PREFACE

such a knowledge of determinants and the method of mathematical induction as may easily be acquired by a freshman in a week or two. Nevertheless, the book is not intended for wholly immature readers, but rather for students who have had two or three years' training in the elements of higher mathematics, particularly in analytic geometry and the calculus. In fact, a good elementary knowledge of analytic geometry is indispensable.

The exercises at the ends of the sections form an essential part of the book, not merely in giving the reader an opportunity to think for himself on the subjects treated, but also, in many cases, by supplying him with at least the outlines of important additional theories. As illustrations of this we may mention Sylvester's Law of Nullity (page 80), orthogonal transformations (page 154 and page 173), and the theory of the invariants of the biquadratic binary form (page 260).

On a first reading of Chapters I-VII, it may be found desirable to omit some or all of sections 10, 11, 18, 19, 20, 25, 27, 34, 35. The reader may then either take up the subject of quadratic forms (Chapters VIII-XIII), or, if he prefer, he may pass directly to the more general questions treated in Chapters XIV-XIX.

The chapters on Elementary Divisors (XX-XXII) form decidedly the most advanced and special portion of the book. A person wishing to read them without reading the rest of the book should first acquaint himself with the contents of sections 19 (omitting Theorem 1), 21-25, 36, 42, 43.

In a work of this kind, it has not seemed advisable to give many bibliographical references, nor would an acknowledgement at this point of the sources from which the material has been taken be feasible. The work of two mathematicians, however, Kronecker and Frobenius, has been of such decisive influence on the character of the book that it is fitting that their names receive special mention here. The author would also acknowledge his indebtedness to his colleague, Professor Osgood, for suggestions and criticisms relating to Chapters XIV-XVI.

This book has grown out of courses of lectures which have been delivered by the author at Harvard University during the last ten years. His thanks are due to Mr. Duval, one of his former pupils, without whose assistance the book would probably never have been written.

CONTENTS

CHAPTER I

POLYNOMIALS AND THEIR MOST FUNDAMENTAL PROPERTIES

SECT	ION								PAGE
1.	Polynomials in One Variable								1
2.	Polynomials in More than One	Varia	able						4
3.	Geometric Interpretations .	. 2					-		8
4.	Homogeneous Coördinates .					1.1	1		11
5.	The Continuity of Polynomials				-				14
6.	The Fundamental Theorem of	Algel	bra	S.T.				-	16

CHAPTER II

A FEW PROPERTIES OF DETERMINANTS

7.	Some Definitions	•							20
8.	Laplace's Development .						- 14		24
9.	The Multiplication Theorem					-			26
10.	Bordered Determinants .					10	1.7		28
11.	Adjoint Determinants and their	Min	ors		1		1000	-	30

CHAPTER III

THE THEORY OF LINEAR DEPENDENCE

12.	Definitions and Preliminary Theorems			1. 1. 1. 1.	-	34
13.	The Condition for Linear Dependence of	Sets	of	Constants		36
14.	The Linear Dependence of Polynomials			mar der	-	38
15.	Geometric Illustrations					39

CHAPTER IV

LINEAR EQUATIONS

6.	Non-Homogeneous Linear Equations	10	•	1		. 0	in.		43
7.	Homogeneous Linear Equations .				1				47
8.	Fundamental Systems of Solutions of He	omog	eneo	us Li	near	Equa	ations	12	49

200

CONTENTS

CHAPTER V

Some Theorems Concerning the Rank of a Matrix

SECT	ION								=4
19.	General Matrices .				•	•	•	•	94
90	Symmetrical Matrices	-	20						56

CHAPTER VI

LINEAR TRANSFORMATIONS AND THE COMBINATION OF MATRICES

21.	Matrices as Complex Quantities	1.							60	
22.	The Multiplication of Matrices .	. 1						•	62	
23.	Linear Transformation					1000	-		66	
24.	Collineation	•	•					۲	68	
25.	Further Development of the Algebra	ra of	Mat	rices	•		•	 ٠	74	
26.	Sets, Systems, and Groups		•	•	•		•	•	80	
27.	Isomorphism						•		83	

CHAPTER VII

INVARIANTS. FIRST PRINCIPLES AND ILLUSTRATIONS

28.	Absolute Invariants; Geometric, Algebraic, and .	Ari	ithmet	ical	•	•	88	
29	Equivalence	1					92	
30	The Bank of a System of Points or a System	of	Linear	Forms	as	an		
00.	Invariant			Section Section			94	
91	Polotize Inverients and Covariants			1001.8	-		95	
91.	Some Theorems Concerning Linear Forms		1	the second		-	100	
52.	Come Patie and Harmonia Division			Friday 1	12	610	102	
33.	Cross-Ratio and Harmonic Division .		a) and	(baying)		and 2	107	
34.	Plane-Coordinates and Contragredient variables		•	1.1.5	-		110	
35	Line-Coordinates in Space		• • •		•	1.0	++4	

CHAPTER VIII

BILINEAR FORMS

36.	The Algebraic Theory	Reto	-	15.00				114
37.	A Geometric Application			and."	12.31		1.	116

CHAPTER IX

GEOMETRIC INTRODUCTION TO THE STUDY OF QUADRATIC FORMS

38.	Quadric Surfaces and their Tangent Lines and Planes .				118	
39.	Conjugate Points and Polar Planes			1	121	
40.	Classification of Quadric Surfaces by Means of their Rank				123	
41.	Reduction of the Equation of a Quadric Surface to a Normal	For	n		124	

CONTENTS

CHAPTER X

QUADRATIC FORMS

SECTION PAGE 42. The General Quadratic Form and its Polar . . . 127 43. The Matrix and the Discriminant of a Quadratic Form . . 128 -. 129 45. Reduction of a Quadratic Form to a Sum of Squares 131 46. A Normal Form, and the Equivalence of Quadratic Forms . . 134 47. Reducibility summer for the summer of the sum of the . 136 48. Integral Rational Invariants of a Quadratic Form . . TO DOG . 137 49. A Second Method of Reducing a Quadratic Form to a Sum of Squares . 139

.

CHAPTER XI

REAL QUADRATIC FORMS

0.	The Law of Inertia		The state	Q.(F)	30 -	and in	mile 1	51	144
1	Marilla CD 10 1 11 T			100	1				111
10	Classification of Real Quadratic Forms						11	1.1	147
0	Definite and Indefinite D							1.1	
12.	Dennite and Indennite Forms .	1.0	The second		-	-			150

CHAPTER XII

THE SYSTEM OF A QUADRATIC FORM AND ONE OR MORE LINEAR

FORMS

53.	Relations of Planes and Lines to a Quadric Surface .	194	12.30	- STAN	1000	155
54.	The Adjoint Quadratic Form and Other Invariants .	muži	6.1 30	15 222	-67	150
55	The Deals of the All' I and		1. C. T. T.	•		109
00.	The Rank of the Adjoint Form.					161

CHAPTER XIII

PAIRS OF QUADRATIC FORMS

56.	Pairs of Conics	169
57	Invariants of a Pair of One dustic France The Strand	100
	invariants of a fair of Quadratic Forms. Their A-Equation .	165
58.	Reduction to Normal Form when the λ -Equation has no Multiple Roots	167
59.	Reduction to Normal Form when this Definite and Non-Singular	170

CHAPTER XIV

Some Properties of Polynomials in General

60. 61	Factors and Reducibility	· iter	R. hom.Z		ngal Can	unet in	1	174
21.	Determinant	General	Determina	nt and of	the Sym	metrica	al ,	170
62.	Corresponding Homogeneo	ous and	Non-Homog	eneous P	olynomia	ls.	. 1	178

ix

CONTENTS

CONTENTS

											PAGE
SECT	NON									-	180
00	Division of Polynomials		1 and the second second				۰		•	•	100
00.	DIVISION OF LOIJ HOMMAN	100	2 4		12.4						184
64	A Special Transformation	ofa	Pol	ynom	nal		۲	٠		•	101
04.	A Special Transformerrow	and the second		the second							

CHAPTER XV

FACTORS AND COMMON FACTORS OF POLYNOMIALS IN ONE VARIABLE AND OF BINARY FORMS

65.	Fundamental Theorems on the Factoring of Polynomials in One Varia-	2	107
	ble and of Binary Forms	1	187
88	The Greatest Common Divisor of Positive Integers	£	188
00.	The Greatest Common Divisor of Two Polynomials in One Variable		191
67.	The Greatest Common Divisor of 1 wo 1 of Mariable		195
68.	The Resultant of Two Polynomials in One variable		107
69.	The Greatest Common Divisor in Determinant Form	•	100
70.	Common Roots of Equations. Elimination	•	198
71.	The Cases $a_0 = 0$ and $b_0 = 0$	•	200
72.	The Resultant of Two Binary Forms	•	201

CHAPTER XVI

FACTORS OF POLYNOMIALS IN TWO OR MORE VARIABLES

73. 74.	Factors Involving only One Variable of Polynomials The Algorithm of the Greatest Common Divisor for	e in ' Poly	rwo	Var nials	iables in Ty		208
	Variables	•a	•			(20
75.	Factors of Polynomials in Two Variables		•			•	200
76	Factors of Polynomials in Three or More Variables	· (•	۰	•		21,

CHAPTER XVII

GENERAL THEOREMS ON INTEGRAL RATIONAL INVARIANTS

17 .	The Invariance of the Factors of Invariants A More General Method of Approach to the Subject of Re	lativ	e Inv	ariai	nts	218 220
79	The Isobaric Character of Invariants and Covariants			1		222
80.	Geometric Properties and the Principle of Homogeneity	•	•.		1	226
81.	Homogeneous Invariants	•			•	230
89	Resultants and Discriminants of Binary Forms .				۲	200

CHAPTER XVIII

SYMMETRIC POLYNOMIALS

83.	Fundamental Conceptions. 2 and S Functions .	•			•	240
84.	Elementary Symmetric Functions				•	242
85	The Weights and Degrees of Symmetric Polynomials					245
86.	The Resultant and the Discriminant of Two Polynomial	s in	One '	Varial	ole	248

CHAPTER XIX

POLYNOMIALS SYMMETRIC IN PAIRS OF VARIABLES

BECTION PAGE 87. Fundamental Conceptions. Σ and S Functions 252 88. Elementary Symmetric Functions of Pairs of Variables. 253 89. Binary Symmetric Functions 255 90. Resultants and Discriminants of Binary Forms 257

CHAPTER XX

ELEMENTARY DIVISORS AND THE EQUIVALENCE OF λ -Matrices

91.	λ -Matrices and their Elementary Transformations .				262
92.	Invariant Factors and Elementary Divisors				269
93.	The Practical Determination of Invariant Factors	and	Ele	mentary	
	Divisors		•		272
94.	A Second Definition of the Equivalence of λ -Matrices	-	- 1-1		274
95	Multiplication and Division of λ -Matrices	10		17. 19 To	277

CHAPTER XXI

THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF BILINEAR FORMS AND OF COLLINEATIONS

96.	The Equivalence of Pairs of Matrices .				279
97.	The Equivalence of Pairs of Bilinear Forms			1	283
98.	The Equivalence of Collineations				284
99.	Classification of Pairs of Bilinear Forms	 "			287
100.	Classification of Collineations				292

CHAPTER XXII

THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF QUADRATIC

FORMS

101.	Two Theorem	ns in t	he T	heory	y of M	1atri	ces		11.				296
102.	Symmetric M	latrice	s.				1.			1			299
103.	The Equivale	ence o	f Pai	rs of	Quad	ratic	Form	18					302
104.	Classification	of Pa	irs of	f Qua	drati	c Fo	rms						305
105.	Pairs of Quad	Iratic	Equa	ation	s, and	Pen	cils of	Fo	rms o	r Equ	uation	ns.	307
106.	Conclusion												313
				2.10	-	1							

The state plates while a state plate with

INDEX

x

317