantities 8, and &. Then.

fifo =yl = A =F)+ ky(fo=Fy)|
SWAIA =k + k|| — K| S {1 A+ | &y lb 9.

when |z, — ¢;| < 8,

when (2, — ¢;[ < &,

Accordingly since, when |z — ¢;] < 8,

ol =k + (fa = k)| < o] + 1y — Bal < [y + o,
we may write

(2) lflfz_k1k2|<f|]€1|+[k2|}7?+fla-

If %, and %, are not both zero, let us take 7 small enough to satisfy

the two inequalities
€ €
G e 9
AP PTMRARY
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If ky = ky =0, we will restrict » merely by the inequality
< Ve.

In either case, inequality (2) then reduces to the form (1) and out
theorem is proved.

CorROLLARY. If a finite number of functions are eontinuous at @
point, their product is continuous at this point.

Referring now to our definition of continuity, we see that any
constant may be regarded as a continuous function of (z, --- ,) for
all values of these variables, and that the same is true of any one of
these variables themselves. Hence by the last corollary any function!
of the form szl z:-', where the &’s are integers positive or zero, i§
continuous at every point. If we now refer to the corollary to
Theorem 1, we arrive at the theorem:

TaEOREM 3. Any polynomial is a continuous function for all)
values of the variables.

Finally, we give a simple application of this theorem.

TaeoreM 4. If f(zy, - z,) i8 a polynomial and f(e,, --- ¢,) %0
it i8 possible to take a neighborhood of the point (e, --- ¢,) so small th
f does not vanish at any point in this neighborhood.

Let k=f(e;y ++ ¢,). Then, on account of the continuity of f a
(eg5 -+ €,), & positive quantity 8 can be chosen so small that through=
out the neighborhood |z; — ¢;| < 8, the inequality

\f—k[<}[k| |

is satisfied. In this neighborhood  cannot vanish; for at any poinf}
where it vanished we should have

\f— k| = k| <3| |,

which is impossible since by hypothesis k0.

6. The Fundamental Theorem of Algebra. Up to this point no
use has been made of what is often known as the fundamental
theorem of algebra, namely the proposition that every algebraid
equation has a root. This fact we may state in more precise form
as follows:
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THEOREM .1. If f(z) s a polynomial of the mth degree where
n2 1, there exists at least one value of z Jor which f(z)=0.

This theorem, fundamental though it is, is not necessary for
most of the developments in this book. Moreover, the methods of
proving the theorem are essentially not algebraic, or only in part
algebraic. Accordingly, we will give no proof of the theorem here,
but merely refer the reader who desires a formal proof to any of the
text-books on the theory of functions of a complex variable. We
shall, however, when we find it convenient to do 80, assume the
truth of this theorem. In this section we will deduce & fow of its
more immediate consequences.

TaEOREM 2. If f(2) is a polynomial of the nth degree,
J(@)=a,2" + a,2 1 ... +a, ,z+a,

(ay#0),

there exists one and only one set of constants, e, oy, - a,, such that
@)= ay(z—a)(z = &) - (2 - a,).

This theorem is seen at once to be true for polynomials of the
first degree. Let us then use the method of mathematical induction
and assume the proposition true for all polynomials of degree less
than n. If we can infer that the theorem is true for polynomials of
Pht_a nth degree, it follows that being true for those of the first degree
1t 1s true for those of the second, hence for those of the third, ete.

By Theorem 1 we see that there is at least one value of z for
which f(z)=0. Call such a value a. By Theorem 1, § 1 we may
write

S(2)=(z— a))¢(2),
where ¢(z)5aoz”‘1+b]x"'3+ S 1 .

f.o‘ince ¢(2) is a polynomial of degree n— 1, and since we are assum-
ing our theorem to be true for all such polynomials, there exist
% —1 constants a,, --- «, such that

#(z)= (2 — &) =+ (2 — 1
F@) = e~ ) @ — ) (2= )

Thus half of our theorem is proved.
a

Hence
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Suppose now there were two such sets of constants, e;, *+ &, and
By B, We ghould then have

(1) f@)=a(z—ap) (z— a,)=ay(z— By) (z—By)-
Let z=¢ in this identity. This gives
ay( ey — By)(ey — By) (o — B.y="0.

Accordingly, since a,#0, @, must be equal to one of the quans
tities By, By B.. Let us suppose the B's to have been taken in
such an order that ;= 8;. Now in the identity (1) cancel out the
factor ay(z — ;) (see Theorem 4, § 2). This gives

(z—ag) - (z— ) =(2— B) (z— By):

Accordingly, since we have assumed the ‘theorem we are proving
to be true for polynomials of degree n— 1, the constants By, =+ By
are the same, except perhaps for the order, as the constants a;, - ty
and our theorem is proved.

DeriNITION. The constants wy, - @, determined in the last theos
rem are called the roots of the polynomial f(z), or of the equation:
flz)=0. If k of these roots are equal to one another, but different
from all the other roots, this root 18 called a k-fold root.

It is at once seen by reference to Theorem 1, § 1 that these roots
are the only points at which f(z) vanishes.

TaEOREM 3. If flzy *+* 2,)18 @ polynomial which s not identin
cally equal to a constant, there are an infinite number of points (zy, =+ Ty )
at which £+ 0, and also an infinite number at which f=0, provided
n>1.

The truth of the first part of this theorem is at once obvious, for
since f is not identically zero, a point can be found at which it is not
zero, and then a neighborhood of this point can be taken so small
that f does not vanish in this neighborhood (Theorem 4, § 5)- Thial
neighborhood, of course, consists of an infinite number of points.

To prove that f vanishes at an infinite number of points, let us
select one of the variables which enters into f to at least the ﬁrsﬁi

degree. Without loss of generality we may suppose this variablé
to be z;. We may then write !

Razy z,)=Fy(zg - z,)2f + Fy(zq z ) 4+ Fulzy, -+ Tk |
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where £>1 and F, is not identically zero. Let (e -+ ¢,) be any
point at which F;is not zero. Then f(2;, ¢y *+- ¢,) is a polynomial
of the kth degree in z, alone. Accordingly, by Theorem 1, there is
at least one value of z; for which it vanishes. If ¢, is such a value,
fley eq + €) =0. Moreover, by the part of our theorem alreadj
proved, there are an infinite number of points where F,+ 0, that
is an infinite number of choices possible for the quantities ¢y, «* €5
Thus our theorem is completely proved. ]

Finally, we will state, without proof, for future reference, a
theorem which says, in brief, that the roots of an algebraic equation
are continuous functions of the coefficients:

TueoreM 4. If a is a root of the polynomial

ao.r" -+ alxﬁ-l_l_ CP ‘1:.-1-’0-!- a, (an#"g)i
n > ’

then mo matter how small a meighborhood |z — w| < e of the point « we
may consider, it is possible to take in space of n+1 dimensions a neigh-
borhood of the point (ayay, - a,) 8o small that, if (bgr byy =+ b,) 18 any
point in this neighborhood, the polynomial

bya" + by2" 14 o 4By 2+ Ds
has at least one root B in the neighborhood |z — a| < e of the point .

For a proof of this theorem we refer to Weber's Algebra,
Vol. 1, §44.

* The theorem remains true if we merely assume that the polynomial is of at least
the first degree. That is, some of the first coefficients ao, 61, - may be zero.




