#### REVIEW

16. Write three similar monomials; four dissimilar monomials.

17. If n is a whole number greater than 1 and a is any number, what is the meaning of  $a^n$ ?

Find the value of each of the following expressions when a=5, b=4, c=3, d=2, e=1, and n=3.

**18.** 6 ab; 2 cd; 4 nbd;  $\frac{1}{2}$  ea;  $nd^{n+1}$ .

19.  $3 a^2 b$ ;  $3 a b^2$ ;  $3 (a^5)^2$ ;  $d^2 n^3$ ;  $(dn)^3$ ;  $d^{n-2}$ .

20.  $a + b \div d - n \div e$ . 22.  $10 \div d + 3 \div n - e$ .

21.  $a(b-d) + a - n \div c$ . 23.  $10 \div (d+3) + ac \div n$ .

24.  $c^5 + c^4 + 2 c^3 - 2 c^2 - 3 c + 3$ .

**25.**  $d^7 + d^6 + 3 d^5 - 5 d^4 + 2 d^3 - 4 d^3 + 8 d - 1$ .

26. For what value of x is 12 x equal to 72?

Write '12 x is equal to 72' as an equation. Solve the equation.

Express in algebraic form; solve equations when you can:

27. Three times a certain number, x, is 21.

28. The sum of a certain number and three times the number is 40.

29. Six times a number, less 4 times that number, is 13.

30. The distance around a square lot, each side a feet long, is 1280 feet.

31. Half of a certain number is 17.

32. Twice a certain number, less  $\frac{1}{3}$  of the number, equals 15.

33. Mary had m books and James had twice as many, the two together having 18 books.

**34.** John had 50 cents, spent c cents, and earned d cents. How much money had he then?

**35.** I bought 2 bottles of olives at b cents per bottle, 3 packages of crackers at p cents per package, and a small cheese for c cents. How much did I expend for all? How much money had I left out of a dollar?

# FUNDAMENTAL OPERATIONS

16. In this chapter the student will use numbers he has used in arithmetic and letters to represent such numbers. He will notice that the processes of addition, subtraction, multiplication, and division here are performed as in arithmetic.

### ADDITION

### 17. To add monomials.

1. How many are 2 plus 5? How many times a number are 2 times the number plus 5 times the number ?

2. If n stands for a number, how many times n are 2 times n plus 5 times n? 2n+5n=?

| 3. | 2x + 5x = ?  | 4. $2r + 5r = ?$         | 5. $2t + 5t = ?$ |
|----|--------------|--------------------------|------------------|
| 6. | How many are | 3 + 4 + 6?               |                  |
| 7. | How many day | vs are 3 days + 4 days + | 6 days?          |

8. 3d+4d+6d=?9. 3y+4y+6y=?

#### EXERCISES

### 18. 1. Add 4 a and 3 a.



| 26                            | FUNDAMENTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FUNDAMENTAL OPERATIONS 27                                                                                                                                                         |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Add:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | abe of other and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19. To add polynomials.                                                                                                                                                           |  |  |  |
| 7. 2n                         | 8. 3 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9. 4 xy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10. 3 mn <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXERCISES                                                                                                                                                                         |  |  |  |
| <u>5 n</u>                    | <u>8 x</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>7 xy</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>9 mn<sup>2</sup></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. Add $x + 2y + 3z$ , $x + y$ , and $x + 4y + z$ .                                                                                                                               |  |  |  |
| 11. 5 r                       | 12. 9 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13. 2 ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14. $6 c^2 d^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROCESS                                                                                                                                                                           |  |  |  |
| 2 r                           | 4 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $8 c^2 d^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x+2y+3z EXPLANATION. — For convenience, similar terms may be written in the same column.                                                                                          |  |  |  |
| <u>4 r</u>                    | <u>6 n</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $c^2 d^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x + y The sum of the first column is 3 x, of the second                                                                                                                           |  |  |  |
| Perform                       | the additions indica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{x+4y+z}{3x+7y+4z}$ 7y, of the third 4z; the sum of these dissimilar terms is then indicated.                                                                               |  |  |  |
| 15. 8 <i>a</i> +              | 2a + a + 3a + a +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -7 a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |  |  |  |
| 16. 5 y +                     | 3y + 8y + 10y + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y+y+2y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Add:                                                                                                                                                                              |  |  |  |
| 17. 8 m -                     | +3m+5m+2m+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6 m + 4 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. $2a+4b$<br>6a+2b<br>3. $4r+3s$<br>r+s<br>4. $x^2+2xy+y^2$<br>$x^2+y^2+y^2$                                                                                                     |  |  |  |
| 18. 7 bc -                    | + bc + 4 bc + 5 bc + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 bc + 3 bc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                             |  |  |  |
| <b>19.</b> $4 x^2 y^2$        | $x^2 + 5 x^2 y^2 + 3 x^2 y^2 + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $x^2y^2 + 10 x^2y^2 + 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $x^2y^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                   |  |  |  |
| <b>20.</b> 3( <i>ab</i> )     | $b^2 + 9(ab)^2 + (ab)^2 + (ab)^2 + b^2 + $ | $7(ab)^2 + 9(ab)^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2(ab)^2 + (ab)^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5. Add $2c + 5d$ , $7c + d$ , $d + 4c$ , and $2d + c$ .                                                                                                                           |  |  |  |
| <b>21.</b> $5(x+$             | -y) + 2(x+y) + 3(x+y) + 3(x+   | y) + 8(x + y) + 2(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x+y)+(x+y).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>6. Add 6 m + 4 n, 2 m + 3 n, 5 n + 7 m, and 2 n + 3 m.</li> <li>7. Add ab + a<sup>2</sup>c + 5, 3 ab + 3 a<sup>2</sup>c + 7, and 2 a<sup>2</sup>c + 2 ab + 3.</li> </ul> |  |  |  |
| 22. 4(a +                     | $(-b)^2 + 11(a+b)^2 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $7(a+b)^2 + 2(a+b)^2 $ | $b)^2 + 5(a+b)^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |  |  |  |
| Only sim                      | ilar terms can be u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nited into a sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gle term. Dis-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Express in simplest form:                                                                                                                                                         |  |  |  |
|                               | ms are considered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to have been ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lded when the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8. $2a+2b+3c+4b+4a+6a+2c$ .                                                                                                                                                       |  |  |  |
| addition is                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9. $3w + 4x + 7y + 2v + 2w + x + 3y + 4v + 3x + 4w + v$ .                                                                                                                         |  |  |  |
|                               | 6 a, 5 b, 2 a, 3 b, 2 c,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. $x^2z + 5xz^2 + 7xy + 6xz^2 + 2x^2z + 4xy + 4x^2z + xz^2 + xy$ .                                                                                                              |  |  |  |
| Solution.                     | $-\operatorname{Sum}=6\ a+2\ a+a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a + 5b + 3b + 2c =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9a + 8b + 2c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Add:                                                                                                                                                                              |  |  |  |
| Add:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. $6m + 8n + x + y$ , $2m + 2n + 3x + 4y$ , and $m + x + y$ .                                                                                                                   |  |  |  |
|                               | a, 3x, and a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27. $5r, \frac{2}{4}t, 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12. $3x + 7y + 4z + 6w$ , $7z + 4x + 2y + w$ , and $x + y + z + w$ .                                                                                                              |  |  |  |
|                               | <b>25.</b> m, 3 c, 6 m, and 4 c. <b>28.</b> $\frac{1}{2}p$ , $\frac{2}{3}q$ , $\frac{1}{4}p$ , and $\frac{1}{6}q$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13. $x^2 + 2xy + y^2$ , $2x^2 + xy + y^2$ , $x^2 + xy + y^2$ , $3xy + y^2 + x^2$ ,                                                                                                |  |  |  |
|                               | v, 3 u, and 10 v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29. d, .4 b, .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d, and .6 b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2x^2 + 3xy + y^2$ , $x^2 + xy + 2y^2$ , and $2xy + 3x^2 + 4y^2$ .                                                                                                                |  |  |  |
|                               | mn, n, 2 mn, 3 m, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14. $2c+7d+6n$ , $11m+3c+5n$ , $7n+2d+8c$ , $d+3m+10c$ ,                                                                                                                          |  |  |  |
|                               | 2a, 2b, 2c, 2d, a, c,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4d+3n+8m, m+6n, and 2m+3d.                                                                                                                                                        |  |  |  |
|                               | $r^2s$ , $4 rs^2$ , $2 rs$ , $rs^2$ , $4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A day in the second sec | 15. $3x^m + 2y^n$ , $4x^m + 5y^n$ , $2x^m + 7y^n$ , and $2x^m + y^n$ .                                                                                                            |  |  |  |
|                               | 2 pq, 7 cd, pq, 2 cd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16. $4 y^a + z^c + w^b$ , $y^a + 2 w^b + 3 z^c$ , $5 z^c + 3 w^b$ , $2 y^a + w^b$ , and $y^a + 4 z^c + 2 w^b$ .                                                                   |  |  |  |
| 34. <i>x</i> <sup>-</sup> , 4 | $xy, 7 y^2, 2 xy, 3 y^2, 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x, y, xy, 5 x, an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a 4 y <sup>*</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y' + 4z' + 2w'.                                                                                                                                                                   |  |  |  |

### SUBTRACTION

**20.** 1. How many are 8 less 3? How many times a number are 8 times the number less 3 times the number?

2. Letting n stand for a number, how many times n are 8 times n less 3 times n? 8n-3n=?

**3.** 8z - 3z = ? **4.** 8s - 3s = ? **5.** 8a - 3a = ?

### EXERCISES

**21.** 1. From 10 *a* subtract 4 *a*.

**PROCESS**EXPLANATION. — Just as 10 a's less 4 a's are 6 a's, so10 a10 a - 4 a = 6 a; that is, when terms are similar their $\frac{4 a}{6 a}$ difference may be obtained by subtracting the numerical<br/>coefficients and annexing the common literal part.

|      | 2.        | 3.        | 4.           | 5.        | 6.         | 7.             |
|------|-----------|-----------|--------------|-----------|------------|----------------|
| From | 9         | 9x        | 7            | 7 ab      | $18 m^{2}$ | 20 xy          |
| Take | 4         | 4x        | 3            | 3 ab      | $13 m^2$   | 16 xy          |
|      | 8.        |           | 9.           | 10        | •          | 11.            |
| From | $16 ax^2$ |           | $14 r^2 s^3$ | $8 x^{2}$ | $y^2z$     | 21(a+b)        |
| Take | $9 ax^2$  |           | $7 r^2 s^3$  | $6 x^2$   |            | 11(a+b)        |
|      | 12.       |           | 13.          | . 14      |            | 15.            |
| From | 3p + 8    | 3 q       | 4l + 2t      | 9x +      | 7 y        | 5r + 8s        |
| Take | 2p+4      | 1q        | 4l+t         | 2x +      | 3 y        | 2r+5s          |
|      |           | 16.       |              | 17.       |            | 18.            |
| From | n + 5     | $n^2 + 2$ | $n^3$ $3r$   | +2s+t     | •8 a +     | $2 ab + 3 b^2$ |
| Take | n + n     | $n^{2} +$ | $n^3$ r      | + s+t     | $5 a^3 +$  | $ab + 2 b^2$   |

**19.** From 12x + 7y subtract 8x + 3y.

**20.** From 10 ab + 3 c subtract 5 ab + 2 c.

**21.** From 7r + 5s + 6t subtract 3r + 2s + 5t.

22. From  $9x^2 + 8y^2 + 6xy$  subtract  $5x^2 + 3y^2 + 2xy$ .

FUNDAMENTAL OPERATIONS

23. From 5m + 7n + 8l + 6 subtract 5m + 4n + 4l + 5. 24. From  $7x^2 + 3y + 6z + 4v$  subtract  $3x^2 + 2y + 5z + 3v$ . Subtract: 25.  $2x^3 + y^3 + 3r^3$  from  $4x^3 + 7y^3 + 5r^3$ . 26.  $4ab + 2b^2 + 2cd$  from  $6ab + 3b^2 + 6cd$ . 27.  $3x^2y + xy + 5$  from  $9x^2y + 6xy^2 + xy + 8$ . 28.  $2v^3w^3 + 2vw + 4v^5$  from  $12v^5 + 9v^3w^3 + 6vw$ . **29.**  $5 m^2 nx^2 + abd$  from  $18 m^2 nx^2 + 12 a^2 b^2 c^2 + 4 abd$ . 30.  $4x^m + 2x^my^n + 5y^n$  from  $7x^m + 2x^my^n + 9y^n$ . **31.**  $6 m^s + 11 m^s n^t + 5 n^t$  from  $10 m^s + 11 m^s n^t + 8 n^t$ . **32.**  $a^{m+n} + 3b^{m-n} + 7c^{2n}$  from  $3a^{m+n} + 5b^{m-n} + 9c^{2n}$ . **33.**  $10(m+n^2) + 5(m^2+n)$  from  $12(m+n^2) + 8(m^2+n)$ . Simplify, adding or subtracting in order as signs indicate: 39. 8r - 6r + 5r - 2r. 34. 9x - 4x + 6x. 35. 5n + 3n - 7n. 40.  $7 \eta + 8 \eta - 6 \eta + 7 \eta$ . 36. 8a - 5a - 3a41. 5z + 7z - 2z - 4z. 37. 2s + 8s - 5s. 42. 9v - 3v + 2v - 5v. 38. 3b - 2b + 7b. 43. 7n - 2n - 3n + 4n. 44. 8x + 7x - 3x + 4x - 2x - 3x + 6x. 45. 2y + 3y - y + 7y - 3y + 9y + 2y - 6y. 46. 9z - 5z + 6z - 3z + 4z + 2z - 7z + 3z. 47. 5v+6v+2v-5v+4v-6v+9v-5v-3v. 48. 7m + 6n - 3m + 5n + 7m - 4n + 3m + 4n + 5m. 49. 9r+8s+7r-2s+9s-3r+2r-7s+6s-5r+4r. 50. 2l+9t+3l-l+3t+2t+8l-5t+9l-6l+2t-4t+7t. 51. 10(a-x)+15(a-x)+7(a-x)-13(a-x)-12(a-x).

OF 70 11

# MULTIPLICATION

# 22. Product of two monomials.

In algebra, as in arithmetic, the product of two numbers contains all the factors of both numbers, arranged or grouped in any way we please.

Then, since  $a^2 = aa$  and  $a^3 = aaa$ ,  $a^2 \cdot a^3 = (aa)(aaa) = aaaaa = a^5$ . That is,  $a^2 \cdot a^3 = a^{2+3} = a^5$ . (Add exponents) Similarly,  $3 a^2 \cdot 5 a^3 = (3 \cdot 5)(a^2 \cdot a^3) = 15 a^5$ . (Multiply coefficients) Again  $3 a^{2h} - 5 a^{3h^2} = (2 - 5)(a^2 - a^3)(11 - b^2) = 15 a^{5h^3}$ 

Again,  $3 a^2 b \cdot 5 a^3 b^2 = (3 \cdot 5) (a^2 \cdot a^3) (b^1 \cdot b^2) = 15 a^5 b^3$ . Hence, for multiplication:

**23.** Law of exponents. — The exponent of a number in the product is equal to the sum of its exponents in multiplicand and multiplier.

**24.** Law of coefficients. — The coefficient of the product is equal to the product of the coefficients of multiplicand and multiplier.

#### EXERCISES

| 25. | Tell pr              | oducts quickly:               |                         |     |                                   |
|-----|----------------------|-------------------------------|-------------------------|-----|-----------------------------------|
| 1.  | 7 a                  | 2. 3x                         | 3. 5 m                  | 4.  | $8 ab^2x^3$                       |
|     | 3 a                  | 4 y                           | $2 m^3 n$               |     | $b^4cx^4$                         |
|     | $\overline{21 a^2}$  | 12 my                         | $\overline{10 \ m^4 n}$ |     | 8 ab <sup>6</sup> cx <sup>7</sup> |
| 5.  | 3 y                  | 6. $4x^2$                     | 7. 8 av                 | 8.  | $12 a^{3}bc$                      |
|     | <u>4 y</u>           | $\frac{7 x^2}{x^2}$           | <u>3 aw</u>             |     | $3 a^2 b^2 d^2$                   |
|     | $ab^2$               | <b>10</b> . 3 xy <sup>3</sup> | 11. 2 ax                | 12. | $16 c^2 d^4 m$                    |
|     | $\underline{a^{3}b}$ | <u>9 xz</u>                   | <u>2 by</u>             |     | $2 c^{5} d^{3} n$                 |
| 13. | $x^4y$               | 14. $7 pq^2$                  | 15. $8 c^2 d$           | 16. | 2 axy <sup>5</sup> t              |
|     | <u>xy</u>            | $p^5q$                        | $4 d^3z$                |     | $\frac{6 a^6 y z^2 s}{2}$         |

# FUNDAMENTAL OPERATIONS

26. To multiply a polynomial by a monomial. Multiplying as in arithmetic, we have:

| 1. 43<br>2 | 40 + 3<br>2               | 4  tens + 3  units                           | 4t + 3u           |
|------------|---------------------------|----------------------------------------------|-------------------|
| 86         | $\overline{80+6}$         | $\frac{2}{8 \text{ tens} + 6 \text{ units}}$ | $\frac{2}{8t+6u}$ |
| 2. 321     | 300 + 20 + 1              | 3h+2t+u                                      | x+y+z             |
| 3          | 3                         | 3                                            | a                 |
| 963        | $\overline{900 + 60 + 3}$ | $\overline{9h+6t+3u}$                        | ax + ay + az      |

27. The product of a polynomial by a monomial is equal to the sum of the partial product: obtained by multiplying each term of the polynomial by the monomial.

| 28. | Multiply:                              | EXERCIS                                                       | SES                 |                       |               |
|-----|----------------------------------------|---------------------------------------------------------------|---------------------|-----------------------|---------------|
| 1.  | $\begin{array}{c} x+2\\ 4 \end{array}$ | $\begin{array}{c} 2.  ax^2 + y \\ \underline{ax} \end{array}$ |                     | <b>3.</b> 5 m<br>3 st | $a^{2s} + 2t$ |
| 4.  | $\frac{m^2 + n^3}{mn}$                 | 5. $\begin{array}{c} x^2 + 2 x \\ xy \end{array}$             | $y + y^2$           | 6. xy -<br>xyz        | +yz + xz      |
| 7.  | $\frac{1+2x+6x^2}{x^3}$                | $+4 x^{3}$                                                    | 8. $4x^3$<br>$3x^2$ | $+6x^{2}+2$           | 2x+1          |

In exercise 7, the multiplicand is arranged according to the ascending powers of x; in exercise 8, according to the descending powers of x.

Arrange according to the ascending or descending powers of some letter and perform the multiplications indicated :

9.  $ab(6a^2 + a^4 + 1 + 4a^3 + 4a)$ .

10.  $2 xy (8 x^3y + 2 x^4 + 2 y^4 + 12 x^2y^2 + 8 xy^3)$ .

11.  $a^{2}bc(3 a^{4} + 16 b^{4} + 2 ab^{3} + 4 a^{3}b + 5 a^{2}b^{2})$ .

12. 8  $t^3s^3(t^6 + 6 ts^5 + 20 t^3s^3 + 15 t^4s^2 + s^6 + 15 t^2s^4)$ .

13.  $5 x^2 y^3 (x^5 + y^5 + 5 x^4 y + 5 x y^4 + 10 x^3 y^2 + 10 x^2 y^3)$ .

32

### FUNDAMENTAL OPERATIONS

29. To multiply a polynomial by a polynomial.

#### EXERCISES

1. Multiply x + 5 by x + 2; test the result.

|                     | PROCESS          | TEST             |   |
|---------------------|------------------|------------------|---|
|                     | x + 5            | = 6 when $x = 1$ | - |
|                     | x + 2            | <u>= 3</u>       |   |
| x  times  (x+5)     | $) = x^2 + 5 x$  |                  |   |
| 2  times  (x+5)     | b) = 2x + 10     |                  |   |
| (x+2) times $(x+5)$ | $x^2 + 7 x + 10$ | =18              |   |

TEST. — The product must equal the multiplicand multiplied by the multiplier, regardless of what value x may represent. To test the result, therefore, we may assign to x any value we choose and observe whether, for that value, product obtained = multiplicand × multiplier. When x = 1, multiplicand = 6, multiplier = 3, and  $x^2 + 7x + 10 = 18$ ; since  $6 \times 3 = 18$ , it may be assumed that  $x^2 + 7x + 10$  is the correct product.

RULE. — Multiply the multiplicand by each term of the multiplier and find the sum of the partial products.

- 2. Multiply x + 4 by x + 6; test the result when x = 1.
- 3. Multiply x+1 by x+2; test the result when x=5.
- 4. Multiply 2x+3 by 4x+1; test the result when x=1.
- 5. Multiply  $x^2 + x + 1$  by x + 1; test the result when x = 2.

6. Multiply 2a+b+c by 3a+b; test the result when a=1, b=1, and c=1.

In like manner the multiplication of any two literal expressions may be tested arithmetically by assigning any values we please to the letters.

While it is usually most convenient to substitute 1 for each letter, since this may be done readily by adding the numerical coefficients, the student should bear in mind that this really tests the coefficients and not necessarily the exponents, for any power of 1 is 1.

Multiply, and test each result:

| 7. $x + y$ | 8. $x + 4$ | 9. $2x+1$ | 10. $5y + 3z$ |
|------------|------------|-----------|---------------|
| x - 11     | x+9        | 3x+5      | 4y+z          |

# FUNDAMENTAL OPERATIONS

Multiply, and test each result:

| 11. | 2x + 3 by $x + 2$ .    | 15. | 3l + 5t by $2l + 6t$ . |
|-----|------------------------|-----|------------------------|
| 12. | 4x + 1 by $3x + 4$ .   | 16. | 4y + 6b by $2y + b$ .  |
| 13. | 5 n + 1 by $4 n + 5$ . | 17. | 2b + 5c by $5b + 2c$ . |
| 14. | h + 2 k by $3 h + k$ . | 18. | ax + by by $ax + by$ . |

An indicated product is said to be **expanded** when the multiplication is performed.

Expand, and test each result:

| 19. | $(c^2 + d^2)(c^2 + d^2).$  | 23. | $(\frac{1}{2}a + \frac{1}{3}b)(\frac{1}{2}a + \frac{1}{3}b).$ |
|-----|----------------------------|-----|---------------------------------------------------------------|
|     | (3 a + b) (3 a + b).       |     | $(\frac{2}{3}x + \frac{1}{4}y)(\frac{3}{4}x + \frac{1}{2}y).$ |
|     | $(2 n^2 + l) (n^2 + 2 l).$ |     | (2 xy + 3 y) (4 xy + 7 y).                                    |
|     | (2 b + 5 c)(3 b + 8 c).    |     | (4 ax + 3 by)(4 ax + 3 by).                                   |
| -   |                            |     |                                                               |

Multiply, and test each result:

| 27. | $\frac{x^2+2}{x+y}$ | $xy + y^2$              |                   | a + b + c $a + b + c$            | 29.                    | $\begin{array}{c}2t+3s+6\\t+2s+1\end{array}$ |
|-----|---------------------|-------------------------|-------------------|----------------------------------|------------------------|----------------------------------------------|
| 30. |                     | $y + y^2$ by            |                   |                                  | +n+1)                  | (1+l+n).                                     |
| 31. | $x^3 + 3$           | $x^2 + x$ by            | <i>x</i> +1.      | <b>33.</b> $(r^2 -$              | $+2 rs + s^{2}$        | r(r+s+1).                                    |
|     | 34.                 | $2a^2 + 3l$             | $b^2 + ab$ by     | $3 a^2 + 4 ab$                   | $+5 b^{2}$ .           |                                              |
|     |                     |                         |                   | by $m^3 + 2 m$                   |                        |                                              |
|     |                     |                         |                   | +a by $a +$                      |                        |                                              |
|     |                     |                         |                   | +3 by $3x$                       |                        |                                              |
|     | 38.                 | $4x^3 + 3x^3$           | $x^2y + 5 xy^2$   | $^{2} + 6 y^{3}$ by !            | 5x+6y.                 |                                              |
|     |                     |                         |                   | ac + bc by                       |                        |                                              |
|     |                     |                         |                   | $+ m^2 n^9 + n^{12}$             |                        |                                              |
|     | 41.                 | Multiply                | $a^{6n} + a^{4n}$ | $b^{2c} + a^{2n}b^{4c} + b^{4c}$ | - b <sup>se</sup> by a | $b^{2n}+b^{2c}$ .                            |
|     |                     | Multiply<br>NE'S 1ST YI |                   | $y^n + y^{2n}$ by                | $x^{2n} + 2x$          | $x^n y^n + y^{2n}$ .                         |

#### DIVISION

30. In multiplication two numbers are given and their product is to be found. In division the product of two numbers and one of the numbers are given, and the other number is to be found.

Division is thus the inverse of multiplication.

Thus,  $3 \times 4 = 12$  illustrates multiplication; but  $12 \div 4 = 3$  illustrates division, the *inverse* process.

31. To divide a monomial by a monomial.

Because  $a^2 \cdot a^3 = a^{2+3} = a^5$ ,  $a^5 \div a^3 = a^{5-3} = a^2$ . (Subtract exponents)

Similarly, because

 $3a^2 \cdot 5a^3 = (3 \cdot 5)a^{2+3} = 15a^5$ 

 $15 a^5 \div 5 a^3 = (15 \div 5) a^{5-3} = 3 a^2$ . (Divide coefficients) The quotient may be obtained, just as in arithmetic, by removing equal factors from dividend and divisor by cancellation, thus:

$$\frac{15 a^{3}}{5 a^{3}} = \frac{3 \cdot 5 \cdot a \cdot a \cdot a}{5 \cdot a \cdot a \cdot a} = 3 a^{2}.$$
Again, 
$$\frac{21 a^{5}b^{3}}{3 a^{2}b^{2}} = \frac{3 \cdot 7 \cdot a \cdot a \cdot a \cdot a \cdot a \cdot b \cdot b \cdot b}{3 \cdot a \cdot b \cdot a \cdot a \cdot b \cdot b \cdot b} = 7 a^{2}b,$$

$$\frac{21 a^{5}b^{3}}{3 a^{2}b^{2}} = \frac{21}{3} a^{5-3}b^{3-2} = 7 a^{2}b^{1} = 7 a^{2}b.$$

Hence, for division:

or

**32.** Law of exponents. — The exponent of a number in the quotient is equal to its exponent in the dividend minus its exponent in the divisor.

Since a number divided by itself equals 1,  $a^5 \div a^5 = a^{5-5} = a^0 = 1$ ; that is, a number whose exponent is 0 is equal to 1.

**33.** Law of coefficients. — The coefficient of the quotient is equal to the coefficient of the dividend divided by the coefficient of the divisor.

#### EXERCISES

| 1.4 | FTT 71       | 12/12/07/02/04 | Constanting - | ALC: NO. | 10000              |
|-----|--------------|----------------|---------------|----------|--------------------|
| 34. | - ALL        | anot           | ente          | quick    | STURE .            |
|     | The state of | quou.          | ICTION .      | Guton    | ALC: NOT THE OWNER |

| 1.  | $5)5^{3}$<br>$5^{2}$                           | 2.  | $\frac{7 \ c^2 d^4) 35 \ c^4 d^5}{5 \ c^2 d}$    | 3.  | $2 a^3 a^5 x {1 \over 1 2} a^2 x$            |
|-----|------------------------------------------------|-----|--------------------------------------------------|-----|----------------------------------------------|
| 4.  | $2^{2})2^{3}$                                  | 5.  | $3^4 \div 3^4$ .                                 | 6.  | $4^{0}m^{3})4^{5}m^{4}n^{2}$                 |
| 7.  | $\frac{12 a^3 b^3}{4 a b^2} \cdot$             | 8.  | $\frac{18 x^4 y^4}{3 x^2 y}.$                    | 9.  | $\frac{21 \ ab^3c^2}{7 \ b^3}$ .             |
| 10. | $\frac{28 a^4 b^\circ c}{4 a b c}.$            | 11. | $\frac{16 \ x^3 y^3 z^3}{4 \ xy^3 z}.$           | 12. | $\frac{24 \ x^2 y^2 z^3}{8 \ x^2 z^2} \cdot$ |
| 13. | $\frac{20  a^4 b^5 y^2}{4  a^2 b^2 y^2} \cdot$ |     | $\frac{36  a^4 y^2 z^3}{9  a^4 z^2} \cdot$       | 15. | $\frac{3 a b (a+b)^2}{2(a+b)}.$              |
| 16. | $rac{4  a^4 b^3 c^5}{20  a^2 b c^3} \cdot$    | 17. | $\frac{4 \ x^6 y^3 z^4}{32 \ x^4 y^3 z^3} \cdot$ | 18. | $\frac{2 a^2 (x-y)^3}{a (x-y)^2}.$           |

# 35. To divide a polynomial by a monomial.

Dividing as in arithmetic, we have

| 1. 2) | 86 2 | 2)80 + 6 | 2)8 tens $+ 6$ units | 2)8t + 6u |
|-------|------|----------|----------------------|-----------|
|       | 43   | 40 + 3   | 4  tens + 3  units   | 4t+3u     |

2. Since, § 27, (a+b)x = ax + bx,

if ax + bx is regarded as the dividend and x as the divisor,

 $(ax+bx) \div x = a+b$ ; that is,

**36.** The quotient of a polynomial divided by a monomial is equal to the sum of the partial quotients obtained by dividing each term of the polynomial by the monomial.

#### EXERCISES

**37.** 1. Divide 
$$9x^2y^2 + 15xy^2z^2$$
 by  $xy^2$ ; by  $3xy$ .

PROCESS  $xy^2)9 \frac{x^2y^2 + 15}{9x} \frac{xy^2z^2}{+15z^2}$   $3 \frac{xy}{9x^2} \frac{y^2 + 15xy^2z^2}{-3xy^2}$   $3 \frac{xy}{2} \frac{y^2 + 15xy^2z^2}{-3xy^2}$ 

Find quotients:

| 2. | $4 \ cd) 4 \ c^2d + 20 \ cd^2$                                | 7.  | $7 ab) 14 a^4b^3 + 49 a^2b$                               |
|----|---------------------------------------------------------------|-----|-----------------------------------------------------------|
| 3. | $\frac{xz^2+3xz+a^2z^2}{xz},$                                 |     | $\frac{35  x^2 y^3 z^4 + 45  x^4 y^3 z^2}{5  x^2 y^2 z}.$ |
| 4. | $\frac{5 x^2 y + 10 x^2 y^2 + 15 x y^2}{5 x y}.$              |     | $\frac{36 a^3 b^4 c^6 + 60 a^2 b^5 c^7}{12 a^2 b^4 c^6}.$ |
| 5. | $\frac{4a^{2}b^{3}+12a^{3}b^{2}+16a^{4}b}{4a^{2}b}.$          | 10. | $\frac{24r^3\!s^2+30r^2\!s^2+42r^2\!s^3}{6r^2\!s^2}.$     |
| 6. | $\frac{24  a^8 b^2 + 32  a^3 b^3 + 40  a^4 b^4}{8  a^4 b^2}.$ | 11. | $\frac{9 x^2 yz + 36 xy^2 z^3 + 45 xy z^5}{9 xy z}$       |
|    | $(8 a^{7}b^{3} \pm 28 a^{6}b^{4} \pm 16 a^{5}b^{5})$          |     |                                                           |

**13.**  $(3 x^3 y z^2 + 15 x^5 y^2 z^3 + 6 x^4 y z^3 + 18 x^6 y^3 z) \div 3 x^3 y z.$ 

38. To divide a polynomial by a polynomial.

#### EXERCISES

# 1. Divide $3x^2 + 35 + 22x$ by x + 5; test the result.

|                   | PROCESS                                   |                    | TEST               |
|-------------------|-------------------------------------------|--------------------|--------------------|
| 3x  times  (x+5)  | $3 x^{2} + 22 x + 35$<br>$3 x^{2} + 15 x$ | $\frac{x+5}{3x+7}$ | $60 \div 6$ $= 10$ |
| 7 times $(x + 5)$ | $\frac{5 \times 1}{7 \times 35}$ 7 x + 35 | 1                  |                    |

EXPLANATION. — For convenience, the divisor is written at the right of the dividend and the quotient below the divisor. Both dividend and divisor are arranged according to the descending powers of z.

Since the dividend is the product of the quotient and divisor, it is the sum of all the partial products formed by multiplying each term of the quotient by each term of the divisor. Hence, if  $3x^2$ , the first term of the dividend as arranged, is divided by x, the first term of the divisor, the result. 3x, is the first term of the quotient.

Subtracting 3x times (x + 5) from the dividend, leaves 7x + 35, the part of the dividend still to be divided.

### FUNDAMENTAL OPERATIONS

Proceeding, then, as before we find,  $7x \div x = 7$ , the next term of the quotient. 7 times (x + 5) equals 7x + 35. Subtracting, we have no remainder. Hence, the quotient is 3x + 7.

TEST. — When x = 1, the dividend equals 60 and the divisor 6. The quotient then should equal  $60 \div 6$ , or 10. On substituting 1 for x, we find that the quotient is equal to 10. Presumably, then, the result is correct.

# 2. Divide $x^3 + 6x^2 + 12x + 10$ by x + 2.

|                                 | PRO                  | CESS       |                  |                | TEST            |
|---------------------------------|----------------------|------------|------------------|----------------|-----------------|
| $x^3 + 6x^2 + 3$                | 12x + 10             | x+2        |                  |                | $29 \div 3$     |
| $\frac{x^3 + 2 x^2}{4 x^2 + 1}$ | $\overline{12x}$     | $x^2 + 4x$ | $+4+\frac{3}{x}$ | $\frac{2}{+2}$ | $=9\frac{2}{3}$ |
| $4x^{2} +$                      |                      |            | 1.5790           |                |                 |
|                                 | $\frac{4x+10}{4x+8}$ |            |                  |                |                 |

As in arithmetic, the whole of the undivided part of the dividend is not brought down for each division, but only so much of it as may be needed each time.

The remainder 2 is written over the divisor in the form of a fraction which is then added to the quotient as in arithmetic.

RULE. — Arrange both dividend and divisor according to the ascending or the descending powers of a common letter.

Divide the first term of the dividend by the first term of the divisor, and write the result for the first term of the quotient.

Nultiply the whole divisor by this term of the quotient, and subtract the product from the dividend. The remainder will be a new dividend.

Divide the new dividend as before, and continue to divide in this way until the first term of the divisor is not contained in the first term of the new dividend.

If there is a remainder after the last division, write it over the divisor in the form of a fraction, and add the fraction to the part of the quotient previously obtained.

Divide, and test each result :

38

- **3.**  $x^2 + 2x + 1$  by x + 1. **6.**  $3 + 7y^2 + 2y^4$  by  $y^2 + 3$ .
- 4.  $a^2 + 5a + 6$  by a + 2. 7.  $6x^3 + x^6 + 7$  by  $x^3 + 1$ .
- 5.  $5r + r^2 + 4$  by r + 4. **8.**  $6t^2 + 20t + 23$  by 3t + 7.
- y9.  $y^3 + 3y^2 + 3y + 1$  by y + 1.
- 10.  $6z^4 + 4 + 10z^2 + 4z^6$  by  $4z^2 + 2$ .
- > 11.  $b^9 + 6b^6 + b^4 + 9b^3 + 4b + 8by b^3 + 4$ .
- **12.** Divide  $a^4 + 6 a^3 + 27 a^2 + 54 a + 81$  by  $a^2 + 3 a + 9$ .

| PROCESS                            |                 | TEST   |
|------------------------------------|-----------------|--------|
| $a^4 + 6 a^3 + 27 a^2 + 54 a + 81$ | $ a^2 + 3a + 9$ | 169÷13 |
| $a^4 + 3 a^3 + 9 a^2$              | $a^2 + 3a + 9$  | =13    |
| $3a^3 + 18a^2 + 54a$               |                 |        |
| $3a^3 + 9a^2 + 27a$                |                 |        |
| $9a^2 + 27a + 81$                  |                 |        |
| $9a^2 + 27a + 81$                  |                 |        |

Divide, and test each result:

13.  $x^4 + 4x^3 + 12x^2 + 16x + 16$  by  $x^2 + 2x + 4$ . 14.  $4t^8 + 4t^6 + 13t^4 + 6t^2 + 9$  by  $2t^4 + t^2 + 3$ . 15.  $4y^4 + 5y^3 + y^6 + 11y + 3y^2 + 6$  by  $y^3 + 3y + 2$ . 16.  $6t^4 + 26t^2 + 18 + 15t + 7t^3$  by  $2t + 3t^2 + 3$ . 17.  $x^5 + x^4y + 2x^3y^2 + 2x^3y^3 + xy^4 + y^5$  by x + y. 18.  $2a^5 + 6a^3 + 3a^2 + 2a^4 + 5a + 2$  by  $a^2 + a + 2$ . 19.  $x^7 + 2x^6y + 4x^5y^3 + 3x^4y^3 + 2x^3y^4$  by  $x^2 + xy + y^2$ . 20.  $z^7 + 8z^5 + 3z^9 + z^4 + 6z + 20z^3 + 30$  by  $z + 3z^3 + 5$ . 21.  $5s^3t + 4s^3t^2 + t^4 + 3s^4 + 3st^3$  by  $3s^3 + 2s^5t + 2st^2 + t^3$ . 22.  $4a^4 + 28a^3b + 61a^3b^2 + 45ab^3 + 12b^4$  by  $2a^2 + 7ab + 3b^2$ . 23.  $p^6 + 4p^4q^2 + 9p^2q^4 + 6q^6 + 2p^5q + 6p^3q^3 + 12pq^4$  by  $p^4 + 3p^2q^2 + 6q^4$ .

### FUNDAMENTAL OPERATIONS

### EQUATIONS AND PROBLEMS

**39.** How many pounds added to 25 pounds will give 30 pounds?

The statement of the problem may be condensed to

 $\begin{array}{cccc} 25 \text{ pounds} & 25 \text{ pounds} \\ + ? \text{ pounds} & \text{or } + x \text{ pounds} & \text{or } 25 + x = 30 \\ \hline 30 \text{ pounds} & 30 \text{ pounds} \end{array}$ 

The letter x is only a convenient symbol for the unknown number (of pounds), or the number (of pounds) to be found. 25 and 30, on the other hand, are known numbers.

The equation, 25 + x = 30, is the briefest possible statement of the relation between the known and unknown numbers in the problem. Finding the value of x is called **solving** the equation, 25 + x is the **first member** of the equation, and 30 is the second member.

### Equations

40. 1. If 25 pounds are taken from the weight in each scale pan, the balance will be preserved. In the same way, if 25



is subtracted from each member of the equation 25 + x = 30, the equality will be preserved.

$$\begin{array}{r}
 25 + x = 30 \\
 \underline{25} \quad 25 \\
 x = 5
 \end{array}$$

2. What number subtracted from x + 10 will give x?

If the first member of x + 10 = 12 is decreased to x by subtracting 10, what must be done to the second member to preserve the equality?

Tell how the equation x + 10 = 12 may be solved.

3. Suppose that x - 4 = 3 and we wish to find the value of x. How much greater is x than x - 4?

If the first member of x - 4 = 3 is increased to x by adding 4, what must be done to the second member to preserve the equality? Tell how the equation may be solved.

The same number may be added to both members of an equation, or subtracted from both, without destroying the equality.

#### EXERCISES

41. State what must be done to both members to change one member to x without destroying the equality; solve:

| 1. $x + 6 = 8$ . | 5. $x + 2 = 10$ . | 9. $12 = 10 + x$ .  |
|------------------|-------------------|---------------------|
| 2. $x-3=2$ .     | 6. $x-5=11$ .     | 10. $15 = 11 + x$ . |
| 3. $x - 4 = 5$ . | 7. $x+1=12$ .     | 11. $30 = 20 + x$ . |
| 4. $x + 7 = 9$ . | 8. $x - 7 = 10$ . | 12. $14 = x + 10$ . |

42. 1. If x=8, what is the value of 2x? of 3x? of  $\frac{5}{2}x$ ?

2. If 6x = 12, what is the value of 1x, or of x?

3. If  $\frac{1}{3}x = 10$ , what is the value of 3 times  $\frac{1}{3}x$ , or of x?

4. What must be done to both members of each of the following equations to give an equation whose first member is x?

> $\frac{1}{2}x = 3$   $\frac{1}{2}x = 5$  4x = 125x = 35

Both members of an equation may be multiplied or divided by the same number without destroying the equality.

#### EXERCISES

43. State what must be done to both members to change one member to x without destroying the equality; solve:

| 1. $2x = 6$ .  | 5. $\frac{1}{2}x = 5$ . | 9. $\frac{1}{6}x = 5$ . |
|----------------|-------------------------|-------------------------|
| 2. $5 x = 5$ . | 6. $\frac{1}{3}x = 2$ . | 10. $\frac{1}{8}x = 4.$ |
| 3. $4x = 8$ .  | 7. $\frac{1}{4}x = 3.$  | 11. $8x = 24$ .         |
| 4. $3x = 9$ .  | 8. $\frac{1}{5}x = 7$ . | 12. $9x = 18$ .         |

### FUNDAMENTAL OPERATIONS

44. The equations solved so far in this chapter have been solved each by a single one of the following steps:

1. By adding the same number to both members.

2. By subtracting the same number from both members.

3. By multiplying both members by the same number.

4. By dividing both members by the same number.

The equations that follow may be solved by two or more of these steps taken separately.

#### EXERCISES

**45.** 1. Solve the equation 2x + 20 = 80 - 4x.

### SOLUTION

The first step in solving an equation is to get the unknown terms into one member, usually the first, and the known terms into the other.

2x + 20 = 80 - 4x.

Adding 4x to both members,

2x + 4x + 20 = 80 + 4x - 4x.

or, uniting terms. 6x + 20 = 80.

Subtracting 20 from both members,

```
6x + 20 - 20 = 80 - 20,
```

or, uniting terms, 6x = 60.Dividing both members by 6, x = 10.

### VERIFICATION

We should always test the answer by finding whether the value' obtained is such as to make the members of the original equation equal.

Thus, substituting x = 10 in the given equation, we have

$$20 + 20 = 80 - 40,$$
  
 $40 = 40.$ 

or

Hence, 10 is the true value of x.

Solve and verify:

| 2. | 7x + 12 = 5x + 16.           | 6. $4x - 11 + 2x = 2x - 5$ .   |
|----|------------------------------|--------------------------------|
| 3. | 5x - 20 = 2x + 13.           | 7. $3x + 14 + 7x = 78 + 2x$ .  |
| 4. | $4\ddot{x} - 11 = 19 - 2x$ . | 8. $9x + 23 + 2x = 4x + 37$ .  |
| 5. | 13x + 4 = 5x + 12.           | 9. $5x - 7 + 15x = 13x + 14$ . |
|    |                              |                                |

40

10. Solve the equation  $\frac{3}{2}x = 15$ .

#### FIRST SOLUTION

 $\begin{array}{l} \frac{8}{2}x = 15.\\ \text{Dividing both members by 3,} & \frac{1}{2}x = 5.\\ \text{Multiplying both members by 2,} & x = 10. \end{array}$ 

#### SECOND SOLUTION

By multiplying by 2 before dividing by 3, fractions may be avoided.  $\frac{3}{2}x = 15$ . Multiplying both members by 2, 3x = 30. Dividing both members by 3, x = 10. VERIFICATION.  $\frac{3}{2}$  of 10 = 15.

Solve and verify:

| .11. | $\frac{3}{2}x = 9.$ | 13. | $\frac{3}{5}x = 21.$ | 15. | $\frac{5}{8}x = 15.$ |
|------|---------------------|-----|----------------------|-----|----------------------|
| 12.  | $\frac{4}{3}x = 8.$ | 14. | $\frac{2}{3}x = 30.$ | 16. | $\frac{7}{3}x = 21.$ |

Solve by the method best adapted; verify results : .

| 17. | 9x - 17 = 23 + x.                                             | 23.   | $\frac{5}{2}x = 10.$ |    |
|-----|---------------------------------------------------------------|-------|----------------------|----|
|     | 2x + 3x - 2x = 21.                                            | 24.   | $\frac{2}{3}x = 14.$ |    |
|     | 9x - 4x + 2x = 14.                                            | 25.   | $\frac{4}{5}x = 28.$ |    |
|     | 8x + 5x - 5x = 48.                                            |       | $\frac{5}{6}x = 20.$ |    |
|     | 22 - 6x = 40 - 8x.                                            | 27.   | $\frac{7}{8}x = 63.$ |    |
|     | 7x + 6x - 7x = 42.                                            |       | $\frac{6}{7}x = 48.$ |    |
|     | $29. \ 2x - 4 + 6x = 22 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -$ | + 21. |                      |    |
|     | $+30. \ 46 + 3x - 60 = 5x - 1$                                |       |                      |    |
| Ha  | <b>31.</b> $6x + 5x - 70 = 5x + 54$                           |       |                      |    |
|     | <b>32.</b> $5x + 16 - 6x = 16 + 24$                           |       |                      |    |
|     | <b>33.</b> $9x + 15 - 2x = 32 + 4$                            |       |                      |    |
| 34. | 10 x - 39 + 12 x - 9 x + 42 - 4 x =                           |       |                      |    |
|     | 16x + 12 - 75 + 2x - 12 - 110 = 8                             |       |                      |    |
|     | 3x - 18 + 27 + 10x - 11 = 25 + 4                              |       |                      | x. |
|     | 18x + 16 = 8 + 12x + 8 - 13 + 25                              |       |                      |    |
|     |                                                               |       |                      |    |

# FUNDAMENTAL OPERATIONS

# Algebraic Representation

46. 1. Express the sum of  $2, \frac{1}{3}$ , and  $\frac{1}{5}$ ; of  $x, \frac{1}{2}y$ , and  $\frac{1}{4}z$ .

2. What number is 4 less than 12? n less than 25?

3. Express the number that exceeds 5 by 3; a by b.

4. Represent in the shortest way the sum of five x's; the product of five x's.

5. Mary read 10 pages of a book. On what page did she begin to read, if she stopped at the top of page 21? of page a?

6. Express 10 dollars in terms of cents; 10 cents in terms of dollars; m dollars in terms of cents; m cents in terms of dollars.

7. A has 12 dollars and B, 8 dollars. How much will each have if A gives B 4 dollars? *m* dollars?

8. At 3 dollars per day, how much will a man earn in 4 days? in x days? At a dollars per day, how much will he earn in b days? in c days? in a days?

9. By what number must 25 be multiplied to produce 300?10 to produce x? r to produce s?

10. What are the two odd numbers nearest to 5? If n+3 is an odd number, what are the two odd numbers nearest to n+3? the two even numbers?

11. How many square rods are there in a square field one of whose sides is 2 rods long? (x + y) rods long?

12. How many square rods are there in a field 6 rods long and 4 rods wide? (m+n) rods long and m rods wide?

13. If it takes 4 men 5 days to do a piece of work, how long will it take 1 man to do it? 2 men? x men? If it takes b men c days to do a piece of work, how long will it take 1 man? z men?

14. The number 25 may be written 20+5. Write the number whose first digit is x and second digit y.

15. Represent (a+b) times the number whose tens' digit is m and units' digit n.

### Problems

47. 1. What number increased by 6 is equal to 44?

#### SOLUTION

Letx = the number.Then,x + 6 = 44.Solving the equation,x = 38, the number.

2. What number increased by 15 is equal to 51?

3. What number decreased by 32 is equal to 60?

4. What number multiplied by 3 is equal to 78?

5. What number divided by 8 is equal to 62?

6. If 20 is added to a certain number and 14 is subtracted<sup>\*</sup> from the sum, the result is 19. Find the number.

7. One half of a number, and 11 more, is equal to 37. Find  $\frac{1}{2}$  of the number, then find the number.

8. If <sup>3</sup>/<sub>4</sub> of a certain number is 18, what is the number?

9. The sum of two numbers is 55 and the larger is 4 times the smaller. What are the numbers?

#### SOLUTION

| Let                   | x = the smaller number.           |
|-----------------------|-----------------------------------|
| Then,                 | 4x = the larger number,           |
| and x-                | +4x = the sum of the two numbers. |
| But                   | 55 = the sum of the two numbers.  |
| .:. x -               | +4x = 55.                         |
| Solving the equation, | x = 11, the smaller number,       |
| and                   | 4x = 44, the larger number.       |

Note. - The sign ... means ' therefore.'

10. Separate 116 into two parts, one of which shall be 3 times the other.

11. Separate 72 into two parts, one of which shall be  $\frac{1}{3}$  of the other.

12. What number increased by  $\frac{1}{2}$  of itself equals 54?

13. What number decreased by  $\frac{1}{5}$  of itself equals 84?

14. Five times a number exceeds 3 times the number by 14. What is the number ?

15. The double of a number is 64 less than 10 times the number. What is the number?

16. Four times a certain number exceeds 12 as much as 3 times the number is less than 72. What is the number?

17. Of the steam vessels built on the Great Lakes one year, 21, or 5 less than  $\frac{1}{3}$  of all, were of steel. How many steam vessels were built on the Lakes that year?

#### Solution

| I  | x = the number of steam vessels built.               |  |
|----|------------------------------------------------------|--|
| 3  | n, $\frac{1}{3}x - 5 =$ the number of steel vessels. |  |
| I  |                                                      |  |
|    | $\therefore \frac{1}{3}x - 5 = 21.$                  |  |
| 1  | ling 5 to both members of the equation,              |  |
|    | $\frac{1}{3}x + 5 - 5 = 21 + 5$                      |  |
| or | $\frac{1}{3}x = 26$ ,                                |  |
| A  | tiplying both members by 3,                          |  |
|    | $\tau = 78$ the number of steam used huilt           |  |

Note. — The equation  $\frac{1}{3}x - 5 = 21$  is called the equation of the problem.

General Directions for Solving Problems. -1. Represent one of the unknown numbers by some letter, as x.

2. From the conditions of the prollem find an expression for each of the other unknown numbers.

3. Find from the conditions two expressions that are equal and write the equation of the problem.

4. Solve the equation.

18. Two cars together contained 400 bales of cotton. If one car had 6 bales more than the other, how many had each?

19. The playgrounds of two cities occupy 183 acres. One city has 27 acres less than the other. How many acres has each?

20. The height of the big tree Wawong in California is 8 feet more than 9 times its diameter. If the height is 260 feet, what is the diameter of the tree?

47

### FUNDAMENTAL OPERATIONS

21. Yellowstone Park contains 3400 antelope and deer. If the antelope number 200 less than twice the number of deer, how many deer are there in the Park?

22. A department store restaurant serves luncheon daily to 5000 people. If the number served lacks 1000 of being 3 times the number seated at once, find the seating capacity.

23. One year the Bureau of Engraving and Printing employed 2400 people. The number of women was 400 greater than the number of men. Find the number of each employed.24. In a recent year the Lake Superior region furnished

38,400,00.) tons of iron ore, or  $\frac{4}{5}$  of all that was mined in the United States. How much was mined in the United States?

25. Denmark produces 44,000 tons of beet sugar annually. If this is 4000 more than  $\frac{1}{2}$  the number of tons consumed, what is the annual consumption of beet sugar in Denmark?

26. One year the government spent \$60,000 in operating a 7 flag factory. The material cost \$8000 less than 3 times the amount expended for labor. What was the cost of each?

27. Two power companies together use 27,200 cubic feet of water per second from Niagara Falls. Find the average discharge of the falls per second, if these companies use  $\frac{2}{15}$  of it.

28. The whalebone in one whale was worth  $\frac{5}{16}$  as much as that in another, and the value of the whalebone in the two was \$525. Find the value of the whalebone in each.

29. In a fossil bed in Switzerland 470 species of insects were found and this was 30 less than  $\frac{5}{7}$  of the number found in a bed in Colorado. Find the number in the latter bed.

30. The largest cask in the world contains a number of hogsheads that is 1 less than 25 times the number of feet in its diameter. If it contains 649 hogsheads, find its diameter.

31. The railroads consume  $\frac{3}{10}$  of the total annual production of coal in the United States. Their annual expenses for coal are 240 million dollars with the average price \$2 per ton. How many tons are produced in the United States each year? 32. The United States uses 101 million files each year. The number of files made in this country lacks 15 million of being 3 times the number of those imported. How many files are imported?

33. The Jamestown Exposition pier inclosed a rectangular lagoon, the length of which was 1000 feet more than its width. If its perimeter was 6800 feet, how long was it?

34. In one year the output of scrap mica was 5 tons more than twice the output of sheet mica and there were  $430\frac{1}{2}$  tons more of the former than of the latter. Find the number of tons of each.

35. The largest concrete chimney in the world contains 1460 tons of steel and sand. The weight of the steel used was  $\frac{3}{70}$  of the weight of the sand. Find the number of tons of each that were used.

36. Mt. Whitney, the highest point in the United States, is 14,500 feet above sea level. This is 700 feet more than 50 times the depth below sea level of Death Valley, the lowest point of dry land in the country. How far below sea level is Death Valley?

> 37. The lilies sent to the United States annually from Bermuda are worth  $\frac{1}{20}$  as much as all our imported floral products. If the other floral products are worth \$1,900,000, find the value of the lilies imported from Bermuda.

38. The distance from Cuba to Haiti is 31 miles less than the distance to Jamaica, and from Cuba to Yucatan, which is 130 miles, is 9 miles less than the sum of the distances to Haiti and Jamaica. Find the distance from Cuba to Jamaica.

 $\rightarrow$ 39. In field and track events at the Olympic games in London, America won 35½ points more than Great Britain and Sweden together, and Sweden won 54 points less than Great Britain. Find the score of each, if the total score of the three countries was 193½ points.

# REVIEW

### REVIEW

48. 1. Tell how similar terms are added; subtracted. Tell what to do with dissimilar terms in addition; in subtraction.

2. Write a polynomial arranged according to the ascending powers of some letter; the descending powers.

3. State the law of exponents for multiplication; for division; the law of coefficients for each.  $3^0 = ?$   $8^0 = ?$   $a^0 = ?$ 

4. What is an equation? Write one and point out the unknown numbers in it; the known numbers; its first member; its second member.

5. What is meant by 'solving an equation'? Give four methods by one or more of which equations may be solved. How may the value of an unknown number, obtained by solving an equation, be verified?

Solve and verify:

| 6.      | 3x = 21.                         |       | 7 x - 3 + 4 x = 21 - 2 x + 2.       |  |  |
|---------|----------------------------------|-------|-------------------------------------|--|--|
| 7.      | $\frac{5}{6}x = 15.$             |       | 10 - 2x = 3x + 5 + 9 - 6x.          |  |  |
| 10.     | Add $x + y + z$ , 7 $x + 2z + z$ | -33   | y, 4z+5y, and 9x+3y+2z.             |  |  |
| 11.     | 11a + 5b + 2c - 4b + 2           | a -   | -c+4c-9a+5b-3c+a=?                  |  |  |
| 12.     | Subtract 5 $a^m + 7 b^a + 18$    | i c i | from $7 a^m + 25 c + 8 b^n + 8 d$ . |  |  |
| Expand: |                                  |       |                                     |  |  |

13.  $7 p^3 q^3 r^5 (pqr^3 + 4 p^2 qr + 2 qr^3 + p^5 + 5 p^3 q^2 r^4 + 3 pq)$ . 14.  $(x^4 + 7 x^2 y + 4 x^2 y^2 + 3 xy^3 + 2 y^4)(x^3 + 4 x^2 y + 2 y^3)$ . 15.  $(3 z^4 + 4 z^3 w + 6 z^2 w^2 + 4 z w^3 + 13 w^4)(2 z^2 + 4 z w + 3 w^2)$ . 16.  $(a^5 b + 3 a^4 b^2 + 6 a^3 b^3 + 5 a^2 b^4 + 11 a b^5)(a^3 + 3 a^2 b + 4 a b^2)$ . Divide, and test each result:

17.  $12 l^{3}m^{4}n^{2} + 18 l^{3}m^{2}n^{4} + 15 l^{4}m^{3}n^{3} + 3 l^{5}mn^{2}$  by  $3 l^{5}mn^{2}$ ,

**18.**  $35 r^4 + 30 r^3 s + 69 r^2 s^2 + 12 r s^3 + 22 s^4$  by  $5 r^2 + 2 s^3$ .

19.  $22 x^2 y^2 + 24 x y^3 + 27 x^3 y^3 + 36 x^2 y^4 + 3 x^3 y$  by  $3 x y + 4 y^2$ . 20.  $4 a^5 c + 8 a^4 b c + 11 a^3 b^2 c + 24 a^2 b^3 c + 24 a b^4 c + 7 b^5 c$  by  $2 a^2 + 3 a b + b^2$ .

# POSITIVE AND NEGATIVE NUMBERS

49. The student of arithmetic knows the meaning of such an expression as 10-4, but as yet an expression like 4-10has no meaning to him. It is the purpose of this chapter to extend the idea of number so that subtracting a larger number from a smaller one will have as much meaning as subtracting a smaller number from a larger one, to show that there is a practical demand for a new kind of number, and finally to show how operations involving this new kind of number are performed.

50. Suppose that at noon the temperature is  $10^{\circ}$  above 0 and that at 6 p.m. it has fallen 4°. The temperature is then  $10^{\circ} - 4^{\circ}$ , or 6° above 0, but if it has fallen  $15^{\circ}$  instead of 4°, it is then  $10^{\circ} - 15^{\circ}$ , and because the numbers on a thermometer extend below as well as above 0, we see that  $10^{\circ} - 15^{\circ}$  means that the temperature is 5° below 0,  $10^{\circ}$  of the  $15^{\circ}$  of fall taking it to 0 and the other 5° of fall taking it to 5° below 0.

For convenience and brevity degrees 'above 0' are marked with the sign + and degrees 'below 0' with the sign -. Such statements may be abbreviated algebraically, thus:

> $+10^{\circ}-4^{\circ}=+6^{\circ},$  $+10^{\circ}-15^{\circ}=-5^{\circ}.$

Similarly, if a ship now at 20° north latitude (latitude,  $+20^{\circ}$ ) sails south 30°, it will cross the equator (latitude, 0°) and be at 10° south latitude (latitude,  $-10^{\circ}$ ).

Again, a tourist in going from Lake Lucerne 1435 feet above sea level (altitude +1435 feet) to the Dead Sea 1295 feet below sea level (altitude -1295 feet) goes not only to 0 altitude (sea level), but through 0 altitude.

MILNE'S 1ST YR. ALG. -4 49

and