PREFACE

such a knowledge of determinants and the method of mathematical induction as may easily be acquired by a freshman in a week or two. Nevertheless, the book is not intended for wholly immature readers, but rather for students who have had two or three years' training in the elements of higher mathematics, particularly in analytic geometry and the calculus. In fact, a good elementary knowledge of analytic geometry is indispensable.

The exercises at the ends of the sections form an essential part of the book, not merely in giving the reader an opportunity to think for himself on the subjects treated, but also, in many cases, by supplying him with at least the outlines of important additional theories. As illustrations of this we may mention Sylvester's Law of Nullity (page 80), orthogonal transformations (page 154 and page 173), and the theory of the invariants of the biquadratic binary form (page 260).

On a first reading of Chapters I-VII, it may be found desirable to omit some or all of sections $10,11,18,19,20,25,27,34,35$. The reader may then either take up the subject of quadratic forms (Chapters VIII-XIII), or, if he prefer, he may pass directly to the more general questions treated in Chapters XIV-XIX.

The chapters on Elementary Divisors (XX-XXII) form decidedly the most advanced and special portion of the book. A person wishing to read them without reading the rest of the book should first acquaint himself with the contents of sections 19 (omitting Theorem 1), 21-25, 36, 42, 43.

In a work of this kind, it has not seemed advisable to give many bibliographical references, nor would an acknowledgement at this point of the sources from which the material has been taken be feasible. The work of two mathematicians, however, Kronecker and Frobenius, has been of such decisive influence on the character of the book that it is fitting that their names receive special mention here. The author would also acknowledge his indebtedness to his colleague, Professor Osgood, for suggestions and criticisms relating to Chapters XIV-XVI.

This book has grown out of courses of lectures which have been delivered by the author at Harvard University during the last ten years. His thanks are due to Mr. Duval, one of his former pupils, without whose assistance the book would probably never have been written.

CONTENTS

CHAPTER I

Polynomials and their Most Fundamental Properties

 bection1. Polynomials in One Variable
. 1
2. Polynomials in More than One Variable 4
3. Geometric Interpretations .

8
4. Homogeneous Coördinates .

11
5. The Continuity of Polynomials .

- 14

6. The Fundamental Theorem of Algebra

- 16

CHAPTER II

A Few Properties of Determinants

7. Some Definitions
8. Laplace's Development 24
9. The Multiplication Theorem 26
10. Bordered Determinants
11. Adjoint Determinants and their Minors .

- 26

CHAPTER III
The Theory of Linear Dependence
12. Definitions and Preliminary Theorems 34
13. The Condition for Linear Dependence of Sets of Constants . . . 36
14. The Linear Dependence of Polynomials 38
15. Geometric Illustrations 39

CHAPTER IV
Linear Equations
16. Non-Homogeneous Linear Equations
17. Homogeneous Linear Equations 47
18. Fundamental Systems of Solutions of Homogeneous Linear Equations . vii

CHAPTER V

Some Theorems Concerning the Rank of a Matrix
skotiox
19. General Matrices 56
20. Symmetrical Matrices

CHAPTER VI

Linear Transformations and the Combination of Matrices

21. Matrices as Complex Quantities
22. The Multiplication of Matrices62
23. Linear Transformation66
24. Collineation- 68
25. Further Development of the Algebra of Matrices 74
26. Sets, Systems, and Groups .- 8327. Isomorphism

CHAPTER VII

Invariants. First Principles and Illustrations

28. Absolute Invariants; Geometric, Algebraic, and Arithmetical88
29. Equivalence 92
30. The Rank of a System of Points or a System of Linear Forms as an 94Invariant
31. Relative Invariants and Covariants 95
32. Some Theorems Concerning Linear Forms 100
33. Cross-Ratio and Harmonic Division 102
34. Plane-Coördinates and Contragredient Variables 107
35. Line-Coördinates in Space - 110
CHAPTER VIII
Bilinear Forms
36. The Algebraic Theory 114
37. A Geometric Application 116

CHAPTER IX

Geometric Introduction to the Study of Quadratic Forms

38. Quadric Surfaces and their Tangent Lines and Planes 118
39. Conjugate Points and Polar Planes 121
40. Classification of Quadric Surfaces by Means of their Rank . . . 123
41. Reduction of the Equation of a Quadric Surface to a Normal Form

CHAPTER X

Quadratic Forms
вzctiox
42. The General Quadratic Form and its Polar
43. The Matrix and the Discriminant of a Quadratic Form 128
44. Vertices of Quadratic Forms 129
45. Reduction of a Quadratic Form to a Sum of Squares 131
46. A Normal Form, and the Equivalence of Quadratic Forms . . . 134
47. Reducibility

136
48. Integral Rational Invariants of a Quadratic Form 137
49. A Second Method of Reducing a Quadratic Form to a Sum of Squares . 139

CHAPTER XI

Real Quadratic Forms

50. The Law of Inertia
51. Classification of Real Quadratic Forms 147
52. Definite and Indefinite Forms 150

CHAPTER XII

The System of a Quadratic Form and One or More Linear Forms

53. Relations of Planes and Lines to a Quadric Surface 155
54. The Adjoint Quadratic Form and Other Invariants 159
55. The Rank of the Adjoint Form 161

CHAPTER XIII

Pairs of Quadratic Forms

56. Pairs of Conics
57. Invariants of a Pair of Quadratic Forms. Their λ-Equation . . 165
58. Reduction to Normal Form when the λ-Equation has no Multiple Roots 167
59. Reduction to Normal Form when ψ is Definite and Non-Singular . . 170

CHAPTER XIV

Some Properties of Polynomials in General

60. Factors and Reducibility
61. The Irreducibility of the General Determinant and of the Symmetrical Determinant
62. Corresponding Homogeneous and Non-Homogeneous Polynomials . . 178

CHAPTER XIX

Polynomials Symmetric in Pairs of Variables

section

87. Fundamental Conceptions. Σ and S Functions 252
88. Elementary Symmetric Functions of Pairs of Variables.

253
89. Binary Symmetric Functions 255
90. Resultants and Discriminants of Binary Forms 257

CHAPTER XX

Elementary Divisors and the Equivalence of λ-Matrices

91. λ-Matrices and their Elementary Transformations 262
92. Invariant Factors and Elementary Divisors 269
93. The Practical Determination of Invariant Factors and Elementary Divisors. 272
94. A Second Definition of the Equivalence of λ-Matrices 274
95. Multiplication and Division of λ-Matrices 277

CHAPTER XXI

The Equivalence and Classification of Pairs of Bilinear

Forms and of Collineations

96. The Equivalence of Pairs of Matrices

27997. The Equivalence of Pairs of Bilinear Forms 283
98. The Equivalence of Collineations 284
99. Classification of Pairs of Bilinear Forms 287
100. Classification of Collineations 292
CHAPTER XXII
The Equivalence and Classification of Pairs of Quadratic Forms
101. Two Theorems in the Theory of Matrices 296
102. Symmetric Matrices 299
103. The Equivalence of Pairs of Quadratic Forms 302
104. Classification of Pairs of Quadratic Forms 305
105. Pairs of Quadratic Equations, and Pencils of Forms or Equations 307
106. Conclusion 313
Isdex 317
107. Fundamental Conceptions. Σ and S Functions 240
108. Elementary Symmetric Functions 242
109. The Weights and Degrees of Symmetric Polynomials 245
110. The Resultant and the Discriminant of Two Polynomials in One Variable 248
